
UNIVERSALLY COMPOSABLE NON-COMMITTING
ENCRYPTIONS IN THE PRESENCE OF ADAPTIVE ADVERSARIES

Huafei Zhu1, Tadashi Araragi2, Takashi Nishide3 and Kouichi Sakurai3

1Institute for Infocomm Research, A-STAR, Singapore
2NTT Communication Science Laboratories, Kyoto, Japan

3Department of Computer Science and Communication Engineering, Kyushu University, Fukuoka, Japan

Keywords: Adaptive security, Decisional Diffie-Hellman assumption, Non-committing encryptions, Oblivious sampling
and faking algorithms.

Abstract: Designing non-committing encryptions tolerating adaptive adversaries is a challenging task. In this paper,
a simple implementation of non-committing encryptions is presented and analyzed in the strongest security
model. We show that the proposed non-committing encryption scheme is provably secure against adaptive
adversaries in the universally composable framework assuming that the decisional Diffie-Hellman problem is
hard.

1 NON-COMMITTING
ENCRYPTIONS

Informally, a non-committing encryption protocol is
an encrypted communication that allows a simulator
to open a ciphertext to any plaintext it desires and sim-
ulate the real world adversary’s view before and after
a player is corrupted. Nielsen (Nielsen, 2002) shows
that no non-interactive communication protocol can
be adaptively secure in the asynchronous model.

Beaver and Haber’s protocol (Beaver and Haber,
1992) realizes the functionality of non-commitment
encryption schemes in the erasure model. That is, if
one is willing to trust honest parties can erase sensi-
tive information such that the adversary can find no
trace of it, should he break in, then such adaptively
secure multi-party computation of any function can
be efficiently realized. Subsequently, Beaver (Beaver,
1997) proposed a much simpler scheme based on the
decisional Diffie-Hellman assumption with expansion
factor O(k). The non-committing encryptions pre-
sented in (Beaver, 1997) and (Beaver and Haber,
1992) are designed and analyzed in the stand-alone,
simulation-based framework.

Canetti, Feige, Goldreich and Naor (Canetti et al.,
1996) proposed the first non-committing encryptions
based on so called common-domain permutations (the
stand-alone non-committing encryption presented in

(Canetti et al., 1996) is secure against adaptive
adversary in the universally composable framework,
see Section 6.3 of (Canetti, 2005) for more details).
To encrypt 1 bit,Θ(k2) public key bits are com-
municated. Damgård and Nielsen (Damgård and
Nielsen, 2000) proposed generic constructions of
non-committing encryption schemes based on so
called simulatable public-key encryption schemes in
the universally composable framework (a detailed
analysis of the protocol presented in (Damgård and
Nielsen, 2000) is available in Section 4 of (Nielsen,
2003)). Roughly speaking, a public-key encryption
scheme is simulatable if, in addition to the normal
key generation algorithm procedure, there is an
algorithm to generate a public key without knowing
the corresponding secret key. Moreover, it must be
possible to sample efficiently a random ciphertext
without getting to know the corresponding plaintext.
They showed that a non-committing encryption
scheme can be constructed from any semantically
secure and simulatable public-key system. Although
the Damgård and Nielsen’s construction (Damgård
and Nielsen, 2000) is general, the cost of computation
is expensive since one should obliviously generate
a pair of public keys to communicate 1-bit in open
networks.

Very recently, Choi, Soled, Malkin and
Wee (S.Choi et al., 2009) have presented a new
implementation of non-committing encryptions

