
An Outline of Conceptual Framework for
Certification of MDA Tools

Antons Cernickins1, Oksana Nikiforova1, Kristaps Ozols2 and Janis Sejans1

1Riga Technical University, Institute of Applied Computer Systems
Kalku Street 1, Riga, LV-1658, Latvia

2ErpPro (Enterprise Resource Planning Professionals) Ltd.
K. Ulmana gatve 86F, Riga, Latvia

Abstract. Nowadays, the certification of applications and software systems is
considered as a task of growing importance. In fact, software development life
cycle itself is also considered as a matter of certification concern, especially
with the emergence of new approaches. The proposal of Model Driven Archi-
tecture (MDA) shifted the software development towards modeling. However,
MDA as such still lacks the appropriate implementation framework. The origi-
nal article outlines a conceptual framework, which may be used as a foundation
for certification of MDA tools.

1 Introduction

Since the introduction of OMG’s Model Driven Architecture (MDA) and the prin-
ciples of model-driven development in 2001, the way the software is developed
nowadays have not changed dramatically as various experts predicted (e.g., the fore-
casts proclaimed at the European Conference of MDA in 2006). Despite the
improvements offered to the software development community, which includes the
attempt to raise the level of abstraction, as well as the attempt to increase the level of
reuse [1], the actual impact of MDA on the process of software development remai-
ned the same [2]. [3] expects MDA tools, standards, and best practices evolve only
over the next 10–15 years before MDA ultimately comes to be perceived as a
“commodity.”

In fact, the development of next-generation integrated development environments
(IDEs) and CASE tools, which would utilize the latest trends in software develop-
ment, as well as provide a platform for further improvements, is a matter of high
interest from the industry (e.g., Eclipse platform [4]). As the proposal of MDA
approach shifted the process of software development towards modeling, it also
forced the next-generation tools to incorporate modeling, model transformation, and
code generation capabilities. However, while the actual implementation of MDA as
an approach still lacks the appropriate implementation framework, this results in in-
compliance among software development tools. Due to incompliance between soft-
ware tools, a model of a software system created in one environment cannot be ade-

Cernickins A., Nikiforova O., Ozols K. and Sejans J. (2010).
An Outline of Conceptual Framework for Certification of MDA Tools.
In Proceedings of the 2nd International Workshop on Model-Driven Architecture and Modeling Theory-Driven Development, pages 60-69
DOI: 10.5220/0003044400600069
Copyright c© SciTePress

quately used in another environment. Thus, in order to approve that any specific pro-
duct meets specific requirements or conforms to particular standards, a certification
procedure hold by an independent third party is carried out.

Possible benefit from the certification procedure is that it offers more certainty
about or confidence in developed software systems. It also helps in software sales,
giving more confidence for prospective clients. Furthermore, certification is valuable,
because the developer can be sure that the developed system will operate in predicta-
ble way as specified in the standards.

In case of Model Driven Architecture, the use of certification procedure would help
in classifying various tools (tool suites) in terms of functionality (i.e., help customers
to choose the right tools for their specific problem domain), fix compatibility issues
among tools (i.e., provide interoperability for tools from various tool vendors), as well
as provide additional pointers in understanding the whole MDA-oriented development
process. The reason why the acceptance of MDA in software development
community is still weak enough is because of overall complexity of the approach to
the end users (too much problems with tools, no strict guides on development process,
etc.). [5] states that OMG is in the early process of defining a tool certification
process, but no official document exists on this topic at the time. When it comes to the
analysis of the comparable experience in other areas, e.g., certification is useful in
proofing compilers (e.g., compiler validation process and policy for ADA language
[6]).

The original article contains a research on Model Driven Architecture, reviewing
the possibility of MDA tool certification similarly to the standardization processes in
other areas of activity—i.e., to assess the compliance with standards. The goal of the
article is to outline a conceptual framework, which may be used as a foundation for
certification of MDA tools.

The article is organized as follows. Section 2 overviews the background, as well as
provides a brief review of related work. Section 3 outlines the vision on conceptual
framework to be used for certification of MDA tools. Section 4 outlines the state of
the art on how certain MDA tools correspond with the proposed framework. Section 5
concludes the article and provides pointers to further work.

