
TOWARDS A HACKER ATTACK REPRESENTATION METHOD

Peter Karpati, Guttorm Sindre
Dept. of Computer and Information Science, Norwegian University of Science and Technology, Sem Sælands vei 7-9,

Trondheim, Norway

Andreas L. Opdahl
Dept. of Information Science and Media Studies, University of Bergen, Bergen, Norway

Keywords: Intrusion analysis, Security requirements, Misuse case, Attack tree, Attack pattern.

Abstract: Security must be addressed at an early stage of information systems development, and one must learn from
previous hacker attacks to avoid similar exploits in the future. Many security threats are hard to understand
for stakeholders with a less technical background. To address this issue, we present a five-step method that
represents hacker intrusions diagrammatically. It lifts specific intrusions to a more general level of
modelling and distils them into threats that should be avoided by a new or modified IS design. It allows
involving different stakeholder groups in the process, including non-technical people who prefer simple,
informal representations. For this purpose, the method combines five different representation techniques
that together provide an integrated view of security attacks and system architecture. The method is
illustrated with a real intrusion from the literature, and its representation techniques are tied together as a set
of extensions of the UML metamodel.

1 INTRODUCTION

Experience tells us that hackers can be very
creative, to the point of routinely beating systems
with a considerable focus on security (Mitnick &
Simon, 2006). An important lesson for secure
systems modelling is to model not only the system
with its wanted functionality and security
precautions, but also combine system models with
representations of real or possible attacks to be able
to investigate and learn from them. This is the
philosophy behind techniques such as attack
sequences (see section 4.1), attack trees (Schneier,
1999), attack patterns (Gegick & Williams, 2005)
and misuse cases (Sindre & Opdahl, 2005). Each of
them have their strengths and weaknesses. Attack
sequence descriptions provide nice high level
overviews of complex attack sequences, but they
are flat and offer little detail. Attack trees and
patterns break threats nicely down into AND/OR
hierarchies, but they are not concerned with attack
sequences or with the legitimate functionality of the
system. Misuse case diagrams show threats in
relation to the system's functionality and users, but

offer little support for attack sequences or for
breaking high level threats down into more detailed
ones (Opdahl & Sindre, 2009).

Furthermore, none of the established techniques
show the relationship between threats and system
architecture although architecture is essential for
security in several ways: its components suggest
typical weaknesses and attack types, and the path
each of the system's functions (or use cases) takes
through the architecture suggests which weaknesses
a user of that function might try to exploit. We
therefore recently proposed a new technique
providing an integrated view of security attacks and
system architecture, namely misuse case maps
(Karpati et al., 2010). Compared to the other
techniques, misuse case maps have the disadvantage
of being more complex, and thus most suitable for
technically competent stakeholders.

A single representation technique is not enough
to balance the needs of security experts against
those of other stakeholders, nor enough for
balancing the needs for overview versus detail,
behaviour versus structure, function versus
architecture etc. This paper therefore introduces the
Hacker Attack Representation Method (HARM), an

92
Karpati P., Sindre G. and Opdahl A. (2010).
TOWARDS A HACKER ATTACK REPRESENTATION METHOD.
In Proceedings of the 5th International Conference on Software and Data Technologies, pages 92-101
DOI: 10.5220/0003010000920101
Copyright c© SciTePress

overall method for illustrating complex security
attacks using a combination of five techniques. We
propose five steps for representing hacker intrusions
and offer guidelines for how to use the five
techniques together. HARM's key improvement
over the current state of practice and research is that
it enables many different stakeholders to take part
in the discussion of hacker intrusions, which is only
available for security experts today. It thus allows
knowledge of complex intrusions to be used already
in the early analysis stages and it properly links
security issues with architecture considerations.

The rest of this paper is structured as follows:
Section 2 discusses related work. Section 3 then
presents and motivates the overall five-step method.
Section 4 illustrates HARM by a running example,
elaborating the various techniques included and
their purposes. Section 5 outlines how the method
can be grounded in the UML metamodel through a
small number of extensions, thus enhancing the
interoperability between HARM and mainstream
modelling approaches. Finally, section 6 discusses
the results and concludes the paper.

