
SUBGRAPH EXTRACTION AND MEMETIC ALGORITHM FOR
THE MAXIMUM CLIQUE PROBLEM

Duc-Cuong Dang and Aziz Moukrim
Université de Technologie de Compiègne

Laboratoire Heudiasyc, UMR UTC-CNRS 6599, BP 20529, 60205 Compiègne, France

Keywords: Maximum clique problem, Memetic algorithm, Triangulated graph, Circular-arc graph.

Abstract: The maximum clique problem involves finding the largest set of pairwise adjacent vertices in a graph. The
problem is classic but still attracts much attention because of its hardness and its prominent applications.
Our work is based on the existence of an order on all the vertices whereby those belonging to a maximum
clique stay close enough to each other. Such an order can be identified via the extraction of a particular
subgraph from the original graph. The problem can consequently be seen as a permutation problem that
can be addressed efficiently with an evolutionary-like algorithm, here we use a memetic algorithm (MA).
Computational experiments conducted on DIMACS benchmark instances clearly show our MA which not
only outperforms existing genetic approaches, but also compares very well to state-of-the-art algorithms.

1 INTRODUCTION

A clique in a graph is a set of pairwise adjacent ver-
tices, that is to say an induced subgraph which is it-
self a complete graph. The Maximum Clique Prob-
lem (MCP) involves finding a clique with the greatest
cardinality. The MCP is one of the important prob-
lems of graph theory, and is computationally equiv-
alent to both the Maximum Independent Set Prob-
lem (MISP) and the Minimum Vertex Cover Prob-
lem (MVCP). The problem has been proved to be
NP-Hard (Garey and Johnson, 1979) for an arbitrary
graph. For some special graphs such as triangulated
graphs, interval graphs and circular-arc graphs, the
MCP can be solved in linear time (Golumbic, 2004).
The MCP has numerous applications in a variety of
domains including information retrieval, signal trans-
mission and bioinformatics (Balas and Yu, 1986; Ji
et al., 2004). Therefore, it is important to design ef-
ficient heuristics to solve different instances in a rea-
sonable computation time.

Many heuristic approaches have been developed
for the MCP, most of which are modified version
of different local search techniques, while others are
metaheuristics (for an overview of these methods, see
(Bomze et al., 1999; Pardalos and Xue, 1994)). Re-
cent published methods have been tested using bench-
mark instances from the Second DIMACS Challenge
(Johnson and Trick, 1996), but comparing experimen-

tal results remains difficult, from the point of view
of both the quality of the solutions and their com-
putation time, owing to differences in experimental
testing protocols and the large variety of machines
used. However, if we consider only the quality of
the solutions reported by authors of these methods,
two stand out as being state-of-the-art for the MCP.
First, Reactive Local Search (RLS) (Battiti and Pro-
tasi, 2001) is a tabu search with a feedback scheme to
adapt the tenure parameter and to restart the process
when required. A recent evolutionary approach ex-
tending the reactive scheme has been reviewed by the
authors1. Secondly, Variable Neighborhood Search
(VNS) (Hansen et al., 2004) is, as its name suggests,
a variable neighborhood search using the simplicial
vertex test during its descent steps. Certain other
methods, comparable to the state-of-the-art, are wor-
thy of note. K-opt Local Search (KLS) (Katayama
et al., 2005) is a quick variable-depth search tested
in a basic multi-start scheme. Ant Colony Optimiza-
tion (ACO) (Solnon and Fenet, 2006) is a recent ant
colony optimization approach for the MCP. Quick Al-
most Exact Maximum Weight Clique/Independent Set
Solver (QUALEX-MS) (Busygin, 2006) is a deter-
ministic greedy construction algorithm based on a
quadratic formulation of the MCP. Dynamic Local
Search (DLS) (Pullan and Hoos, 2006) is a stochastic

1http://rtm.science.unitn.it/˜battiti/

77Dang D. and Moukrim A..
SUBGRAPH EXTRACTION AND MEMETIC ALGORITHM FOR THE MAXIMUM CLIQUE PROBLEM.
DOI: 10.5220/0003081000770084
In Proceedings of the International Conference on Evolutionary Computation (ICEC-2010), pages 77-84
ISBN: 978-989-8425-31-7
Copyright c 2010 SCITEPRESS (Science and Technology Publications, Lda.)

local search with dynamic penalty adjustment for ver-
tex selection. The DLS focuses on finding a clique of
given size. It was tested on different global schemes
(Pullan and Hoos, 2006; Pullan, 2006; Grosso et al.,
2008).

Genetic Algorithms (GA) have been shown to be
efficient for many hard combinatorial optimization
problems, but pure genetic schemes applied for the
MCP have poor performances when compared to lo-
cal search techniques (Park and Carter, 1995). Con-
sequently, most efficient GA designs for the MCP are
hybrids between a genetic scheme and a local search
(Bui and Eppley, 1995; Marchiori, 1998; Singh and
Gupta, 2006). One common feature of these GA is
that they use a binary representation of the chromo-
some.

