
IMPLEMENTING QVT IN A DOMAIN-SPECIFIC MODELING
FRAMEWORK

István Madari, Márk Asztalos, Tamás Mészáros, László Lengyel and Hassan Charaf
Department of Automation and Applied Informatics, Budapest University of Technology and Economics

Magyar Tudósok körútja 2, Budapest, Hungary

Keywords: Bidirectional Model Transformations, Model-transformation Driven Synchronization, QVT.

Abstract: Meta Object Facility 2.0 Query/Views/Transformation (QVT) is OMG’s standard for specifying model
transformations, views and queries. In this paper we deal with the QVT Relations language, which is a
declarative specification of model transformation between two models. The QVT Relations language
specifies several great features in practice, such as implicit trace creation support, or bidirectional
transformations. However, QVT lacks implementation because its specification is not final and far too
complex. The main contribution of this paper is to show how we integrated QVT constructs in our domain-
specific modeling environment to facilitate a later implementation of QVT Relations-driven bidirectional
model transformation.

1 INTRODUCTION

Model transformation is an essential area of model-
based development, applied for code generation,
analysis, verification and simulation tasks. Model
transformation can be implemented in different
ways. In order to define a transformation, for
instance, visual languages or textual languages can
both be used. Languages can be declarative or
imperative as well. In addition, the model
transformation can be unidirectional or n-directional.
(Czarneczki, 2003) provides further details on
classifying model transformations.

In contrast with unidirectional approaches,
n-directional transformations can be executed in
multiple directions. However, with unidirectional
transformations, multiple directions can be
implemented as well (if each direction is assigned to
a unidirectional transformation). Although, this
solution has almost the same implementation
challenges like n-directional approaches. Usually the
reverse direction cannot be specified in conjunction
with the original transformation, so that several
transformation paths may exist between the given
artifacts. Moreover, in many cases no applicable
reverse direction exists. Thus, there is no clear,
always applicable method for defining the reverse
direction.

A special case of n-directional transformations is
bidirectional transformation, where the
transformation can be executed in two ways. In
particular, the transformation language can define
both the forward and backward direction in the
transformation rules.

Figure 1: Bidirectional execution of model transformation.

From this definition, the transformation engine can
execute the rules in each direction. Figure 1 shows
an example for a bidirectional transformation: a
source and a target model are depicted, and between
the two models there is a transformation description,
which can be executed both in the forward and the
backward direction.

Beyond two-way execution, bidirectional
transformation can be used in implementing
incremental model synchronization solutions. In our

304
Madari I., Asztalos M., Mészáros T., Lengyel L. and Charaf H. (2010).
IMPLEMENTING QVT IN A DOMAIN-SPECIFIC MODELING FRAMEWORK.
In Proceedings of the 5th International Conference on Software and Data Technologies, pages 304-307
DOI: 10.5220/0003011203040307
Copyright c© SciTePress

approach we also use bidirectional transformations
to implement our incremental model synchronization
algorithm (Madari, 2009).

In order to implement bidirectional model
transformations we have to express bidirectional
rules in our modeling framework. Our approach
utilizes QVT (Query/Views/Transformations)
Relations language (Bast et al., 2005) to define
bidirectional model transformations. QVT Relations
is a declarative transformation language that can
express bidirectional model transformation relations
with their left-hand side (LHS) and right-hand side
(RHS) structures. However, due to the complexity of
the whole standard, QVT lacks implementation.

Our approach does not provide a completely new
transformation engine. We use our unidirectional
transformation mechanism to support the QVT
Relation in such a way that we generate the
corresponding forward and backward
transformations with the appropriate control
structures from the QVT description. Figure 2
depicts the generation process from a QVT
transformation.

Figure 2: Generation of forward and backward
transformations from QVT transformation.

Current paper discusses how we have implemented
the QVT Relation language in our graph rewriting-
based model transformation system (Visual
Modeling and Transformation System, VMTS
(VMTSSite)).