2 RELATED WORK

Since the start of the new millennium, attention has
been drawn to complex intrusions, as opposed to the
earlier focus on isolated attack steps. A pioneering
effort was the JIGSAW attack specification
language (Templeton & Levitt, 2000), which
describes the components of an attack in terms of
concepts and capabilities. Capabilities are atomic
elements defining the circumstances (situation,
needed information) required for a particular aspect
of an attack to occur. Concepts embody abstract
situations that form the attack steps in a complex
intrusion. Requirements are defined for concepts
and relate capabilities and configurations. If the
requirements for a concept are met then the concept
holds and can provide new capabilities (meaning
that the attack can advance to the next stage). This
way, the language allows flexible variations of
exploits to create sophisticated attack scenarios.
This model can be applied for vulnerability
discovery, intrusion detection or attack generation.

JIGSAW was followed by attack graphs (AG)
(Sheyner et al., 2002), which drew immediate
responses from the security research community.
AGs represent all possible attacks on a network.
Their nodes and edges express possible actions
(usually exploit steps) along with the resulting
changes to the state of the network. They are useful

for network hardening and penetration testing
among other things.

A central merit of JIGSAW and AG was to shift
the focus from isolated malicious events to whole
intrusion scenarios. This shift led to exploring better
methods for secure systems development, more
advanced penetration testing tools and more
sophisticated intrusion detection systems (IDS). An
important aspect of IDS systems is how the alerts
are combined to support identification of different
intrusion attempts. There are different ways to
correlate alerts. For example, (Templeton & Levitt,
2000) suggest to exploit the included definition of
requires and provides blocks in the specification to
match alerts, but give no specific method for it.
(Ning et al., 2002) correlate alerts by matching the
consequence of previous alerts and the prerequisite
of later ones through hyper-alert correlation graphs
based on predicates. It addresses the limitations of
JIGSAW by allowing alert aggregation and partial
satisfaction of prerequisites. (Cheung et al., 2003)
use the components of the EMERALD intrusion
detection framework (Neumann & Porras, 1999),
which is based on real-time forward-reasoning
expert systems.

Recent efforts have proposed to combine
security models (from threat modelling through
mitigation to testing and inspection into methods for
secure software development. The Suraksha project
(Maurya et al., 2009) offers a workbench with the
possibility to embed security considerations into the
system from the earliest stages of software
development. The approach suggests the following
steps: 1) identifying system objectives, assets and
their risks; 2) analyzing functional requirements
using UML and developing use cases (UC); 3)
applying the STRIDE concept for each UC and
developing lightweight misuse case (MUC)
diagrams; 4) developing attack trees (AT) from
each abstract threat node in the MUC diagrams; 5)
using DREAD for each AT; 6) selecting relevant
threats; 7) modifying the MUCs and extending them
with more details; 8) finalizing the security
requirements, considering them as functional
requirements, converting the MUCs to UCs and
suggesting mitigations in the form of security use
cases (SUC); 9) finding appropriate security
patterns (SP) and going back to step 1 as long as
there are remaining SUCs without an SP. The
Suraksha tool supports these steps and we used it to
create the MUCs and ATs for this paper.

The SHIELDS project (Tøndel et al., 2010) also
proposes to combine MUCs (modelling abstract
threats) with ATs (detailing those threats) and to

TOWARDS A HACKER ATTACK REPRESENTATION METHOD

93

provide references in the MUC diagrams to security
activity descriptions that mitigate the threats. A
security repository is introduced for storing
deliberate models and relations for reuse. The
proposal differs from Suraksha by referencing the
threats more explicitly and focusing more on
reusability of models.

The PWSSec (Process for Web Service
Security) approach (Gutierrez et al., 2006) guides
developers in the integration of security into the
development stages of Web Services (WS)-based
software. The process is iterative and incremental,
and consists of three stages: 1) the specification of
WS-specific security requirements, 2) the definition
of the WS-based security architecture and 3) the
identification, integration and deployment of WS
security standards. Stage 1 produces attack trees
(AT) and misuse cases (MUC) as outputs among
other models. The leafs of the ATs show the threats
which are refined by a set of attack scenarios
defined by MUCs. The process also provides a
security architecture formed by a set of coordinated
security mechanisms (Gutierrez et al., 2005a) in
stage 2. The base for this is the WS-based security
reference architecture (Gutierrez et al., 2005b)
which guides the system designers in the task of
allocating the security requirements into the
security architecture. The core of the security
reference architecture is the WS Security Kernel
managing a set of Abstract Security Services thus
covering a set of security requirements.