In this paper we focus on GA designs in which
local search techniques replace the mutation proce-
dures of classic GA, and we refer to Memetic Algo-
rithms (Moscato, 1999). Moreover, we propose using
a permutation of the set of vertices as a representa-
tion, meaning that an evaluation process is then re-
quired to identify the associated clique. This iden-
tification is performed using a subgraph extraction
approach which targets interval graphs, circular-arc
graphs and triangulated graphs. Three algorithms,
that we called VMTG (vertex-maximal extraction us-
ing triangulated graphs), EMTG (edge-maximal ex-
traction using triangulated graphs) and CAG (extrac-
tion using circular-arc graphs) are developed for this
purpose.

The paper is organized as follows. We first
present, in Section 2, a formal description of the MCP
with a short description of our approach to solve the
problem. Different methods to evaluate a permuta-
tion of vertices using subgraph extraction are also de-
scribed in the section. The memetic algorithm is pre-
sented and discussed in Section 3. Numerical results
are provided in Section 4, and finally some conclu-
sions are drawn.

2 SUBGRAPH EXTRACTION
APPROACH

Let G = (V;E) be an arbitrary undirected graph where
V is the set of vertices and E �V �V the set of edges.
The number of vertices in V will be denoted n, and the
number of edges in E will be denoted m. Given a sub-
set S of V , we refer to G[S] = (S;E \ (S� S)) as the
subgraph induced by S. A graph G = (V;E) is com-
plete if all its vertices are pairwise adjacent, meaning
that 8x;y 2 V; [x;y] 2 E. A clique K is a subset of V
such that G[K] is complete. The MCP ask to find a

clique K with the greatest cardinality.
Our approach to solving the MCP involves, first,

considering a permutation of all the vertices in V , i.e.
a sequence which we shall denote p, and then using an
extraction procedure to identify associated solutions,
i.e. the most profitable subsequences. Both the se-
quence and the identified solution can be improved
using appropriate optimization techniques.

The most intuitively straightforward extraction
method for a given sequence p is to find the subse-
quence (p(i); :::;p(i + li)) that can form a clique and
that has the greatest length li. Every permutation con-
taining the vertices of a maximum clique Kmax as a
subsequence yields Kmax in return. A naive algorithm
with complexity O(n3) can be used to extract such
a subsequence. More efficient extraction methods in-
volve first extracting a subgraph from the original one,
then identifying the maximum clique from the sub-
graph. The subgraph types are chosen such that the
MCP can be solved in polynomial time, or linear time
in the ideal case. For this reason, in this section we
investigate different extraction methods using interval
graphs, circular-arc graphs and triangulated graphs.

2.1 Triangulated Graph Extraction

A graph is triangulated or chordal if every one of its
cycles of four or more nodes has a chord, that is to say
an edge joining two nodes that are not consecutive in
the cycle. We are interested in triangulated graph ex-
traction, mainly because this method has already been
proposed by (Balas and Yu, 1986) (vertex-maximal
version) and by (Xue, 1994) (edge-maximal version).
Neither of these methods starts out with a predefined
permutation of vertices, but both attempt to build one
dynamically while maximizing the edge or vertex cri-
teria. We have adapted their methods for our purposes
by including a predefined permutation.

For a given graph G = (V;E), a permutation of its
vertices set is defined as bijection p : [1::n]! V . We
set succG;p(x) = fyjp�1(y) > p�1(x) and [x;y] 2 Eg
to denote the set of successors of x in p and tG;p(x) to
denote the first successor (having the smallest p�1(y)
value). A vertex x is said to be quasi-simplicial in
p if tG;p(x) is connected to every other element of
succG;p(x). A graph is triangulated if and only if there
exists a permutation of vertices p, such that the in-
duced subgraph G[fxg [succG;p(x)] is complete for
every x 2 V . Such a permutation is called a perfect
elimination scheme (PES). A permutation p of V is
a PES of G if and only if for all x 2 V , x is quasi-
simplicial in p (Balas and Yu, 1986).

For a given permutation p and a subset S of V , we
refer to pjS: [1::jSj]! S as the permutation restricted

ICEC 2010 - International Conference on Evolutionary Computation

78

to S, such that p
�1
jS (x) < p

�1
jS (y) with (x;y) 2 S� S

and x 6= y if and only if p�1(x) < p�1(y). A subgraph
G0 = (V 0;E 0) of G is said to be p-triangulated if and
only if pjV 0 is a PES of G0. In particular, when G0 is
an edge-induced subgraph, that is to say V 0 = V , it is
said to be edge-maximal if and only if 8e2 E nE 0, the
subgraph G00 = (V;E 0[feg) is not p-triangulated. In
the same way, when G0 is a vertex-induced subgraph,
usually noted G[S], it is said to be vertex-maximal if
and only if 8x2V nS, G[S[fxg] is not p-triangulated.