2 Background and Related Works

The idea lying behind the research is to provide a set of guidelines on the actual im-
plementation of the MDA for the purpose of promoting it as a holistic approach for
software development across the IT community. A branch of standards provided
within MDA is defined in a form of specification, meaning that the specification-
based testing may be used as a basis for compliance assessment [7]. In fact, the con-
formance statement for CORBA provided by The Open Group [8] is done in particu-
lar way. The compliance itself is nothing else but the satisfaction of software imple-
mentation to the standard specification [7]. [7] comes with an idea of considering the
compliance test suite generation as a branch of constraint satisfaction problem, in
which the first-order predicate is given and processed to find models that satisfy it.
Following this work, instead of starting from a concrete set of constraints and trying

61

to find the appropriate models, the construction (as well as the further classification)
of all possible models is considered.

When it comes to development of a new certification scheme, the foremost task is
to define the object of certification [9]. According to [9], the following types of certi-
fication are possible:

− Product certification (accordance with particular technical standard);
− Process certification (accordance with ISO 9000 or similar standard);
− Personnel certification;
− Accreditation of certification bodies (the certification of certifiers).

[9] summarizes the study on various certification schemes and categorizes them
into several groups, also providing a general structure of certification process itself, as
well as presenting a new certification scheme used in space technology.

In fact, the type of certification procedure for current research can be determined as
a combination of both the product and the process certification. Such a mixture of
types will provide a more detailed outlook on various options to be considered in the
certification scheme.

The former type of certification is considered, as software development tools (i.e.,
software products) are involved in the research. This may also include the specifica-
tion of the most common features and options defined to clarify the accordance level
of each tool from various perspectives (discussed in [10]).

As far as MDA-oriented software development life cycle represents the process,
the latter type of certification should also be considered.

In order to provide a solid background for the certification scheme, as well as to
clarify the means of the MDA tool as such, [11] is considered. [11] reviews the MDA
approach within the variety of the CASE tools, which are proposed as supporting for
MDA activities. The goal of the following research is to investigate the variety of the
CASE tools, which are proposed as “MDA compliant,” in order to classify them in
accordance with the previously defined MDA tool specification. The provided speci-
fication of MDA tools consists of seven categories, specified in a hierarchical way
flattened in the table (categories are divided into subcategories, subcategories—into
groups, and groups—into single entries, accordingly) [11]:

─ Accordance with MDA-oriented life cycle—the accordance level of software
development life cycle supported by a tool, which includes MDA-oriented acti-
vities combined into such subcategories as knowledge formalization (CIM), sys-
tem model refinement (PIM), PIM-to-PSM mapping, system model implemen-
tation (PSM), and transformation support;

─ Functional capabilities—the functional capabilities of a tool in such fields as
environment, modeling, implementation, testing, documenting, project manage-
ment, configuration management;
Reliability—the capability of a tool to maintain the appropriate level of perfor-
mance under certain conditions for a certain period of time, including repository
management, automatic backup capabilities, data access management, error pro-
cessing capabilities, as well as fault analysis capabilities;

62

─ Usability—usage efforts and individual assessments of such usage, including
user interface, licensing and localization options, ease of use, quality of docu-
mentation etc.;

─ Efficiency—the amount of resources needed to maintain the appropriate level of
performance under certain conditions, including technical requirements, work-
load efficiency, as well as performance;

─ Maintainability—efforts needed to make specified modifications;
─ Portability—ability of a tool to be transferred to another environment.

3 Concept of Certification Framework

In order to clarify a vision on a certification scheme to assess the compliance of MDA
tools, a conceptual framework is proposed. In fact, this framework should be used to
verify the output produced by MDA tools. Whereas a wide variety of the tools
intended for specific purposes (e.g., mapping definition) may be used [10], an additio-
nal specification-based assessment of these tools is considered (discussed in [10]).