None of these techniques relate threats, attacks,
vulnerabilities and mitigations to systems
architecture. (Only PWSSec considers architecture
and relates security mechanisms to it through the
WS-based reference architecture in form of
Abstract Security Services.) Use case maps (UCM)
outline the architecture of systems and show their
relations to specific use cases (of functions), thus
providing high-level overviews that support design
and development (Buhr & Casselman, 1995; Buhr,
1996). UCMs can include multiple scenarios to
represent a chosen aspect of the system’s behaviour.
The basic UCM notation consists of three types of
building stones: 1) runtime components as
rectangular boxes, 2) responsibilities bounded to
components as crosses, and 3) scenario paths
capturing a causal sequence of responsibilities
(lines cutting through the responsibilities). A
scenario path starts with a filled circle representing
pre-conditions or triggering causes and ends in a bar
representing post-condition or resulting effect. (See
the first three elements in Fig. 2.) We have recently
adopted UCMs to deal with security (Karpati et al.,

2010). Misuse case maps (MUCM) provide
integrated overviews of misuse cases (as exploit
paths, the “negative” variant of scenario paths) and
system architecture, highlighting vulnerabilities and
suggesting possible mitigation points.

3 OUTLINE OF HARM

This section presents an outline of the HARM
method. We will first present the method steps, then
discuss the relations between the representation
techniques and give guidelines for using them
together. The following section will present an
example of a real attack from the literature.

3.1 Relation to Existing Approaches

HARM retains the focus in Suraksha (Maurya et al.,
2009) and SHIELDS (Tøndel et al., 2010) on whole
intrusion scenarios. But the two approaches are not
directly suitable for our purpose because of the
formalisms involved and their limited
expressiveness. Compared to attack graphs, we also
intend to scale up from a subset of technical attacks
(like network attacks) to general attacks, e.g.,
combinations of social engineering, physical entry
and computer hacks. Systems like (Ning et al.,
2002; Cheung et al., 2003; Neumann & Porras,
1999) are interesting for us because they are based
on complex attack models. For example, (Cheung et
al., 2003) utilize attack trees and attack patterns too,
but combine them in a different way than HARM
does since their aim is a bit different (develop
models for multistep attack scenarios generally) and
the definition of the attack patterns also differ.
Compared to Suraksha and SHIELDS, our approach
presents complex intrusions at a detailed level in
addition to threats and it focuses less on mitigations.
Relative to misuse case maps (Karpati et al., 2010),
HARM retains the focus on architecture, but
introduces additional perspectives.

PWSSec is a process specifically designed for
web services whereas HARM is a general method.
PWSSec uses business and security goals as well as
organizational security policy to derive attack
scenarios (Gutierrez et al., 2005a) while HARM
works in an exploratory way starting by intrusion
cases . Thus, the two approaches complement each
other since the first provides a general design while
the second opens up space for creativity and
presents the view of always developing, ingenious
attackers.

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

94

3.2 Method Steps

HARM consists of the following five steps:
1. Outlining the intrusion: Make a simple,

structured description of the case as alternating
attacking activities and outcomes. The case
may be the trace of a known multi-stage
attack, the plan for a penetration test or the
detailed reconstruction of an intrusion at hand.
This step may involve the cooperation of
security experts, system administrators or
system designers. It uses the ASD
representation technique.

2. Detailing the scenarios: Analyze each
attacking activity in further detail in relation to
other activities and the architectural context,
including the specific vulnerabilities that have
been exploited and possible mitigations. This
step may involve the same actors as step 1 and
it uses MUCMs.

3. Providing functional context: Distill essential
facts from the detailed scenarios, by
introducing a functional and user perspective
on the attacking activities, vulnerabilities and
mitigations, so that threats and solutions can
be considered from different viewpoints (e.g.,
business, usage, technical viewpoints, etc.).
This step uses the MUC diagram
representation to encourage involvement of
the broadest possible set of stakeholders.

4. Refining the attack structure: Relate specific
attacks to other attack types in a hierarchy,
allowing elicitation of threats from specific
vulnerabilities and preparing to lift the
appropriate mitigations to a more general
level. System designers and software
developers might be responsible for finalizing
this step, using the AT technique. This step
interlaces with step 3 since there can be a lot
of mutual influence while creating the MUC
diagram and the AT.