Our first triangulated subgraph extraction for a
given permutation p, noted VMTG, is as follows. A
subset S of vertices is initialized to p(n), then we
browse vertices in p from right to left. If the cur-
rent vertex x is quasi-simplicial in pjS[fxg, it will be
added to S. An example of this extraction is given in
Figure 1.b. In this example, according to permutation
p1 = (3;2;6;7;1;5;4), S is initialized to vertex 4 from
the original graph (Figure 1.a), then vertices 5, 1, 7,
6 are progressively added to S because their first suc-
cessors are connected to their all other successors in
p1jS during the process. Then vertex 2 is not added
to S because its first successor in the current p1jS is
7 and it is not connected to vertex 1, the other suc-
cessor of 2. Finally, vertex 3 is added to S and we ob-
tain the p1-triangulated vertex-induced subgraph. The
largest clique is memorized for vertex 6, because its
set of successors in p1jS has the greatest cardinality.
Hence, for an arbitrary graph G = (V;E), the follow-
ing proposition holds.

Proposition 1. Algorithm VMTG finds a vertex-
maximal p-triangulated subgraph of G in O(n+m).

The second extraction, noted EMTG, is based on
an almost identical principle, but instead of remov-
ing the vertex we try to maximally integrate rela-
tive edges into the extracted graph while keeping the
quasi-simplicial property. An example is given in Fig-
ure 1.c. Here vertices are always added to G0 at the
same time as necessary edges. With the same permu-
tation p1 from previous example, the algorithm ini-
tializes G0 with vertex 4 and empty edge set, then pro-
gressively adds vertex 5 and edge 5-4, vertex 1 and
edges 1-5, 1-4, vertex 7 and edges 7-5, 7-4, vertex 6
and edges 6-7, 6-5, 6-4, vertex 2 and edge 2-7 (but
not edge 2-1), vertex 3 and edge 3-2 (but not edge
3-1) to G0. The largest clique is also memorized at
adding step of vertex 6. Similarly, for an arbitrary
graph G = (V;E), the following proposition holds.

Proposition 2. Algorithm EMTG finds an edge-
maximal p-triangulated subgraph of G in O(n+m).

2.2 Interval Graph and Circular-arc
Graph Extraction

An interval graph is an intersection graph of multi-
ple segments of a line. Its generalization on a circle
(circular-arc graph) is an intersection graph of multi-
ple arcs of a circle. Intersection containing the largest
number of segments or circular-arcs is a maximum
clique of the graph, so finding the maximum clique
in these graphs can be done is linear time when all
segments or circular-arcs are well defined (Golumbic,
2004). In this section, we propose extraction methods
for an arbitrary graph and a permutation of vertices
using interval graph and circular-arc graph.

Let G = (V;E) be an arbitrary graph and p be a
permutation of vertices of V . For any i in [1::n], we
denote Ii = [i; i+ li] where li is such that 0� li � n� i
and 8l 2 [1::li]; [p(i);p(i + l)] 2 E and X = fIij1 �
i � ng. The interval set X can be seen as the repre-
sentation of an interval graph Gp = (V;Ep). For any
couple of vertices x;y 2 V , [x;y] 2 Ep if and only if
Ii \ I j 6= /0 with i = p�1(x) and j = p�1(y). Also for
any i in [1::n], we denote as Ji an extension of Ii in
which Ji = /0 if li < n� i or [p(i);p(1)] =2E. Otherwise
Ji = [1; pi] where pi is such that 1 � pi < i and 8p 2
[1::pi]; [p(i);p(p)]2 E. Therefore Y = fIi[Jij1� i�
ng is the representation of a circular-arc graph that
we denote Ĝp = (V; Êp). For any couple of vertices
x;y2V , [x;y]2 Êp if and only if (Ii[Ji)\(I j[J j) 6= /0

with i = p�1(x) and j = p�1(y).
Proposition 3. For an arbitrary graph G = (V;E)
and a permutation p of V , we have Ep � Êp � E.

A direct corollary of Proposition 3 is that any
clique in Gp is a clique in Ĝp and so on any clique
in Ĝp is also a clique in G. From now we are inter-
ested in circular-arc graph extraction instead of inter-
val graph one. The clique extraction using circular-
arc graphs, noted CAG, can be described as follows.
For each position i in the permutation, we maintain
a list Li of the vertices p(j) in which the circular-
arcs (I j [J j) pass through position i. Formally, Li =
fp jj j = [1::n] and i 2 (I j [J j)g. We browse circular-
arcs all fI j [J jg with j 2 [1::n] and progressively up-
date Li. At the end of this process the longest list will
correspond to the maximum clique of Ĝp. Since the
circular-arc length starting from vertex p(j) does not
exceed the degree of vertex p(j) in G, the final com-
plexity of this process is obviously O(n+m). An ex-
ample of this subgraph extraction is shown in Figure
1.d. We consider permutation p2 = (4;5;1;7;6;2;3),
the algorithm can start from any vertex in the order
and for simple, following this order until returning to
the same vertex. For example we begin with vertex 5,
its first unlinked vertex in the order is vertex 2, so 5

SUBGRAPH EXTRACTION AND MEMETIC ALGORITHM FOR THE MAXIMUM CLIQUE PROBLEM

79

is added to L5, L1, L7 and L6. In the same way 1 is
added to L1, 7 is added to L7, L6 and L2, 6 is added to
L6, 2 is added to L2 and L3, 3 is added to L3 and fi-
nally 4 is added to L4, L5, L1, L7 and L6. The longest
list is now L6 contains the maximum clique (4, 5, 6,
7) of the extracted graph.

