PROCESS MODEL VALIDATION
Transforming Process Models to Extended Checking Models

Elke Pulvermüller
Department of Computer Science, University Osnabrück, Albrechtstr. 28, D-49076 Osnabrück, Germany

Andreas Speck, Sven Feja, Sören Witt
Department of Computer Science, Christian-Albrechts-University Kiel, Olshausenstr. 40, D-24098 Kiel, Germany

Keywords: Process model validation, Model checking, Model translation and specifiers for temporal logic operators.

Abstract: Process and workflow models are typical means to describe the dynamic activities of a system. Therefore, it is of high interest to validate these models. Many kinds of (business) rules, best practices, patterns, legal regulations may serve as specifications which the models have to fulfill.

An already established technique to validate models of dynamic activities is model checking. In model checking the requirements are expressed by temporal logic. Temporal logic allows describing temporal dependencies. The models to be verified by model checkers are automata. In this context the question is how to transform process or workflow models into automata and how to specify the temporal logic in the way that the semantic of the process models is considered sufficiently.

In our paper we present three approaches to transform process models to checkable automata. We use the example of ARIS Event-driven Process Chains. In particular, the third approach introduces specializers enabling semantic-rich requirement specifications. This reduces the gap between process models (consisting of different model element types) and verification models.

1 INTRODUCTION

Workflows and processes are fundamental concepts in computer-based systems. For example real-time systems as well as large scale business systems are based on process execution. All the systems have in common that their dynamic behavior is the essential element. Even a simple purchase system has to realize a selling process.

There exist different modeling concepts for the different types of systems, e.g. SDL or the modeling language Z for time-critical systems or business process models for commercial systems. These process and workflow models are potentially subject of automated verification (Béard et al., 2001). With the paper we propose a step to close the gap between process models and verification models to overcome the loss of semantics due to surjective mappings and, in consequence, to support the verification and testing (with partial verification) in a way which is closer to the world of the software develop.

In the paper we use the business process model of the modeling concept ARIS (Architecture of integrated Information Systems): the EPCs (Event-driven Process Chains) (Scheer, 1998) (Scheer and Nüttgens, 2000). EPCs are mainly used to model commercial and administrative systems. The real application models we use to demonstrate our approach is a high-performance e-commerce system: Intershop Enfinity (Intershop Communications AG) (Breitling, 2002). This e-commerce system is used in large scale systems of retailers (e.g. Otto), in the automotive branch (Volkswagen, MAN, BMW) or in e-procurement systems (run by the German Federal Ministry of the Interior or governments of other countries or large companies). Besides the modeling of e-commerce systems ARIS EPCs are used to model almost all kinds of commercial information systems, e.g. enterprise resource planning systems (ERP) like SAP R/3. Originally ARIS has been developed in cooperation with SAP AG to support the modeling of the ERP system. Another interesting application of EPC models is the description of processes in the administration. Specifically data privacy protection problems are modeled.
in EPCs and then checked. Some alternative models are the Business Process Modeling Notation (BPMN) (OMG, 2006) or UML Activity Diagrams.

1.1 EPC Model Elements

As already mentioned the EPC model type is part of the modeling concept ARIS. The basic elements of an EPC model are shown in figure 1: The control flow is symbolized by a sequence of events (magenta hexagons) and functions (green rectangles with rounded edges) which are connected by arrows representing the control flow. Branches in the control flow are defined by the Boolean logic operators: AND, OR and XOR. In the figure an XOR is depicted. AND requires that all paths of the branches are active. OR indicates that at least one path is used. XOR allows that one and only one path is chosen. The element type organizational unit (rectangle with double line on the left) is an example for a further element type.

Figure 1: Example of an EPC Model.

1.2 Gap in Checking Models

Our approach is based on the model checking technology (Clarke et al., 2001a). This kind of verification typically takes finite state automata models and checks if these models fulfill specifications. The specifications are expressed in temporal logic languages, e.g. LTL (for linear time) and CTL (for branching time). The checking is usually realized by search algorithms on the model graphs and automata inclusion.

Like other process models EPC models provide a more specific semantic than the automata models of model checkers. This additional semantic is expressed by the various types of elements supported by the EPC model: functions and events as well as organizational units and many more. These different elements have to be transformed into the automata models which serve as input for model checkers.

The problem is that our requirements specifications (in temporal logic) should consider these specific model elements. Alternatively, the specifications have to be transformed resulting in a surjective mapping and thus loss of information.