5. Distilling the threats: Consider in detail the
threats and mitigations captured in previous
steps to make a design out of it based on
expert knowledge embedded in APs. This step
involves system/software designers and
software developers and security experts if
available.

Hence, we adopted the combination of MUCs
and ATs from Suraksha and SHIELDS and added
further representation techniques. Requirements are
elicited an exploratory way: from specific cases
towards general designs. Starting with
vulnerabilities, exploits and mitigations specified in

a limited context (ASD & MUCM), the method
helps to generalize them using previously collected
knowledge and relations to similar entities (MUC &
AT & AP). It also supports further development
into well-considered security strategies.

3.3 The Modelling Techniques
and their Relations

The method uses the following representation
techniques:

 Attack Sequence Descriptions (ASD)
summarizing attacks in natural language.

 Misuse Case Maps (MUCM) depicting the
system architecture targeted by the attack and
visualizing traces of the exploit(s).

 Misuse Case (MUC) diagrams showing threats
in relation to wanted functionality.

 Attack Trees (AT) presenting the hierarchical
relation between attacks.

 Attack Patterns (AP) describing an attack in
detail with additional information of context and
solutions.

Fig. 1 shows the relations between the
techniques. ASD is the starting point and contains
the information required to create or identify further
models. It is specific to the case in focus, just like
the MUCM. Beside depicting the architecture and
the trace of the intrusion, the MUCM also facilitates
discussion about alternative vulnerabilities and
mitigations, still oriented by the specific case. The
MUC diagram takes a step up and looks at the case
from a more general viewpoint, showing the use
cases appearing in the ASD and related ones within
their functional context. Details unnecessary for
threats and mitigation modelling are eliminated.
While MUCM and MUC include regular use cases,
ATs focus only on the attacks, exploring
refinements and alternatives, as well as whether
attacks may fit together with other (technical)
attacks. They complement MUCs since they lead
the focus towards standard textbook threats while
MUCs lead it towards problem-specific threats
(Opdahl & Sindre, 2009). APs define more details
about a type of an attack considering them in their
context of prerequisites and other acquired pieces of
knowledge.

TOWARDS A HACKER ATTACK REPRESENTATION METHOD

95

Figure 1: Relations of the applied attack modelling
techniques.

4 USING HARM IN PRACTICE

This section illustrates HARM by applying it to a
real penetration test described in (Mitnick & Simon,
2006). We present the models introduced at each
step and discuss their relationships to one another.

4.1 Outlining the Intrusion: Attack
Sequence Description (ASD)

An ASD consists of ordered steps where a step
defines an activity of the attacker or relevant
outcomes/revelations for the following steps
(indicated by ”activity => outcome”), all formulated
in natural language. Some remarks can be added to
the steps in brackets to help understanding. An ASD
is presented from the intruder’s point of view.

The example ASD summarizes an entry into the
computer system of a company for penetration test
purposes (Mitnick & Simon, 2006, ch. 6). The
description in the book does not reveal all the
details to prevent the reproduction of the intrusion,
thus we lack some information in our models, too.

1. Checking the web server => it runs Apache
2. Checking the firewall => found a hidden

default configuration setting allowing in
packets with a source UDP or TCP port of 53
to almost all the high ports (above 1023)

3. Trying to mount off the file sys. using NFS =>
Firewall blocked access to NFS daemon and
common system services

4. Using an undocumented Solaris feature
(portmapper - rpcbind - bound to port 32770)
to get the dynamic port of the mount daemon
(mountd) from the portmapper and direct an
NFS request to it => the target system's file
system was remotely mounted an downloaded

5. Recognizing a PHF vulnerability => trick the
PHF CGI script to execute arbitrary
commands (by passing the Unicode string for
a newline character followed by the shell
command to run; PHF is used to access web-
based phone book by querying a DB)

Figure 2: Basic UCM and MUCM notation.

6. Through PHF: found that the Apache server
process was running under the “nobody”
account (i.e., the computer system was
secured) and its configuration file was owned
by “nobody” (means: it could be overwritten
through the PHF CGI script which was
running also under “nobody”) => change
httpd.conf so that the server restarts as “root”
and wait => the server restarted because of a
blackout

7. Installing a backdoor to prevent getting shut
out of the system

8. Setting up a sniffer on all e-mail going in and
out and searching the (Oracle) DB for CIO’s
salary (as a proof for their customer)

9. Continue to penetrate the entire network
10. Sometime after step 6: Installing sniffer

programs everywhere: a) at the firewall so
they were aware of all maintenance work
there, b) at a router where a system
administrator failed to enter the right password
for more times => gaining many administrator
passwords to different internal systems

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

96

Figure 3: MUCM based on the penetration test ASD (steps numbers are different).