All algorithms VMTG, EMTG and CAG have the
following property.

Property 1. For an arbitrary graph G = (V;E), there
exists a permutation of V as input of the algorithm
that gives in output a maximum clique of G.

For VMTG and EMTG algorithms, it is enough
for vertices of a maximum clique to stick together in
the end of the permutation in order to find the clique.
For CAG algorithm, it is enough for those vertices to
stick together at any position of the permutation. So
the CAG algorithm dominates the earlier mentioned
straight forward method. These permutations are suf-
ficient to show the correctness of Property 1, even
though other kinds of permutation giving a maximum
clique in output exist as seen in the example of Figure
1. In the next section, we describe how to find such a
permutation using evolutionary approaches.

3 MEMETIC ALGORITHM

One of the metaheuristics that have proved to be ef-
fective in addressing permutation problem is the ge-
netic algorithm (GA). When local search techniques
(LS) are used instead of mutation processes in clas-
sical GA, the method is termed a memetic algorithm
(MA) (Moscato, 1999). This section describes the de-
tail of our MA design.

3.1 Population Management

In GA design, the population is a set of individuals or
solutions. In our MA each individual is represented
by a permutation of vertices or by a sequence. In order
to transform a sequence into a solution or a clique, an
evaluation process is required. We make this evalua-
tion process correspond to calling an eval() function,
using one of the three methods described in Section
2. For convenience we consider all permutations in
circular order. VMTG and EMTG algorithms in par-
ticular require a linear order to operate, so the circular
order can be transformed into linear one starting from
a specific open point. The position of this open point
is initialized to random for new created permutations,
i.e at initialization or through the crossover operator,
but for improved permutations from local search pro-
cess the value is especially given (see Section 3.2).

This value has no signification for CAG algorithm.
We now discuss how to evolve these individuals to-
ward better ones.

The population is sorted hierarchically, first by
identified clique size and then by generation num-
ber. A new individual created via crossover and mu-
tation operations is a candidate for insertion into the
population. This insertion requires the new individ-
ual to have a performance at least equal to that of
the worst individual, and sufficiently different from
the two closest individuals in the population hierar-
chy, for example with at least 5 distinct vertices. To
distinguish two individuals, we use the Hamming dis-
tance on extracted cliques. A successful insertion is
followed by the ejection of the last individual in the
hierarchy, so as to maintain the existing population
size.

3.2 Crossover Operator and Local
Search as Mutation

At each iteration of the algorithm two parents are se-
lected via a binary tournament for crossover opera-
tion. Our crossover operator, called MOX, works with
a heritage mask, a binary string of size n. The child
sequence will inherit from one parent all the vertices
in the mask having the value 1, and from the other par-
ent the remaining vertices, in the same order. There
are different ways to generate an efficient heritage
mask, the most simple is to put randomly values 0
and 1 with equal probability. Then, from a random
position in the mask, we create a subsequence of jPmaxj

2
size with values 1 (jPmaxj is the best known clique size
of two parents). The idea is to break and merge ran-
domly different cliques from the permutations.

After a child sequence is created using MOX and
evaluated, it will have pm probability of being mu-
tated through local search (LS). During this process,
three neighborhoods are applied in stochastic order
until no further improvement can be found. Here
we denote as K the current clique, as NjKj the set of
vertices that connect to all the vertices in K, and as
NjKj�1(x) (with x 2 K) the set of vertices that connect
to all vertices in K except x. The number in parenthe-
ses is the stochastic priority ps of the neighborhood,
that means the neighborhood has probability ps

å ps to
be selected.

� k-opt inner loop (5), the inner loop of the heuristic
k-opt (Katayama et al., 2005), for each iteration,
remove one vertex in K having greatest value of
jNjKj�1(x)j then try to complete the clique with
vertices having the greatest degree in the induced
subgraph G[NjKj]. Removed and added vertices

ICEC 2010 - International Conference on Evolutionary Computation

80

Table 1: Overall performance comparison on DIMACS benchmark.

Method RLS HSSGA GA VNS KLS PLS MA Best
VMTG EMTG CAG

å jKj 2849 2832 2819 2851 2845 2856 2854 2859 2855 2862
åCPU 6715:08 4774:65 926:8 6453:48 148:24 1017:5 4332:88 11264:46 4062:25

a) an example of graph d) extracted circular-arcs

for sequence π
2

b) vertex-maximal
π

1
-triangulated subgraph

c) edge-maximal
π

1
-triangulated subgraph

5

4 1

32

6

7

5

4 1

3

6

7

5

4 1

32

6

7

6
2

3

4 5

1

7

Figure 1: Examples of subgraph extraction with p1 = (3;2;6;7;1;5;4) and p2 = (4;5;1;7;6;2;3). In this particular example,
p1 is reversed order of p2 and algorithm CAG (d) gives the same graph as EMTG (c) in return.

are marked to avoid using in next iterations. The
loop is stopped when the current clique does not
contain any vertex from the original one. The
highest score is maintained during the process. At
the end of the loop, it is compared with the origi-
nal clique in order to detect an improvement.