389
Zhu H., Araragi T., Nishide T. and Sakurai K. (2010).
UNIVERSALLY COMPOSABLE NON-COMMITTING ENCRYPTIONS IN THE PRESENCE OF ADAPTIVE ADVERSARIES.
In Proceedings of the International Conference on Security and Cryptography, pages 389-398
DOI: 10.5220/0002985003890398
Copyright c© SciTePress

based on a weaker notion (called trapdoor sim-
ulatable cryptosystems). The idea behind their
construction is that− on input a security parameter
k, a receiver first generates total 4k public keys
where the firstk public keys are generated by a
key generation algorithm of the underlying trapdoor
simulatable encryption scheme while the rest 3k
public keys are generated by an oblivious sampling
algorithm. To encrypt a bitb, the sender sends
4k ciphertexts of whichk are encryptedb and the
remaining 3k ones are obliviously sampled. Although
the non-committing encryption scheme in (S.Choi
et al., 2009) is at the expense of higher computation
and communication of the Damgård and Nielsen’s
protocol (Damgård and Nielsen, 2000), such an
implementation is definitely interesting since the
subtle failure model in (Damgård and Nielsen, 2000)
is eliminated (i.e., the scheme presented in (S.Choi
et al., 2009) is round-optimal) in their framework.

1.1 This Work

This paper studies non-committing encryptions in the
UC-framework of Canetti. We will show that the pro-
posed non-committing encryption scheme is provably
secure against adaptive adversaries in the universally
composable framework assuming that the decisional
Diffie-Hellman problem is hard.

An Overview of the Protocol. The proposed
non-committing encryption protocol comprises two
phases: a channel setup phase and a communication
phase. The idea behind our construction is simple: to
set up a secure channel, a senderS first picks a ran-
dom bitα ∈ {0,1}, and then selects a Diffie-Hellman
quadrupleeα and a garbled quadruplee1−α and send
(e0,e1) to a receiverR. Given (e0,e1), the receiver
R picks a selection stringfβ and a garbled string
f1−β, and then obliviously selects 1-out-of-2 quadru-
ples with the help of the selection stringfβ. If eα is
selected, then a secure channel is established; Other-
wise,SandR retry the channel setup procedure.

Main Result. We claim that the non-commitment
protocolπ presented in Section 4 realizes the univer-
sally composable security in the presence of adap-
tive adversaries assuming that the Decisional Diffie-
Hellman problem is hard.

The Proof of Security. We will show that for any
real world adversaryA there exists an ideal-world ad-
versaryS such that no environmentZ , on any input,
can tell with non-negligible probability whether it is
interacting withA and players runningπ, or with S

andF NSC in the ideal execution if the decisional Diffie-
Hellman assumption holds. The core technique ap-
plied to the security proof is a novel application of
oblivious sampling and faking algorithms introduced
and formalized by Canetti and Fischlin in (Canetti and
Fischlin, 2001). Roughly speaking, an oblivious fak-
ing algorithmfake takesg ∈ G as input and outputs
a stringrg ∈ {0,1}2|p|. An oblivious sampling algo-
rithm sample takesr ∈U {0,1}2|p| as input and out-
puts an elementrG ∈ G. The oblivious sampling and
faking algorithms engaged in the security proof bene-
fit a PPT simulator to generate subgroup elements of
G⊆ Z∗p uniformly at random and interprets a Diffie-
Hellman quadrupleeα as a garbled quadruplee1−α.
The oblivious sampling and faking algorithms also
benefit the simulator to interpret a random selection
string as a garbled string. As a result, no environment
Z , on any input, can tell with non-negligible prob-
ability whether it is interacting withA and players

runningπ, or with S andF NSC in the ideal execution if
the decisional Diffie-Hellman assumption holds.

Efficiency. Our scheme requires 3 messages to
communicatek encrypted bits, wherek is the security
parameter. The total communication isO(k) Diffie-
Hellman quadruples and garbled quadruples andO(k)
selection strings and garbled strings andk bits (the
communication of the finalk bits of the communica-
tion depend on the actual messages to be sent). Thus,
our universally composably secure non-committing
encryption protocol is as efficient as the stand-alone,
simulation-based (but the notion of environment is de-
fined in their security definition and the proof of the
protocols) protocol by Beaver (Beaver, 1997)− the
most efficient implementation of non-committing en-
cryptions so far.

Road-map. The rest of this paper is organized
as follows: In Section 2, the building blocks are
sketched;The functionality and security definition of
non-committing encryption protocols are presented
in Section 3. In Section 4, a new non-committing
encryption scheme is proposed and analyzed in the
universally composable framework in the presence of
adaptive adversaries. We conclude our work in Sec-
tion 5.