Next, the MUCM is built according this
description.

4.2 Detailing the Scenarios: Misuse
Case Maps (MUCM)

Misuse case maps (MUCMs) (Karpati et al., 2010)
combine misuse cases (MUC) (Sindre & Opdahl,
2005) and use case maps (UCM) (Buhr &
Casselman, 1995), presenting an integrated view of
security issues and system architecture. MUCMs
address security requirements by focusing on
vulnerabilities, threats and intrusions (inherited
from MUCs) from an architectural point of view
(inherited from UCMs). Their notation is based on

the UCM notation and extended by vulnerabilities,
exploits and mitigations.

The system may have vulnerable points (such as
authentication responsibility) or parts (such as
components without up-to-date security patches)
which are suspect to threats. Mitigations can help to
counter the threats and appear in the MUCM as
desired possibilities which translate to security
requirements later. Misuses are depicted by the
exploit path’s crossing of a vulnerable point or part.
The notation offers many further possibilities that
we will not describe in detail here, such as labels
attached to other symbols and a question-mark
notation for still unclear steps.

The example MUCM shown in Fig. 3 is based

TOWARDS A HACKER ATTACK REPRESENTATION METHOD

97

Figure 4: MUC generalized from the penetration test example.

on the ASD but the numberings of the steps are
different. We incorporated mitigations as well but
only those which were mentioned in connection
with the case. The list of the specific vulnerabilities,
addressed responsibilities and mitigation
possibilities can be found below the map. The case
will be generalized in a MUC and an AT.

4.3 Providing Functional Context:
Misuse Cases (MUC)

Misuse cases (MUC) (Sindre & Opdahl, 2005) have
become popular for security requirements elicitation
and threat modelling. They complement use cases
(UC) for security purposes by extending them with
misusers, misuse cases and mitigation use cases, as
well as new relations like threatens and mitigates.
MUC diagrams use an inverted notation and are
combined with regular UCs. MUCs facilitate
discussion among stakeholders including regular
developers with no special security training. Fig. 4
shows how a MUC diagram deals with non-
functional security issues by representing the view
of an attacker (Alexander, 2003). We allow further
references to ATs and APs in a MUC in order to
show the relations among them.

Fig. 4 shows how the use and misuse of the
system is lifted to a more general level. The
vulnerabilities take the form of threats or misuses
and links to other models appear which elaborate
more on them. The mitigations also appear in a
more general context: the threat of sniffing

confidential information anywhere in the system is
mitigated by encrypted connection in the MUC
while the vulnerability of clear text connections at
one place in the system (firewall maintenance) was
mitigated by the encrypted connections at that
specific place in the MUCM. The customers and
field experts can also easily input their knowledge
and desires here, for example discussing what is
confidential and how much cost is it worth to secure
this confidentiality.

4.4 Refining the Attack Structure:
Attack Trees (AT)

Attack trees (AT) (“threat trees” by Microsoft)
provide a structured way for describing a high level
attack and various ways for its realization
(Schneier, 1999). The high level attack is in the root
node of the tree and is decomposed AND/OR into
lower-level attacks that must succeed to realize the
higher-level ones. Nodes in the AT can have values
and thus can answer questions like “Which is the
cheapest attack?” or “Which is the best low-risk,
low-skill attack?”. ATs have diagrammatical and
textual outline notation (Schneier, 2000). They can
be used to evaluate proposed designs but are also
applicable at an early requirements stage. We use
them to detail general aspects of the intrusion
together with attack patterns like in Fig. 5 for the
penetration test case (see the labels).

The hacker in the example case acquired a first
access to the system by using the PHF vulnerability

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

98

and thus bypassing authentication. Fig. 5 shows
another alternative for getting access: through
regular authentication by finding (out) identifiers
and passwords. There are many alternatives to
achieve this which are depicted in a separate AT not
shown here. It shows how we can gain more general
threats from a specific vulnerability.