� heuristic drop/add (3), for each iteration, remove
d vertices with priority to vertices having the
greatest value of jNjKj�1(x)j from the original
clique, then complete it with vertices having the
greatest degree in the induced subgraph G[NjKj].
The value of d is initialized to 1 and duplicated
after each iteration. The loop is stopped when
an improvement is found or when d is gone over
jKj�1.

� random drop/add (2), similar to heuristic
drop/add except vertices are randomly selected
during dropping and adding step.

After the local search, to convert the improved
clique back into a sequence, vertices from the clique
are first placed in an empty sequence at a random
starting position. The sequence is then randomly
completed with the other vertices in the remaining
position. The open point for transforming a circular
order to linear order is set to the ending position of
placed clique.

4 NUMERICAL RESULTS

The DIMACS instance set for the MCP and Graph
Coloring Problem (GCP) was released in 1993 for the
DIMACS series of challenges in combinatorial opti-
mization. Since that time it has been used as a bench-
mark to evaluate the efficiency of heuristics developed
for the MCP. We therefore tested our algorithm on this
set in order to compare its performance with other
methods in the literature. The set consists of 80 in-
stances, generation methods being described in (John-
son and Trick, 1996). Most recent published heuris-
tics focus on 37 instances only, rather than on the full
set. These focused instances range in size from 125
vertices and 6000 edges to 4000 vertices and 5000000
edges.

Following a large number of experiments on DI-
MACS instances, we decided to set the parameters of
our algorithm as follows: the population size is fixed
at 40 individuals, and it is unnecessary to include
some good individuals when initializing the popula-
tion, i.e. by using a heuristic rather than a random gen-
eration. We denote as iterine f f ective the current num-
ber of consecutive iterations without improvement.
The algorithm is stopped after iterine f f ective reaches a
value itermax. For small instances (less than 1000 ver-
tices) we set itermax to 20:n, and for larger instances
we set itermax to n. Every individual created though
crossover has a probability pm = 1� iterine f f ective

itermax
of be-

ing mutated. All results for each instance are reported

SUBGRAPH EXTRACTION AND MEMETIC ALGORITHM FOR THE MAXIMUM CLIQUE PROBLEM

81

after 100 executions. Our experiments were run on
an Intel Core 2 Duo E6750 - 2:67 GHz personal com-
puter with 2 GB RAM, using a single-threaded pro-
gram. Computer performance, reported by Sandra
SiSoft2, in single core mode is 9280 MFLOPS and
10770 MIPS. The DIMACS Machine Benchmark3 re-
quired respectively 0.02, 0.23, 1.40 and 5.36 CPU
seconds for solving r200.5, r300.5, r400.5 and r500.5
sample instances.

Table 2 reports our detailed results for DIMACS
benchmarks. The column jKj indicates clique size
found in solution over executions, here jKjworst ,
jKjbest and the standard deviation are reported. The
column CPU indicates average CPU time per exe-
cution with standard deviation. Finally the column
N reports the number of executions where jKjbest is
reached. Over these results, it should be observed
EMTG extraction gives the best performance for MA
but it requires extended execution time. This is likely
due to additional memory usages for saving edge
structures of the extracted subgraph during evalua-
tion process. VMTG and CAG extractions give quite
similar performance but CAG runs slightly faster than
VMTG as it has very simple implementation.

Our overall results on 37 DIMACS instances, us-
ing different extractions VMTG, EMTG and CAG,
are compared to those obtained by genetic algorithms
reported by (Marchiori, 1998) (GA) and by (Singh
and Gupta, 2006) (HSSGA), and to the state-of-the-
art reported by (Battiti and Protasi, 2001) (RLS) and
by (Hansen et al., 2004) (VNS). We also compare our
results to those reported by (Katayama et al., 2005)
(KLS) and by (Pullan, 2006) (PLS). Table 1 reports
for each method the overall performance with respect
to the total number of vertices in identified cliques,
denoted å jKj and the average CPU time for execut-
ing full DIMACS set, denoted åCPU . For our MA,
CPU time for each execution is full running time of
the algorithm. For other methods, the authors re-
ported this value only as time from starting of the al-
gorithm until the discovery of the best solution. Re-
sults from other excellent methods, sometimes out-
performing state-of-the-art methods, are not shown
in Table 1, either because certain results were lack-
ing or because different testing protocols were used.
Regarding these methods, we remarked the follow-
ing: ACO by (Solnon and Fenet, 2006) has an over-
all score of 1756 without reporting the result for the
MAN a81 instance; DLS by (Pullan and Hoos, 2006)
has excellent overall score of 2856 with parameters
customized for each instance (as early development of
PLS); ILS by (Grosso et al., 2008) did not report some

2http://www.sisoftware.net/
3ftp://dimacs.rutgers.edu/pub/dsj/clique/

results, but the algorithm obtained a record clique size
for the C2000.9 instance (80 vertices instead of the 78
in the literature).