2 STRAIGHT FORWARD TRANSFORMATIONS

There are different possibilities to transform EPC models to automata which are the input to model checkers. These automata are represented as Kripke structures or Kripke models, respectively, which define the formal framework of models in a model checking approach. These are finite state automata in the form of a 4-tuple consisting of a finite set of states, a set of initial states (a subset of the set of all states), a transition relation and a labeling function. The latter marks states with certain properties or propositions, respectively, which hold in the respective states.

A straight forward transformation would be just to transform functions and states directly into automata states. We call this a direct transformation. A second approach is the selective transformation. This transformation considers only some selected model element types.

An alternative is to use a more elaborate automata model (we call it Extended labeled Kripke Structure, ELKS1) supporting different types of elements. We introduce this in section 3.

We use a typical problem in e-commerce systems in order to illustrate the functionality of these three different concepts. The modeling of a price alert process which checks (in a loop) all current offers as long as there is none within a given price limit (i.e. as long as the price threshold is not achieved). If the threshold is met the system does something, in our case it purchases.

2.1 Direct Transformation

Figure 2 depicts an EPC transformation to a format which can be processed by current model checking technology. Events, functions and their connection to each other are transformed to the only means a model checking environment provides: states and transitions (cf. the model on the right of figure 2).

In this straight-forward mapping approach we neglect the differences of the model elements and map all notation elements to states of a Kripke structure (for the moment we ignore the organizational unit). We assume that the names of the events and functions in the EPC model are assigned to the states as properties by means of the labeling function within the Kripke structure. The straight-forward mapping
reveals a surjective mapping. This means, in particular, that multiple elements of the domain (here the EPC language elements for both, events and functions) are mapped to one and the same element in the co-domain (here to the notation element representing a state). Therefore, the surjective mapping leads to a loss of information which becomes obvious as soon as we try to verify given requirements.

The direct transformation is easy to realize and moreover is supported by the standard model checking approaches. This means that this approach does not require the modification of model checking tools and may be applied as is. The disadvantage is the lack of detail. There is no suitable mechanism to distinguish between different element types. Hence, it is not possible to check specific model element types and their relations as presented in the following section.

A more detailed report on this direct transformation may be found in (Speck, 2006).

2.2 Selective Transformation

The selective transformation allows skipping the transformation of certain types of model elements. For example only all EPC events are transformed into the automata (ignoring all function elements). This is comparatively coarse-grained. Nevertheless, if only a few types of the model elements are of interest this approach is sufficient.

The resulting automata model may be processed by an ordinary model checker or the extended checking concept (as presented in the following section 3). The latter is only reasonable if more than one model element type should be considered.

3 EXTENDED CHECKING CONCEPT

In this section we present the two components of the extended checking: The transformation to an extended automata model (focusing on the model extension) and the extended algorithm for checking. This is the third way to deal with the semantic gap as mentioned in section 2.

3.1 Extended Checking Model

In an extended Kripke structure we separate different types of model elements (Pulvermüller, 2009). In our case these are events and functions (c.f. figure 3). By means of transition states (event states) the transitions become first-order objects. This approach is similar to association classes in UML. Transition states play a double role: On the one hand they represent the transition in the traditional way and, on the other hand, the transition state is treated equally to traditional states in a model checking approach. This has an impact on the properties which may be assigned to transition states, as well. Furthermore, upgrading a transition to a first-order object opens enhanced possibilities to their verification. In figure 3 the transition states are depicted with rectangles.

The distinction of different kinds of elements in the automata (and the Kripke structures) is the base of improved checking algorithms. These algorithms are able to distinguish between the different types of elements and to support a more detailed specification as described in the following subsection.

The transformation to an extended model requires a more elaborated transformation mechanism. The ordinary Kripke structure has to be modified as described in (Pulvermüller, 2009). However, now we may formulate specifications which are not supported within the direct transformation. We illustrate this problem by checking the models in figures 2 and 3 by the following sample CTL specification:

\[
\text{Always Check all current offers Until Offer accepted.}
\]

With the direct transformation we cannot distinguish between different model elements (functions and events). Hence, the checker would present an error. We propose to use the specializer operators Function and Event which means that we distinguish between the model elements within our specification and also within the extended model checking algorithm. With
ELKS1 (an extended Kripke structure). We ignore the requirement of a total relation to simplify the example. In the example model the propositions \(p \) and \(q \) hold in \(s^4 \), for instance. The events in the result set fulfill the given ECTL1 formula if chosen as starting state. The first of the examples below means: If \(s \) is one of the states in the set \(R \) and if \(s \) is taken as the starting state in the system model \(M \) then the property (or requirement, respectively) \(p \) is fulfilled in the model \((M, s \models p)\).