In short, the following four layers are used to describe the MDA-oriented software
development life cycle [1], [10], [12], [13]:

− Computation Independent Model (CIM)—represents the high-level specification
of what the system is expected to do (i.e., describes the domain and require-
ments of the system). It might consist of a model from the informational view-
point, which captures information about the data of a system;

− Platform Independent Model (PIM)—specifies the functionality of a system. It
might consist of a model from the informational viewpoint, which captures
information about the data of a system, and a model from the computational
viewpoint, which captures information about the processing of a system;

− Platform Specific Model (PSM)—specifies the implementation of system’s
functionality on specific platform. It might consist of a model from the informa-
tional viewpoint, which captures information about the data of a system, and a
model from the computational viewpoint, which captures information about the
processing of a system, based on a specific platform;

− Implementation Specific Model (ISM) or source code—describes the implemen-
tation of a system in source code of specific platform.

However, the only layers to be specified and promoted by OMG (i.e., described in
details) are PIM and PSM [1]. In fact, OMG does not provide any specific require-
ments for CIM (meaning that it is not “computational,” not formal enough, etc.), as
well as ISM itself—the actual source code generated from PSM—from modeling
perspective looks out of scope. Despite this, all four layers are somehow covered by
various software development tools.

The conceptual framework considers these four layers as individual blocks, each of
them having their own input and output (Fig. 1). The origin of this idea has come
from black box testing [14]: whereas software system is considered as a black box,
the only thing to be analyzed is the output produced by specific input. Therefore,

63

developer does not need to understand why the compiled code does what it does; here,
the requirements are used to determine the correct output of black box testing.

Fig. 1. Graphical representation of the conceptual framework.

In fact, the main artifacts for the conceptual framework are inputs and outputs. As
far as CIM and ISM are out of scope from the perspective of OMG standards, the
conceptual framework does not cover the according artifacts (Fig. 1). The actual tool
use in each block (i.e., what operations are performed) is also not the matter of high
importance.

However, the main concern for each tool is the support of XMI standard [15]. In
order to perform a transition from raw output to qualified input, the conceptual
framework assesses the output from each tool. If tool conforms to OMG standards,
then the output from this tool should be opened in other tool with no problems. If not,
the conceptual framework would provide an appropriate suggestion on where the root
of the problem lies.

While OMG does not provide any constraints (i.e., does not restrict) on the
modeling language notation used with MDA (however, the use of UML is strongly
recommended) [1] [12], the use of XMI for assessment of software development tools
seems to be the only valuable option. This assessment is considered to be formal: a
specification is said to be formal when it is based on a language that has a well-
defined semantic meaning associated with each of its constructs [5]. It is this forma-
lism, which allows the model to be expressed in a format such as XML, in accordance
with a well-defined schema (XMI).

The specification of XMI standard as such is used to create the XML Schema of
XMI standard [16], which provides a means by which the syntax and the semantics of

64

an XMI document can be validated. XMI Schemas must be equivalent to those gene-
rated by the XMI Schema production rules specified in [15]. Equivalence means that
XMI documents that are valid under the XMI Schema production rules would be valid
in a conforming XMI Schema; in turn, those XMI documents that are not valid under
the XMI Schema production rules are not valid in a conforming XMI Schema [15].

After the XML Schema of XMI standard is created, the developed tool creates a
document data model, which consists of [16]:

─ Vocabulary (element and attribute names);
─ Content model (relationships and structure);
─ Data types.

This model is used for further validation of XMI documents. Validation can deter-
mine whether the XML elements required by [15] are present in the XML document
containing model data, whether XML attributes that are required in these XML
elements have values for them, and whether some of the values are correct.

4 Correspondence from Tools

In order to examine the declared correspondence level of tools, a scope of correspond-
ence should be defined first. Considering the information from previous Section, the
main concern is concentrated on PIM, its refinement, as well as further transition to
PSM with similar concentration, accordingly. In addition, the specification of MDA
tools provided in Section 2 should also be considered.

Based on [17], the following tools have been selected:

− ArgoUML 0.28;
− Altova UModel 2009;
− Sparx Systems Enterprise Architect 7.5.843;
− IBM Rational Rose Enterprise 7.0.0;
− MyEclipse Enterprise Workbench 7.1.1.