These results clearly demonstrate that our
Memetic Algorithm compares very well with
the other genetic algorithms. MA outperforms
the GA proposed by (Marchiori, 1998) and the
HSSGA proposed by (Singh and Gupta, 2006)
in terms of efficiency, and it is also competitive
with state-of-the-art algorithms. Other details of
our results including experiments on BHOSLIB
(Benchmarks with Hidden Optimum Solutions
for Graph Problems) instances are available at
http://www.hds.utc.fr/�dangducc/mclique/.

5 CONCLUSIONS AND FUTURE
WORK

We have proposed a memetic algorithm for the MCP
which not only outperforms other genetic approaches,
but is competitive with state-of-the-art approaches.
For the first time the order of the vertices has been
used to represent a chromosome in the genetic ap-
proach for solving the MCP. Finally, it is sure that
the MA can be more engineered to improve stability,
efficiency and execution time but the current results
have been shown the subgraph extraction approach
and memetic algorithms are promising research direc-
tions for solving the MCP and related combinatorial
problems.

Given that a large number of fast and effective
local searches have been developed for the MCP, as
future work we plan to investigate the performances
of some of these inside the memetic scheme. More-
over, since the subgraph extraction approach is not re-
stricted to using genetic algorithms as a global search
method, we also intend to test other schemes.

REFERENCES

Balas, E. and Yu, C. (1986). Finding a maximum clique
in an arbitary graph. SIAM Journal of Computing,
15:1054–1068.

Battiti, R. and Protasi, M. (2001). Reactive local search for
the maximum clique problem. Algorithmica, 29:610–
637.

Bomze, I., Budinich, M., Pardalos, P., and Pelillo, M.
(1999). Handbook of Combinatorial Optimization,
chapter The maximum clique problem. Kluwer Aca-
demic Publishers.

Bui, T. N. and Eppley, P. H. (1995). A hybrid genetic algo-
rithm for the maximum clique problem. In Proceed-

ICEC 2010 - International Conference on Evolutionary Computation

82

ings of the 6th International Conference on Genetic
Algorithms, pages 478–484.

Busygin, S. (2006). A new trust region technique for the
maximum weight clique problem. Discrete Applied
Mathematics, 154:2080–2096.

Garey, M. R. and Johnson, D. S. (1979). Computers
and Intractability: A guide to the Theory of NP-
Completeness. Freeman, San Francisco, CA, USA.

Golumbic, M. C. (2004). Algorithmic Graph Theory and
Perfect Graphs (Annals of Discrete Mathematics, Vol
57). North-Holland Publishing Co.

Grosso, A., Locatelli, M., and Pullan, W. (2008). Sim-
ple ingredients leading to very efficient heuristics for
the maximum clique problem. Journal of Heuristics,
14(6):587–612.

Hansen, P., Mladenovic, N., and Urosevic, D. (2004). Vari-
able neighborhood search for the maximum clique.
Discrete Applied Mathematics, 145:117–125.

Ji, Y., Xu, X., and Stormo, G. D. (2004). A graph theori-
cal approach for predicting common RNA secondary
structure motifs including psudoknots in unaligned se-
quences. Bioinformatics, 20:1591–1602.

Johnson, D. and Trick, M. (1996). Cliques, Cloroing And
Satisfiability: Second DIMACS Implementation Chal-
lenge, volume 26 of DIMACS Series. American Math-
ematical Society.

Katayama, K., Hamamot, A., and Narihisa, H. (2005).
Solving the maximum clique problem by k-opt local
search. Information Processing Letters, 95:503–511.

Marchiori, E. (1998). A simple heuristic based genetic al-
gorithm for the maximum clique problem. In ACM
Symposium on Applied Computing, pages 366–373.

Moscato, P. (1999). New Ideas in Optimization, chap-
ter Memetic Algorithms: a short introduction, pages
219–234. McGraw-Hill Ltd., UK.

Pardalos, P. and Xue, J. (1994). The maximum clique prob-
lem. Journal of Global Optimization, 4:301–328.

Park, K. and Carter, B. (1995). On the effectiveness of ge-
netic search in combinatorial optimization. In Pro-
ceedings of the 10th ACM Symposium on Applied
Computing, pages 329–336.

Pullan, W. (2006). Phased local search for the maximum
clique problem. Journal of Combinatorial Optimiza-
tion, 12:303–323.

Pullan, W. and Hoos, H. H. (2006). Dynamic local search
for the maximum clique problem. Journal of Artificial
Intelligence Research, 25:159–185.

Singh, A. and Gupta, A. K. (2006). A hybrid heuristic for
the maximum clique problem. Journal of Heuristics,
12:5–22.