ECTL1 examples (based on CTL):

\[
\begin{align*}
&1. M, s \models p, \text{ result set } R: s \in R = \{ e_2, f_3, f_4, f_5 \} \\
&2. M, s \models Function(p), \text{ result set } R: s \in R = \{ f_3, f_4, f_5 \} \\
&3. M, s \models Event(p), \text{ result set } R: s \in R = \{ e_2 \} \\
&4. M, s \models p \land q, \text{ result set } R: s \in R = \{ e_2, f_4, f_5 \} \\
&5. M, s \models Function(p) \land Function(q), \text{ result set } R: s \in R = \{ f_4, f_5 \} \\
&6. M, s \models Function(p) \land Event(q), \text{ result set } R: s \in R = \{} \\
&7. M, s \models Event(p) \lor Event(q), \text{ result set } R: s \in R = \{ e_1, e_2, e_3 \} \\
&8. M, s \models EX p, \text{ result set } R: s \in R = \{ e_1, e_2, f_3, f_4, e_5 \} \\
&9. M, s \models AX Function[p], \text{ result set } R: s \in R = \{ e_1, f_3, e_3, e_4 \} \\
&10. M, s \models EX\{EX Function[p]\}, \text{ result set } R: s \in R = \{ f_3 \} \\
&11. M, s \models E[p \cup q], \text{ result set } R: s \in R = \{ e_1, e_2, f_3, f_4, f_5 \} \\
&12. M, s \models Function[p \cup U q], \text{ result set } R: s \in R = \{ f_3, f_4, f_5 \} \\
&13. M, s \models E[Function[p] \cup Function[q]], \text{ result set } R: s \in R = \{ e_1, e_3, e_3, e_4, f_4, f_5 \} \\
&14. M, s \models E[Event[p] \cup Function[q]], \text{ result set } R: s \in R = \{ e_1, e_3, e_3, f_4, f_5 \} \\
&15. M, s \models A[Function[p] \cup Function[q]], \text{ result set } R: s \in R = \{ f_4, f_5 \} \\
&16. M, s \models A[Event[p] \cup Function[q]], \text{ result set } R: s \in R = \{ e_3, f_4, f_5 \} \\
&17. M, s \models AX Function[p], \text{ result set } R: s \in R = \{ e_1, e_2, f_3, f_4, e_4, f_5 \} \\
\end{align*}
\]

The example point to some special aspects. The following explanations refer to the example numbers given above.

The formulas in (1.) and (4.) are trivial and not very different to traditional CTL. Examples (2.) and (3.) demonstrate the specializers in their work as filters over the result set of example (1.).

In (8.), for instance, state \(f_3 \) (which is a function state) is in the result set although it does not fulfill \(EX p \) in the traditional CTL logic. In ECTL1, however, we consider half-steps. In a next step \(f_3 \) reaches a function state (here even two, \(f_5 \) and \(f_4 \)) in which \(p \) holds. Due to these function states \(f_5 \) and \(f_4 \), both, the function state \(f_3 \) as well as the event states \(e_5 \) and \(e_4 \) are in the result set.

State \(f_1 \) is not contained in the result set of (9.) since there is a path \((f_1, e_2, f_2)\) on which the next function state does not fulfill \(Function[p] \). In other words, \(AX Function[p] \) does not hold in \(f_1 \) due to the fact that \(p \) does not hold in \(f_2 \). This is different for the formula \(EX Function[p] \) as only one path is needed. This is fulfilled by the path \((f_1, e_2, f_3, \ldots)\). As opposed to \(Function[AX p] \) the result set in (9.) also contains function states. In (10.) we filter the result set of (9.) eliminating all function states.

Checking ECTL1 Models

Our extended specification and model checking is based on CTL (model checking). With our extension we can specify more semantic information over a semantically extended verification model thus being more fine-grained and more precise in our requirements.