[17] considers these tools as UML tools, which provide source code generation capa-
bilities from UML diagrams, as well as reverse engineering capabilities. However, the
only use of UML does not guarantee that tool is “MDA complaint”. That is why the
most important features of UML tools should be mapped to the appropriate features of
the MDA tools. Therefore, a model defined in appropriate modeling notation (as was
mentioned before, the use of UML is suggested), a model enrichment (transition) to
meet the specifics of selected platform, generation of platform-specific source code,
as well as support for MOF/XMI should be considered as the most important features
of these tools. Other features like configuration management, testing, project manage-
ment, etc. are the matter of secondary importance.

These tools feature a source code generation approach based on template defini-
tion, meaning that a file (i.e., template) describing the use of meta-data information
should be defined first. If several tasks are considered, it is possible to define a set of
templates, where each template deals with an appropriate task (here, a nested hierar-
chy is considered, where main template contains information about complementary
templates). Certain tools (such as UModel and Enterprise Architect, namely) provide

65

an ability to redefine the set of supplied generation templates, whereas other tools are
unable to provide such a feature.

Table 1 provides an outlook on several features declared by tool vendors that are
important for correspondence with the proposed approach (based on [17]).

Table 1. Declared features of corresponding UML tools (based on [17]).

 ArgoUML Altova
UModel

Sparx
Systems
Enterprise
Architect

IBM
Rational
Rose
Enterprise

MyEclipse
Enterprise
Workbench

Common features

UML 1.4 2.2 1.3, 1.4,
2.0, 2.1

1.4 2.1

UML Profiles � � � �

MOF/XMI 1.1, 1.2 2.1 1.1, 1.2, 2.1 1.0

XMI import/export � � � �

UML Diagram support

Class � � � � �

Component � � � � �

Composite structure � � �

Deployment � � � � �

Object � � � � �

Package � � �

Profile � � �

Activity � � � � �

State machine � � �

Statechart UML 1.x � � �

Use case � � � � �

Communication � �

Collaboration UML 1.x � � �

Interaction overview � �

Sequence � � � � �

Timing � �

66

Table 1. Follow-up.

 ArgoUML Altova
UModel

Sparx
Systems
Enterprise
Architect

IBM
Rational
Rose
Enterprise

MyEclipse
Enterprise
Workbench

Source code generation capabilities

CORBA IDL � �

Java � � � � �

C++ � � � �

C# � � � �

VB.NET � � �

PHP � �

Other Ada, Python,
ActionScript

Reverse engineering capabilities

CORBA IDL � � �

Java � � � � �

C++ � � �

C# � � �

VB.NET � � �

PHP �

Other C, Python,
Visual Basic,
ActionScript

To sum up, UModel and Enterprise Architect provide the richest set of functional
features, with the latter being the most functional one in terms of source code
generation and reverse engineering capabilities.

However, when it comes down to interoperability among the tools—the main
concern for the proposed conceptual framework—even those with same version of
XMI standard fail. In theory, the project developed in ArgoUML should be operable
in Enterprise Architect easily due to the same version of XMI standard used in both
tools (and vice versa). Similar arguments are also exposed on such tools as UModel
and Enterprise Architect for the same reason. The most common error relates to incor-
rect syntax in XMI files, which clearly outlines the problems with proper implementa-
tion of standards from the side of vendors.

67

5 Conclusion and Future Work

The original article outlined a conceptual framework, which may be used as a foun-
dation for certification of MDA tools. In fact, this framework provides a basis for the
development of XMI validation utility. The practical implementation of XMI valida-
tion utility is based on the same principles used in HTML, XML, and other markup
languages.

In order to develop the XMI validation utility, the XMI standard itself should be
examined in details. In fact, the most current iteration on examining the XMI standard
showed that it should be defined stricter: the case of preserving tool-specific informa-
tion may be treated as the source of problems regarding tool interoperability. Mean-
while, the design principles of XML Schemas and documents provided in the standard
are detailed enough for the actual implementation in XMI validation utility. However,
a more comprehensive study on the use of XML Schemas should be also considered.
All in all the XMI validation utility itself is yet another component in software certi-
fication scheme, which should be used in a combination with the others.

In extending this work, the next step is the development of several reference mod-
els to cover the whole MDA-oriented development life cycle. These will provide a
step-by-step guide for the developers. As for modeling notation, the use of UML is
considered. According to [18], a minimal set of UML diagrams is already defined. In
turn, a recommended and complete set of UML diagrams should be proposed, as well
as mutually compared.