The rest of this paper is organized as follows:
Section 2 provides background information
including our modeling framework (VMTS).
Furthermore, Section 2 gives an overview of OMG’s
QVT language and triple graph grammars. Section 3
presents how QVT constructs are implemented
within VMTS. Finally, Section 4 concludes the
paper.

2 BACKGROUND AND RELATED
WORK

Visual Modeling and Transformation System
(VMTS) (Angyal et al., 2009) is a graph-based
metamodeling system. The concept of metamodeling
means that we can create models not only in
predefined modeling languages, but also we can
create new modeling languages as well. Models and
transformation rules are formalized as directed,
labeled graphs, which consist of individual attributed
nodes and edges VMTS is a model transformation
system, which transforms models by executing
graph rewriting. VMTS is very flexible due to its
plug-in architecture. Users can easily define new
domains; as well as the graphical representation of
instance models.

A formal description of bidirectional
transformations can be given with triple graph
grammars. Triple graph grammars (TGGs) were
introduced in 1994 (Schürr, 1994). Triple graph
grammar rules model the transformations of three
separate graphs: source, target and correspondence
graphs.

QVT (Query/Views/Transformations) is the
OMG (Object Management Group) standard for the
transformation of MOF (Meta-Object Facility)
models. QVT defines a standard way to transform
source models into target models. Both QVT and
TGGs declaratively define the relation between two
models. With this definition of relation, a
transformation engine can execute a transformation
in both directions and based on the same definition,
can also propagate changes from one model to the
other.

OMG published simplified Unified Modeling
Language (UML) and Relational Database
Management System (RDBMS) metamodels in the
appendix of the QVT standard. The UML and
RDBMS metamodels created in VMTS as well, to
present the feasibility of our approach.

QVT relations can be extended with Where and
When clauses. Both two clauses define conditions
which need to hold in order to apply the current
QVT relation. The difference between the two
clauses is that When specifies which conditions are
needed to hold before applying the current relation
(i.e. it is like a pre-condition of the current relation),
while Where defines the conditions that need to hold
after apply the QVT relation (i.e. it is like a post-
condition). The conditions can refer to other QVT
relations, to an OCL expression or a custom
function.

IMPLEMENTING QVT IN A DOMAIN-SPECIFIC MODELING FRAMEWORK

305

Figure 3: QVT relation with When and Where clauses.

In Figure 3 a QVT relation is depicted with When
and Where clauses. As a matter of fact, the current
relation in Figure 7 can be held if and only if the
PackageToSchema relation has been held, and the
AttributeToColumn relation can also be held.

3 REALIZATION OF
QVT RELATION

In this section we give a detailed overview of how
we implemented the QVT Relations in VMTS
modelling framework.

In VMTS, new domain-specific languages can be
easily created. QVT transformation is also a domain
itself, thus the first step was to define the
corresponding metamodels in VMTS. To realize the
QVT Relation two metamodels had to be created:
one for the QVT Relation and one for a composite
domain that represents the whole QVT
transformation. The QVT transformation consists of
QVT relations, functions, input and output model
definitions. The metamodel of a QVT transformation
is depicted in Figure 4.

Figure 4: QVT transformation metamodel.

The QVTGlobalContainer element contains QVT
relations and QVT functions (QVTRelation and
QVTFunction in Figure 4). It is a high-level
container, which also sets the transformation
properties (such as the current input and output
models). The QVT Relation domain is more
complicated: it contains more nodes, attributes, and

relationships. Figure 5 depicts the metamodel of the
QVT relation. QVTRelationContainer is the topmost
element of the QVT relation metamodel. Its purpose
is to wrap every node of a QVT relation. The
QVTRelationContainer has only one attribute:
RelationName. A QVT relation contains only one
QVTRelationContainer in each instance model.

QVTRelationContainer can contain
QVTElements elements. It is a general model
element because we never use it directly (i.e. it is not
necessary to drop it into the diagram). In fact, nodes
to be contained by the QVTRelationContainer are
inherited from QVTElement thus the inherited nodes
can also be contained by QVTRelationContainer.