Solnon, C. and Fenet, S. (2006). A study of ACO capabili-
ties for solving the maximum clique problem. Journal
of Heuristics, 12.

Xue, J. (1994). Edge-maximal triangulated subgraphs and
heuristics for the maximum clique problem. Network,
24:109–120.

SUBGRAPH EXTRACTION AND MEMETIC ALGORITHM FOR THE MAXIMUM CLIQUE PROBLEM

83

Table 2: Detailed results on DIMACS benchmark (* if optimality is proved).

T
a
b

le
2
:

D
et

a
il

ed
re

su
lt

s
o
n

D
IM

A
C

S
b

en
ch

m
a
rk

(*
if

o
p

ti
m

a
li

ty
is

p
ro

v
ed

).

N
o.

In
st

an
ce

B
es

t
V

M
T

G
E

M
T

G
C

A
G

|K
|

C
P
U

N
|K
|

C
P
U

N
|K
|

C
P
U

N

1
C

12
5.

9
34

*
34

1.
82

(0
.0

3)
10

0
34

2.
09

(0
.0

3)
10

0
34

1.
86

(0
.0

3)
10

0
2

C
25

0.
9

44
*

44
8.

97
(0

.1
2)

10
0

44
11

.6
2(

0.
12

)
10

0
44

8.
18

(0
.1

1)
10

0
3

C
50

0.
9

57
57

53
.7

7(
2.

47
)

10
0

57
88

.9
(6

.4
)

10
0

57
43

.5
9(

3.
66

)
10

0
4

C
10

00
.9

68
65

-6
8(

0.
74

)
24

.1
6(

6.
69

)
1

65
-6

8(
0.

59
)

57
.7

1(
11

.9
6)

10
66

-6
8(

0.
54

)
22

.2
7(

5.
49

)
12

5
C

20
00

.9
80

74
-7

7(
0.

78
)

18
3.

76
(5

0.
46

)
2

75
-7

8(
0.

83
)

56
0.

02
(1

19
.2

1)
3

75
-7

8(
0.

7)
16

0.
58

(3
5.

38
)

1
6

D
SJ

C
50

0.
5

14
*

13
33

.4
3(

0.
33

)
10

0
13

61
.6

1(
0.

46
)

10
0

13
30

.1
3(

0.
35

)
10

0
7

D
SJ

C
10

00
.5

15
*

14
-1

5(
0.

5)
16

.0
6(

3.
9)

56
14

-1
5(

0.
45

)
32

.8
4(

6.
08

)
28

14
-1

5(
0.

5)
13

.1
6(

2.
9)

45
8

C
20

00
.5

16
15

-1
6(

0.
46

)
87

.5
8(

18
.6

9)
69

15
-1

6(
0.

47
)

29
2.

76
(5

6.
52

)
66

15
-1

6(
0.

45
)

78
.1

9(
17

.6
5)

71
9

C
40

00
.5

18
16

-1
8(

0.
22

)
59

5.
99

(1
01

.4
1)

3
16

-1
8(

0.
22

)
23

28
.3

(3
73

.5
1)

2
16

-1
8(

0.
26

)
50

6.
17

(8
3.

25
)

5
10

M
A

N
N

a2
7

12
6*

12
6

26
.4

(0
.2

4)
10

0
12

6
50

.8
4(

0.
35

)
10

0
12

6
38

.2
6(

0.
32

)
10

0
11

M
A

N
N

a4
5

34
5*

34
4-

34
5(

0.
2)

33
.2

6(
4.

97
)

4
34

4-
34

5(
0.

17
)

77
.1

1(
10

.4
8)

3
34

4-
34

5(
0.

14
)

44
.3

5(
5.

2)
2

12
M

A
N

N
a8

1
11

00
10

98
-1

09
9(

0.
36

)
97

3.
2(

16
6.

16
)

15
10

98
-1

10
0(

0.
35

)
28

77
.3

6(
33

3.
02

)
1

10
98

-1
09

9(
0.

31
)

12
82

.7
4(

24
0.

67
)

11
13

br
oc

k2
00

2
12

*
11

-1
2(

0.
2)

3.
6(

0.
63

)
96

11
-1

2(
0.

31
)

5.
66

(1
.1

1)
89

11
-1

2(
0.

37
)

3.
74

(0
.7

6)
84

14
br

oc
k2

00
4

17
*

16
-1

7(
0.

41
)

3.
94

(0
.8

4)
79

16
-1

7(
0.

5)
5.

71
(1

.3
6)

48
16

-1
7(

0.
49

)
3.

43
(0

.7
2)

43
15

br
oc

k4
00

2
29

*
25

-2
9(

1.
6)

27
.5

8(
5.

45
)

20
25

-2
9(

0.
78

)
41

.5
1(

5.
17

)
4

25
-2

9(
1.

2)
21

.6
8(

2.
51

)
10

16
br

oc
k4

00
4

33
*

25
-3

3(
3.