Figure 5: AT for the MUC from the penetration test
example.

4.5 Distilling the Threats: Attack
Patterns (AP)

An attack pattern (AP) describes the approach used
by attackers to generate an exploit against software.
It consists of a minimal set of nodes in an attack
tree that achieves the goal at the root node (Barnum,
2007). An AP may be a subtree of an AT from the
root node to at least one leaf node. In a simple case,
when the AT has only OR branches, it is a path
from a leaf node to the root and called attack path.
APs detail ATs which provide a higher level view.

APs are described with the following
information: Pattern name and classification,
Attack prerequisites, Description, Related
vulnerabilities or weaknesses, Method of attack,
Attack motivation-consequences, Attacker skill or
knowledge required, Resources required Solutions
and mitigations, Context description, References
(Barnum, 2007). An extensive collection of AP-s
can be found at capec.mitre.org.

The APs referenced in figure 4 and 5 give
further details on the threats in focus. It may include
alternatives for the solutions already acquired in the
previous steps of HARM thus adding new
mitigation possibilities. Since APs are created by
security experts, they also enhance the quality of the
model. Although we used only one intrusion

scenario here, more can be modelled together in a
practical situation, resulting more other diagrams.

5 TOWARDS A METAMODEL
FOR HARM

To provide a stronger backbone for HARM, and to
prepare for tool support and more formal analyses,
this section will outline a metamodel for HARM as
a possible extension of the UML metamodel,
starting with its two most central behavioural
concepts; Behaviour and Action (OMG, 2009). A
Behaviour belongs to a Classifier (which thus
becomes a BehaviouralClassifier) and is intended to
represent complex behaviours. An Action can be
part of a Behaviour and is intended to represent
atomic behaviours. Both Actions and Behaviours
can be executed. The other BehaviouralClassifier
besides Behavior in UML is Actor.

To these concepts, the HARM metamodel adds
Misbehaviours, MisbehaviouredClassifiers,
AntiActions and Misusers. Each of them is a
“negative variant” of the corresponding UML
concept. For the moment, we define them as
specialisations of their respective UML
metaclasses. Subclassing is appropriate from an
abstract syntactical perspective, because the new
concepts can enter the same relationships as the
original concepts (although they sometimes take an
inverted meaning). Subclassing is also appropriate
from a concrete syntactical perspective, as the new
concepts will be drawn with the same icons and
connection points as the original concepts (although
they will usually be shaded or filled). But
subclassing is not quite correct from a semantic
perspective, because the new concepts have
modalities that are different from the original ones.
For example, an Action represents (atomic)
behaviour that is both permitted and wanted,
whereas an AntiAction represents behaviour that is
unwanted and should be forbidden. Apart from
modality, though, the semantics of the new and
original concepts remain the same. It is easy to
provide a cleaner semantics by introducing a new
common superclass, e.g., “BasicAction”, to capture
the common syntax and semantics of Actions and
AntiActions, which now become siblings, but we
leave this for further work as it would interfere with
the existing UML definition.

To incorporate use case maps into the HARM
metamodel, we take as our starting point the
proposal of (Amyot & Mussbacher, 2000) of basing

TOWARDS A HACKER ATTACK REPRESENTATION METHOD

99

the definition of use case maps on UML's activity
diagrams. We retain this strategy, although activity
diagrams have since moved from state-transition to
place-transition based semantics. Specifically, a
path in a use case map is considered a type of UML
Activity (a subclass of Behaviour), and the path
elements in the use case maps are considered
ActivityNodes. Start and end points in the map
correspond to Initial- and FinalNodes, whereas
AND and OR elements correspond to
ControlNodes. The various action elements in the
map correspond to particular subtypes of UML
Actions.

To incorporate misuse cases into the HARM
metamodel, we introduce MisuseCase as an
additional MisbehaviouredClassifier in addition to
Misuser. MisuserCase and Misuser inherit all the
regular use-case relationships, to which we add two
new DirectedRelationships: Threatens and
Mitigates.

To incorporate misuse case maps into the
HARM metamodel, we take the incorporation of
use case maps above as our starting point. A misuse
case map is just a use case map where at least one
path (a Behaviour) has been turned into an exploit
path (a Misbehaviour), thus comprising at least one
AntiAction. Like Aymot and Mussbacher, we have
to leave for further work the relation between
misuse (and use) case maps and the architectural
concepts from UML's other language units, such as
its deployment diagrams.