Figure 4 depicts an abstract example for an
Example (11.) to (16.) give several variants of the Until-operator with focus on the effect of the additional specializers. While example 11. may be translated to CTL by mapping function states and event states to states (loosing the distinction between the two) this is not generally the case for the successive examples. Example (12.) filters the outcome of (11.) and just eliminates all event states from the result set. As opposed to that, the variant in example (13.) contains both, function states and event states. Example (13.) starts in all function states in which \(q \) holds and walks backwards until a function state is reached in which \(p \) holds. The event states are just collected and inserted in the result set if they are on the path. There is no evaluation performed on them. Even event state \(e1 \) is in the result set although neither the formula \(Function[p] \) nor \(Function[p] \) nor \(p \) hold in it. Event state \(e1 \) is only in the result set due to \(f3 \). The result set is maximized and therefore, we traverse the graph backwards until we reach a function state in which the formula does not hold. On our way back from \(f3 \) we just collect \(e1 \) and do not evaluate any formula in it. This is different for example (14.). Function state \(f4 \) is in the result set as it directly fulfills \(Function[p] \). Still we do not collect \(e4 \) into the result set on our way backwards through the graph because the first part of the formula \(Event[q] \) enforces an evaluation on event states. However, \(Event[q] \) or \(q \), respectively, does not hold in \(e4 \). On the other hand, \(f1 \) is in the result set which is due to the fact that it is just collected (as it was the case for \(e1 \) in example (13.)). \(Event[p] \) does not apply to function states and as the result set is maximized \(f1 \) is inserted into it. Due to the fact that there might start a branch in a function state (as it is true for \(f1 \)) we have to take care for the Always-quantifier. If we substitute \(E \) by \(A \) in example (14.) function state \(f1 \) is eliminated from the result set due to the second branch. The second branch \((f1, e2, f2) \) has (in the given excerpt) no function state in which \(Function[p] \) or \(p \), respectively, holds. As in CTL we could insert a Weak Until-operator (WU). As opposed to \(A[Event[q] U Function[p]] \) the formula \(A[Event[q] WU Function[p]] \) would contain \(f1 \) in the result set due to \(Event[q] \) in event state \(e2 \). Proposition \(q \) holds infinitely in all event states on the path starting in \(f1 \). In our example ECTL1 model this is only the case because we limit to an excerpt and ignored that real models have to be total (i.e. in a real model \(f2 \) would have at least one successor which could change all our statements of the previous sentences).

Example (16.) demonstrates again the difference of the Always-operator. While \(f3 \) is in the result set of example (14.) this is not the case in example (16.) because starting in \(f3 \) there is only one path on which \(q \) holds in all event states until a function state is reached in which \(p \) holds.

4 RELATED WORK

Our approach is based on the model checking technology (Grumberg and Veith, 2008; Clarke et al., 2001b) which itself is already a push-button verification approach. This allows automating many steps releasing the developer and end-user of tedious mathematical tasks. In model checking the verification of process models and software has always been a research issue. Already early approaches like (Emerson and Clarke, 1980) or (McMillan, 1993) are about the verification of models. However, all approaches imply a gap between the models and the checked automata.

A new alternative path to decrease the gap to verification models is to provide verification environments making the verification or compliance checking more convenient (El Kharbili and Pulvermüller, 2009). Tools to simulate and generate or export verification models ease the task of a developer. This often embraces an automatic transformation of higher-level models to a model format the checker understands (Fötsch et al., 2005). Though this closes some gap between the user and the verification level it does not consider the information loss which comes with the (automatic) mapping to the low-level verification models.

In logics there are further approaches to improve this semantic expressiveness (however, often without clear relation to software development models and their different kinds of model elements). Such approaches may be found in the \(\mu \)-calculus (Bradfield and Stirling, 2001; Kozen, 1983) or the multi-valued logic research, e.g. (Chechik et al., 2003). In the latter, the logic is extended from the Boolean TRUE and FALSE to further values (e.g. DON'T KNOW in a three-valued logic). Extensions to the temporal logic for LTL have been proposed in (Sagar Chaki et al., 2004) or (Jonsson et al., 1990) and in (De Nicola et al., 1993; De Nicola and Vaandrager, 1990). However, a link to software development models is missing as well as the general idea of specializers for different model elements. As opposed to (Sagar Chaki et al., 2004; Jonsson et al., 1990; Giannakopoulou and Magee, 2003; Kindler and Vesper, 1998) we are able to explicitly distinguish and mix specializers (and thus views) for different model elements.
5 CONCLUSIONS

The paper presents three approaches for checking process or workflow models.

The initial problem is the gap between the process or workflow models with their various model element types on the one hand and on the other hand the automata models serving as input for model checkers.

The first approach is a direct transformation mapping multiple model element types to one single verification model element type (surjective mapping). The second approach supports the selection of specific model element types and transforms these while ignoring the others. The extended model checking approach results in the least loss of semantic information. It extends the specification language as well as the verification modeling language. It introduces specializers, e.g. Function and Event for EPC checking. In this way it enables a more precise requirements specification.

A further improvement may be the support by a graphical representation of the model and the specification to ease the use for domain experts.

REFERENCES

PROCESS MODEL VALIDATION - Transforming Process Models to Extended Checking Models