QVTRegionParent is also a general node in the
metamodel, which means that it is not used directly
in the instance models. However, two elements
inherit from QVTRegionParent: QVTLHSRegion
and QVTRHSRegion. The regions are the LHS and
RHS of QVT relations. The model elements (the
regions) contain the relation nodes that describe the
pattern to be checked or enforced during the
transformation. Both of the regions have to belong to
a domain, which determines the possible nodes that
can be used in the regions. In other words, the LHS
and the RHS can contain nodes only from the
selected domains.

Figure 5: QVT relation with When and Where clauses.

QVTWhen and QVTWhere nodes contain clauses of
the current relation. They can contain string type
values such as OCL expressions, unique function
names or QVT relation names. The values are stored
in the Expression attribute of the QVTWhere and
QVTWhen elements.

Nodes in regions are not yet shown. Two types
of nodes can be distinguished in the LHS and RHS
regions: QVTDomainNode and QVTRelationNode.
To understand what the difference is between the

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

306

Figure 6: Relation ClassToTable in VMTS.

two types of nodes, see the relation in Figure 3. The
ClassToTable relation defines nodes in the LHS and
RHS patterns labeled with the “<<domain>>” string.
This type of node in our metamodel is represented
by the QVTDomainNode element. QVTRelationNode
stands for the nodes without the “<<domain>>”
identifier. Figure 6 shows a created QVT relation in
VMTS.

4 CONCLUSIONS

In this paper we have briefly described the QVT
Relation language with examples, as well as the
VMTS modeling framework. We have discussed
how the QVT Relation language has been
implemented in our domain-specific modeling
environment. Furthermore, it has been explained
how to create the necessary metamodels, and
implementation details of the concrete syntax have
been given. With the presented approach we can
define QVT relations and transformations in VMTS.

Our future research targets three important
fields:

(i) Generating forward and backward VMTS
transformations from the QVT relations instead of
executing the QVT transformation directly is a
major objective. The advantage of this approach is
that developers can modify the backward and the
forward directions independently.

 (ii) The forward and backward transformations
cannot necessarily be generated automatically from
the QVT description. We have to analyze the QVT
transformation properties to determine under which
circumstances can the forward and backward
transformations generated.
(iii) Formal validation of the synchronization and
checking process in the generated unidirectional

transformations is also a direction for future work.

ACKNOWLEDGEMENTS

This paper was supported by the János Bolyai
Research Scholarship of the Hungarian Academy of
Sciences.

REFERENCES

Czarnecki, K., Helsen, S., 2003. Classification of Model
Transformation Approaches. In OOPSLA’03,
Workshop on Generative Techniques in the Context of
Model-Driven Architecture.

Schürr, A., 1994. Specifcation of graph translators with
triple graph grammars. In WG’94, Proceedings of the
20th International Workshop on Graph-Theoretic
Concepts in ComputerScience.

Asztalos, M., Madari, I., 2009. Vtl: An improved model
transformation language. In AACS’09, Proceedings of
Automation and Applied Computer Science Workshop.

Madari, I., Angyal, L., Lengyel, L., 2009. Traceability-
based Incremental Model Synchronization. In
WSEAS’09, WSEAS Transactions on Computers.

Angyal, L., Asztalos, M., Lengyel, L., Levendovszky, T.,
Madari, I., Mezei, G., Mészáros, T., Siroki, L., and
Vajk, T., 2009. Towards a fast, efficient and
customizable domain-specific modeling framework. In
IASTED’09, In Proceedings of the IASTED
International Conference.

Bast, W., Belaunde, M., Blanc, X., Duddy, K., Griffin, C.,
Helsen, S., Lawley, M., Murphree, M., Reddy, S.,
Sendall, S., Steel, J., Tratt, L., Venkatesh, R., Vojtisek,
D., 2005. MOF QVT Final Adopted Specification.

VMTSSite, Visual Modeling and Transformation System,
http://vmts.aut.bme.hu/

IMPLEMENTING QVT IN A DOMAIN-SPECIFIC MODELING FRAMEWORK

307