To incorporate attack trees and patterns, we can
use the MisuseCase concept again, or add a new
Attack subclass of MisbehaviouredClassifier. As
pointed out in (Sindre et al., 2002), generalisation
relationships, already inherited from UML's
Classifier concept, can be used to account for OR-
decomposition of attacks, whereas include
relationships can account for AND-decomposition.

Due to limited space, we leave attack sequence
descriptions for further work.

6 CONCLUSIONS
AND FURTHER WORK

We have presented the Hacker Attack
Representation Method (HARM), which illustrates
complex security attacks through a combination of
five representation techniques. We have also
offered guidelines for how to use the techniques
together, and outlined how HARM can be defined
as an extension to the UML metamodel. The key

improvement over state of the art is that it enables
different groups of stakeholders to understand and
take part in discussions of hacker intrusions. It
allows knowledge of complex intrusions to be used
already in the early analysis stages and it links
security considerations with architecture.

Our running example based on a real penetration
test indicates that HARM may indeed be a useful
contribution to the arsenal of available IS and SE
methods. Its combination of techniques allows the
adjustment of representations to the stakeholders’
different backgrounds. Each group of stakeholders
can work with appropriate diagrams at an
appropriate abstraction level. When customers and
domain experts are involved in the discussion,
MUC and MUCM might be the best choice,
whereas AT can be a great addition for
requirements engineers and developers. APs can
help to transfer knowledge between regular
developers and security experts.

We admit that proposing yet another modelling
method for information systems and software
engineering must always be done with care, given
that the number of available methods is already
high and rising. However, as observed already
decades ago, one single method cannot cover the
wide range of different system tasks (Benyon &
Skidmore, 1987). Also, when several different
diagram types are used to illustrate a complex
system, each diagram can be kept simpler by
focusing on particular aspects of the system under
discussion. There is a continual need for developing
improved approaches, and the diversity of
modelling techniques is therefore not only
inevitable, but perhaps even desirable (Steele &
Zaslavsky, 1993). In particular, there is a need to
develop better methods for system tasks that have
previously not been given enough attention, e.g.:
security in early-stage system analysis (Mead &
Stehney, 2005).

The metamodel outlined suggests that UML
may be a good starting point for defining HARM in
more detail. Despite its known weaknesses, in
particular regarding semantics, UML's metamodel
is well suited because it is widely accepted and
incorporates use cases, which is the “positive
variant” of one of the central techniques in HARM.
UML also defines several of the other concepts
needed by HARM. Defining it as an extension of
the UML metamodel also prepares for including
“negative variants” of further representation
techniques, such as the mal-activity diagrams
proposed in (Sindre, 2007). A negative consequence
of using the UML metamodel is that our proposal

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

100

inherits several of UML's weaknesses. For example,
Actions and Behaviours become separated, with
neither being a subclass of the other, and they are
also distinct from BehaviouredClassifiers. In
consequence, the relationships between paths and
path elements in UCM/MUCM, misuse cases in
MUC, primitive attacks in AT/AP etc. often become
indirect even when the represented phenomena
appear similar.

Our work on HARM so far has focussed on
capturing technical intrusions. In the future we also
plan to investigate other types of intrusion, such as
physical ones and social engineering attacks.
Generally we will explore further how the HARM
techniques with vulnerability taxonomies can be
used for attack and test generation. Further work is
needed to add detail, e.g., about how previous
attacks are selected and system boundaries defined,
how multiple misuse case maps are distilled into
misuse case diagrams, how requirements can be
derived from attack patterns etc. As a consequence,
it is possible that the detailed five-step method will
be elaborated and reorganised, although the broad
progress of HARM will most likely remain.

ACKNOWLEDGEMENTS

This work was done in the ReqSec project funded
by the Norwegian Research Council.

REFERENCES

Amyot, D., Mussbacher, G. (2000) On the Extension of
UML with Use Case Maps Concepts. Proc. UML
2000, pp 16-31.

Alexander I. (2003) Misuse Cases: Use Cases with
Hostile Intent, IEEE Software, 20(1):58-66.