2 PRELIMINARIES

We assume that a reader is familiar with the
standard notion of universally composable frame-
work (Canetti, 2001). The oblivious sampling and

SECRYPT 2010 - International Conference on Security and Cryptography

390

faking algorithms described below are due to Canetti
and Fischlin (Canetti and Fischlin, 2001). The two al-
gorithms combined together allow a simulator to con-
struct a fake transcript to the environmentZ in such
a way that the simulator can open this transcript to
the actual inputs that the simulator receives from the
functionality when the parties get corrupted, a core
task to prove the security of protocols against adap-
tive adversaries in the universally composable secu-
rity model.

The Canetti-Fischlin Oblivious Sampling Algo-
rithm. Let p =wq+1 for somew not divisible byq,
andG is a cyclic group of orderq in Z∗p. The Canetti-
Fischlin oblivious sampling algorithmsample takes
r ∈ {0,1}2|p| as input and outputs an elementrG ∈ G
via the following computations

• the sampling algorithmsample chooses a string
r ∈ {0,1}2|p| uniformly at random, where|p| be
the bit length of the prime numberp.

• Let rp = r mod p andrG =rw
p mod p.

Lemma 1 (Due to (Canetti and Fischlin, 2001)).
Let X = [X = x : x ∈U G], and Y = [Y = y : y←
sample(r), r ∈U {0,1}2|p|], then the distributions be-
tween two random variablesX andY are statistically
indistinguishable.

The Canetti-Fischlin Oblivious Faking Algorithm.
Let p =wq+1 for somew not divisible byq, andG is
a cyclic group of orderq in Z∗p. The Canetti-Fischlin
oblivious faking algorithmfake takes a random ele-
menth∈G as input and outputsrh ∈ {0,1}2|p| via the
following computations

• On inputh ∈ G, the faking algorithmfake picks
a random integeri ∈ Zw. Let hp = hxgiq mod p,
wherexw≡ 1 modq;

• Let rh = Len(∑ j∈Zp jp + hp), where Len(x) de-
notes the bit length of an integerx.

Lemma 2 (due to (Canetti and Fischlin, 2001))
Let X = [X = x : x ∈U {0,1}2|p|], andY = [Y = y :
y← fake(g),g ∈U G], then the distributions between
two random variablesX andY are statistically indis-
tinguishable.

2.1 The Decisional Diffie-Hellman
Assumption

Let p = 2q+1 andp, q be large prime numbers. Let
G⊆ Z∗p be a cyclic group of orderq. Let g be a ran-
dom generator ofG. For any 06= x ∈ Zq, we define
DLogG(x) ={(g,gx) : g ∈ G}. On input (g1,h1) ∈

DLogG(x1), and(g2,h2) ∈ DLogG(x2), a mappingφ
called Naor-Pinkas randomizer is defined below:

φ((g1,g2,h1,h2)×(s, t)) = (gs
1gt

2 modp,hs
1ht

2 mod p)

wheres, t ∈U Zq
Denoteu= gs

1gt
2 mod p andv =hs

1ht
2 mod p. Naor

and Pinkas (Moni Naor, 2001) have shown that

• if x1 = x2 (=x), then(u,v) is uniformly random in
DLogG(x);

• if x1 6= x2, then(u,v) is uniformly random inG2.

3 NON-COMMITTING
ENCRYPTIONS:
FUNCTIONALITY AND
SECURITY DEFINITION

The notion of non-committing encryption scheme in-
troduced in (Canetti et al., 1996) is a protocol used to
realize secure channel in the presence of an adaptive
adversary. In particular, this means that a simulator
can build a fake transcript to the environmentZ , in
such a way that the simulator can open this transcript
to the actual inputs, that the simulator receives from
the functionality when the parties get corrupted.