A more comprehensive study on MDA features [11] may result in defining the
levels of MDA maturity (just like maturity levels in CMMI [19]). The four-layer
architecture of MDA could be selected as a basis for this: e.g., PSM together with
ISM layers could be considered at the lowest levels (as there are dozens of tools with
source code generation capabilities available on today’s market), while features rela-
ted to the development of PIM and CIM could be considered at the higher ones.

Acknowledgements

The research reflected in the paper partly is supported by Grant of Latvian Council of
Science No. 09.1269 “Methods and Models Based on Distributed Artificial
Intelligence and Web Technologies for Development of Intelligent Applied Software
and Computer System Architecture.” The research reflected in the paper partly is
supported by Riga Technical University in cooperation with Microsoft under the
project No. FLPP-2010/20 “Research of Principles of Model Driven Architecture in
Software Development Tools.”

References

1. Mellor, S., Scott, K., Uhl, A., Weise, D.: MDA Distilled: Principles of Model-Driven
Architecture. Addison-Wesley, San Francisco (2004)

68

2. Nikiforova, O., Cernickins, A., Sejans, J.: On Automatic Transition from Initial System
Models into Software Components. In: The 5th International Conference on Software Engi-
neering Advances (ICSEA), IEEE Computer Society (submitted for publication) (2010)

3. Guttman, M., Parodi, J.: Real-Life MDA: Solving Business Problems with Model Driven
Architecture. Morgan Kaufmann Publishers, San Francisco (2007)

4. Eclipse Platform, http://www.eclipse.org/platform/
5. Implementing Model Driven Architecture using Enterprise Architect. Mapping MDA Con-

cepts to EA Features, http://www.sparxsystems.com/downloads/whitepapers/EA4MDA_
White_Paper_Features.pdf

6. Ada 95 Compiler Validation Process and Policy, http://www.sigada.org/ada_95/validation/
process.html

7. Bunyakiati, P., Finkelstein, A., and Rosenblum, D.: The Certification of Software Tools
with respect to Software Standards. IEEE International Conference on Information Reuse
and Integration (2007)

8. CORBA 2.3 Conformance statement template, http://www.opengroup.org/csq/csqdata/blan
ks/OB1.html

9. Schäbe, H.: A Comparison of Different Software Certification Schemes, In: Guiding
Principles to the Implementation of IEC-61508 (2004) http://www.sipi61508.com/ciks/scha
be1.pdf

10. Cernickins, A., Nikiforova, O.: On Foundation for Certification of MDA Tools: Defining a
Specification. RTU 50th International Scientific Conference, Computer Science, Applied
Computer Systems (in press) (2009)

11. Cernickins, A.: An analytical review of Model Driven Architecture (MDA) tools. Master’s
thesis. Riga (2009) / Čerņičkins, A.: Modelvadāmās arhitektūras rīku analītisks apskats.
Maģistra darbs. Rīga (2009)

12. MDA Guide 1.0.1. Object Management Group, http://www.omg.org/docs/omg/03-06-
01.pdf

13. Alhir, S.: Understanding the Model Driven Architecture, In: Methods & Tools 2003.
Martinig & Associates (2003) 17–24

14. Sommerville, I.: Software Engineering (8th edition). Addison-Wesley, Wokingham, (2006)
15. MOF 2.0/XMI Mapping, Version 2.1.1, http://www.omg.org/spec/XMI/2.1.1/PDF
16. XML Schema, http://www.w3.org/XML/Schema
17. Ozols, K.: An application analysis of UML tools for generation of source code. Master’s

thesis. Riga (2009) / Ozols, K.: UML koda ģenerēšanas rīku lietošanas analīze programmu
sagatavju izstrādei. Maģistra darbs. Rīga (2009)

18. Nikiforova, O.: General Framework for Object-Oriented Software Development Process.
Scientific Proceedings of Riga Technical University. Series–Computer Science, Applied
Computer Systems, 13 vol., RTU Riga (2002) 132–144

19. CMMI | Overview, http://www.sei.cmu.edu/cmmi/

69