Barnum, S. (2007) Attack Patterns as a Knowledge
Resource for Building Secure Software, In A. Sethi
(ed.) Cigital: OMG Software Assurance WS

Benyon, D., Skidmore, S. (1987) Towards a Tool Kit For
the Systems Analyst, The Computer Journal 30(1):2-7

Buhr R. J. A. (1996) Use case maps for attributing
behaviour to system architecture, Proc. 4th Int. WS on
Parallel and Distributed Real-Time Systems, p.3

Buhr R.J.A., Casselman R.S. (1995) Use Case Maps for
Object-Oriented Systems, Prentice Hall

Cheung, S., Lindqvist, U., Valdez, R. (2003) Correlated
Attack Modeling (CAM), Final Technical Report by
SRI International, October 2003

Gegick, M., Williams, L., (2005) Matching attack
patterns to security vulnerabilities in software-
intensive system designs, Proc. SESS05 — building
trustworthy applications, pp 1-7

Gutierrez, C., Fernandez-Medina, E., Piattini, M. (2005a),
Web services enterprise security architecture: a case
study. Proc. WS on Secure Web Services (SWS'05) ,
Fairfax, VA, USA.

Gutierrez, C., Fernandez-Medina, E., Piattini, M. (2005b),
Towards a Process for Web Services Security,
Proc.WOSIS'05 at ICEIS'05, Miami, Florida, USA.

Gutierrez, C., Fernandez-Medina, E., Piattini, M. (2006),
PWSSec: Process for Web Services Security, In Proc.
ICWS '06, pp.213-222, 18-22

Karpati P., Sindre G., Opdahl A. L. (2010) Illustrating
Cyber Attacks with Misuse Case Maps, Proc. REFSQ

Maurya, S., Jangam, E., Talukder, M., Pais, A.R. (2009)
Suraksha: A security designers’ workbench. Proc.
Hack.in 2009, pp. 59–66.

Mead, N.R, Stehney, T. (2005) Security Quality
Requirements Engineering (SQUARE) Methodology.
In Proc SESS'05. St. Louis, MO, May 15-16, 2005

Mitnick K. D., Simon W. L. (2006) The Art of Intrusion,
Wiley Publishing Inc.

Neumann, P.G., Porras, P.A.. (1999) Experience with
EMERALD to date. Proc WS on Intrusion Detection
and Network Monitoring, pp:73-80

Ning, P., Cui, Y., Reeves, D.S. (2002) Constructing
attack scenarios through correlation of intrusion
alerts. Proc. 9th ACM conf. on CCS, pp: 245-254

OMG Unified Modeling LanguageTM (OMG UML),
Superstructure Version 2.2, Feb. 2009

Opdahl A. L., Sindre, G. (2009) Experimental
Comparison of Attack Trees and Misuse Cases for
Security Threat Identification, Information and
Software Technology, 51(5):916-932

Schneier, B. (1999) Attack Trees, Dr. Dobb's Journal
Schneier, B. (2000) Secrets and Lies: Digital Security in a

Networked World, Wiley.
Sheyner, O., Haines, J., Jha, S., Lippmann, R., Wing,

J.M. (2002) Automated Generation and Analysis of
Attack Graphs, Proc. IEEE Symposium on Security
and Privacy, p.273, May 12-15

Sindre, G. (2007). Mal-Activity Diagrams for Capturing
Attacks on Business Processes. Lecture Notes in
Computer Science, vol. 4542. pp 355-366

Sindre, G., Opdahl A.L. (2005). Eliciting Security
Requirements with Misuse Cases. Requirements
Engineering 10(1): 34-44

Sindre, G., Opdahl, A.L., Brevik, G.F. (2002)
Generalization/Specialization as a Structuring
Mechanism for Misuse Cases. Proc. SREIS'2002.

Steele, P., Zaslavsky, A. (1993) The Role of Metamodels
in Federating System Modelling Techniques, In Proc
ER'93, Dallas, USA, pp 301-12

Templeton, S.J., Levitt, K. (2000) A requires/provides
model for computer attacks, Proc. WS on New
security paradigms, pp.31-38.

The Mitre Corp. (2010): Common Attack Pattern
Enumeration and Classification, capec.mitre.org.
Accessed: 30.3.2010.OMG (2009)

Tøndel, I.A., Jensen, J., Røstad, L. (2010) Combining
misuse cases with attack trees and security activity
models Proc. OSA workshop.

TOWARDS A HACKER ATTACK REPRESENTATION METHOD

101