LetN be a non-information oracle which is a PPT
Turing machine that captures the information leaked
to the adversary in the ideal-world. That is,N is
the oracle which takes(Send,sid,P,m) as input and
outputs(Send,sid,P, |m|). Let ChSetup be a chan-
nel setup command which on inputs(ChSetup,sid,S)
produces no output and(Corrupt,sid,P) be a cor-
ruption command which takes(Corrupt,sid,P) pro-
duces no output. The functionality of non-committing
encryption secure channels defined below is due to
Garay, Wichs and Zhou (Garay et al., 2009).

The ideal functionality F NSC

Channel setup: upon receiving an input
(ChSetup,sid,S) from party S, initialize the ma-
chine N and record the tuple(sid,N). Pass the
message(ChSetup,S) to R. In addition, pass this
message toN and forward its output toS ;

Message transfer: Upon receiving an input
(Send,sid,P,m) from partyP, whereP∈ {S,R}, find
a tuple(sid,N), and if none exists, ignore the mes-
sage. Otherwise, send the message(Send,sid,P,m)
to the other partyP ={S,R} \ {P}. In addition, in-
vokeN with (Send,sid,P,m) and forwards its output
(Send,sid,P, |m|) to the adversaryS .

Corruption: Upon receiving a message
(Corrupt,sid,P) from the adversary S , send

UNIVERSALLY COMPOSABLE NON-COMMITTING ENCRYPTIONS IN THE PRESENCE OF ADAPTIVE
ADVERSARIES

391

(Corrupt,sid,P) to N and forward its output to
the adversary. After the first corruption, stop execu-
tion of N and give the adversaryS complete control
over the functionality.

Definition (due to (Garay et al., 2009)). We

call the functionalityF NSC a non-committing encryp-
tion secure channel. A real-world protocolπ which

realizesF NSC is called a non-committing encryption
scheme.

4 NON-COMMITTING
ENCRYPTION

In this section, we first describe an implementation
of non-committing schemes based on the decisional
Diffie-Hellman problem, and then show that the pro-
posed scheme realizes UC-security in the presence of
adaptive adversaries.

4.1 Description of Non-committing
Encryption Scheme

The non-committing encryption protocol comprises
two phases: a channel setup phase and a communica-
tion phase. To set up a secure channel,Sprepares two
quadruplese0 ande1, whereeα is a Diffie-Hellman
quadruple ande1−α is a garbled quadruple,α∈{0,1}.
S now let a receiverR to choose 1-out-of-2 quadru-
ples. If eα is selected, a secure channel has been set
up between two parties; Otherwise,SandR retry the
channel setup procedure. The details of protocol are
depicted below.
Initialization the environmentZ invokes a system key
generation algorithmG which takes security parame-
ter k as input and outputs(p,q,G), wherep is a large
safe prime number (i.e.,p=2q+1, q is a prime num-
ber) andG is a cyclic group with orderq.

Channel setup: To set up a secure channel, a sender
Sand a receiverR jointly perform the following com-
putations

• On input(p,q,G), Schoosesα ∈U {0,1} and per-
forms the following computations

– S generates a random Diffie-Hellman quadru-
ple (g1,α, g2,α, h1,α, h2,α), whereg1,α andg2,α
are two random generators ofG, andh1,α and
h2,α are two elements inG such thath1,α =
gskα

1,α mod p, and h2,α = gskα
2,α mod p, where

skα ∈U Zq. Let eα = (g1,α, g2,α, h1,α, h2,α).

– S picks a quadruple(g1,1−α, g2,1−α, h1,1−α,
h2,1−α) ∈ G4 uniformly at random. Lete1−α
=(g1,1−α, g2,1−α, h1,1−α, h2,1−α).

– Ssends(e0,e1) to R.