01
)

31
.5

(6
.7

3)
83

25
-3

3(
3.

82
)

44
.8

7(
8.

73
)

35
25

-3
3(

3.
84

)
24

.4
2(

6.
29

)
36

17
br

oc
k8

00
2

24
*

21
17

7.
49

(7
.0

3)
10

0
21

-2
4(

0.
3)

35
4.

63
(2

9.
76

)
1

21
14

9.
49

(1
1.

25
)

10
0

18
br

oc
k8

00
4

26
*

21
-2

6(
0.

5)
18

9.
52

(2
2.

01
)

1
21

-2
6(

0.
5)

38
6.

58
(5

5)
1

21
-2

6(
0.

7)
16

2.
54

(2
1.

58
)

2
19

ge
n2

00
p0

.9
44

44
*

44
5.

31
(0

.0
7)

10
0

44
6.

4(
0.

09
)

10
0

44
5.

01
(0

.0
8)

10
0

20
ge

n2
00

p0
.9

55
55

*
55

5.
33

(0
.0

7)
10

0
55

6.
59

(0
.0

8)
10

0
55

5.
2(

0.
08

)
10

0
21

ge
n4

00
p0

.9
55

55
*

55
36

(5
.9

5)
10

0
53

-5
5(

0.
84

)
55

.2
4(

11
.8

9)
77

53
-5

5(
0.

94
)

30
.3

(6
.8

9)
67

22
ge

n4
00

p0
.9

65
65

*
65

29
.8

7(
0.

23
)

10
0

65
48

.4
2(

0.
4)

10
0

65
28

.0
3(

0.
32

)
10

0
23

ge
n4

00
p0

.9
75

75
*

75
31

(0
.3

1)
10

0
75

47
.9

7(
0.

8)
10

0
75

27
.6

6(
0.

92
)

10
0

24
ha

m
m

in
g8

-4
16

*
16

5.
09

(0
.0

5)
10

0
16

8.
32

(0
.0

8)
10

0
16

5.
15

(0
.0

5)
10

0
25

ha
m

m
in

g1
0-

4
40

*
40

19
.9

4(
0.

54
)

10
0

40
45

.8
1(

0.
82

)
10

0
40

16
.5

9(
0.

44
)

10
0

26
ke

lle
r4

11
*

11
2(

0.
03

)
10

0
11

2.
84

(0
.0

3)
10

0
11

2.
11

(0
.0

3)
10

0
27

ke
lle

r5
27

*
27

16
6.

38
(1

.2
7)

10
0

27
32

3.
29

(1
.3

9)
10

0
27

13
1.

24
(0

.7
5)

10
0

28
ke

lle
r6

59
56

-5
9(

1.
06

)
89

2.
84

(2
44

.5
)

28
56

-5
9(

0.
58

)
23

48
.9

9(
44

1.
94

)
92

57
-5

9(
0.

78
)

65
8.

66
(1

44
.4

7)
81

29
p

ha
t3

00
-1

8*
8

6.
13

(0
.1

)
10

0
8

8.
59

(0
.0

8)
10

0
8

5.
91

(0
.0

5)
10

0
30

p
ha

t3
00

-2
25

*
25

15
.0

4(
0.

18
)

10
0

25
16

.6
7(

0.
14

)
10

0
25

12
.3

6(
0.

1)
10

0
31

p
ha

t3
00

-3
36

*
36

16
.4

8(
0.

16
)

10
0

36
19

.7
3(

0.
17

)
10

0
36

13
.7

3(
0.

14
)

10
0

32
p

ha
t7

00
-1

11
*

11
70

.5
6(

0.
83

)
10

0
11

13
3.

16
(1

.7
)

10
0

11
64

.7
3(

0.
67

)
10

0
33

p
ha

t7
00

-2
44

*
44

21
5.

34
(1

.6
2)

10
0

44
27

3.
2(

1.
66

)
10

0
44

17
4.

63
(1

.3
)

10
0

34
p

ha
t7

00
-3

62
62

15
2.

39
(0

.9
8)

10
0

62
25

5.
74

(1
.1

8)
10

0
62

12
3.

5(
0.

82
)

10
0

35
p

ha
t1

50
0-

1
12

*
11

-1
2(

0.
41

)
34

.6
6(

8.
14

)
22

11
-1

2(
0.

24
)

74
.9

(7
.2

1)
6

11
-1

2(
0.

27
)

26
.8

3(
4.

25
)

8
36

p
ha

t1
50

0-
2

65
65

82
.2

1(
1.

5)
10

0
65

15
1.

2(
2.

2)
10

0
65

76
.8

5(
1.

65
)

10
0

37
p

ha
t1

50
0-

3
94

94
74

.2
9(

1.
73

)
10

0
94

15
7.

28
(2

.6
7)

10
0

94
58

.9
7(

1.
29

)
10

0

T
ot

al
28

62
28

54
43

32
.8

8
28

59
11

26
4.

46
28

55
40

62
.2

5

ICEC 2010 - International Conference on Evolutionary Computation

84