• Upon receiving(e0,e1), R checks the conditions
1 6= gi, j ∈ G and 16= hi, j ∈ G (i =1, 2, j =0, 1),
if any of the conditions are violated,R outputs
⊥; Otherwise,R performs the following compu-
tations

– R choosesβ ∈U {0,1} and sβ, tβ ∈U Zq and

then computesuβ = g
sβ
1,βg

tβ
2,β mod p and vβ

=h
sβ
1,βh

tβ
2,β mod p. Let fβ = (uβ,vβ) and τβ

=(sβ, tβ).
– R picks u1−β ∈ G and v1−β ∈ G uniformly at

random. Letf1−β =(u1−β,v1−β).
– Rsends(f0, f1) to S;

• Upon receiving(f0, f1), parsingf0 as(u0,v0) and
f1 as(u1,v1), S checks that 16= ui ∈ G and 16=
vi ∈ G (i =0, 1), if any of the conditions are vi-
olated,S outputs⊥; Otherwise,S further checks

the conditionvα
?
= uskα

α mod p.

– If vα 6= uskα
α modp, Ssendsb =0 toRand retries

thechannel setup procedure;

– If vα = uskα
α mod p, Ssendsb =1 toR and con-

tinues themessage transfer step below.

Message transfer: On inputm∈ {0,1} andα, Scom-
putesm⊕α. Let c =m⊕α. Sthen sendsc to R. Upon
receiving a ciphertextc′, R obtainsm′ by computing
c′⊕β.

4.2 The Proof of Security

Theorem. Assuming that the Decisional Diffie-
Hellman problem is hard inG, the non-commitment
protocolπ depicted above realizes universally com-
posable security in the presence of adaptive adver-
saries.

Proof. There are four cases defined in the follow-
ing proof, depending on when the real world adver-
saryA makes its first corruption request (and thus the
proof is tedious):

• Case 1: the real world adversaryA makes its first
corruption request after a secure channel has been
set up successfully;

• Case 2: the real world adversaryA makes its first
corruption request after the senderShas received
R’s first message;

• Case 3: the real world adversaryA makes its first
corruption request afterS has generated its first
message, but beforeSreceivesR’s first message;

SECRYPT 2010 - International Conference on Security and Cryptography

392

• Case 4: the real world adversaryA makes its first
corruption request before any messages are gen-
erated.

We show that in each case above there exists an
ideal-world adversaryS such that no environmentZ ,
on any input, can tell with non-negligible probability
whether it is interacting withA and players running

π, or with S andF NSC in the ideal execution if the de-
cisional Diffie-Hellman assumption holds.

To simplify the description of a simulator, we omit
the explicit description of the non-information oracle
N here and what follows since the non-commitment
encryption scheme described in this paper is a well-
structured protocol (informally, a well-structured pro-
tocol requires the message sizes and the number of
rounds are completely determined by the protocol
and are independent of the input values or random
coins of the parties. For the details definition of
well-structured protocol, please refer to (Garay et al.,
2009)). We here and what follows, also omit the ex-
plicit checks that the simulator has seen the previous
steps of the protocol.

Case 1. The first corruption occurs after a secure
channel has been set up successfully. If the real world
adversaryA makes its first corruption request after a
secure channel has been set up successfully, an ideal
world adversaryS must simulate any of the follow-
ing three cases: 1) the first corruption occurs afterR
has receivedc; or 2) the first corruption occurs after
S has generatedc, but beforeR receivesc; or 3) the
first corruption occurs beforeSgeneratesc. The cor-
responding simulatorS is described as follows.

• Step 1: S first picks gi,0 ∈U G, gi,1 ∈U G,
sk0 ∈U Zq and sk1 ∈U Zq, and then computes

hi,0 = gsk0
i,0 mod p, hi,1 = gsk1

i,1 mod p, i
=1, 2. Let e0 =(g1,0,g2,0,h1,0,h2,0) and e1 =
(g1,1,g2,1,h1,1,h2,1). S keeps the auxiliary strings
sk0 andsk1 secret.

• Step 2: S then pickssi ∈U Zq and ti ∈U Zq, and
computesui = gsi

1,ig
ti
2,i mod p, vi =hsi

1,ih
ti
2,i mod p.

Let fi = (ui ,vi), i =0, 1. S keeps the auxiliary
strings(s0, t0) and(s1, t1) secret.

• Step 3:S outputs a bitb (=1).

Case 1.1.the first corruption occurs after R has re-
ceived c; If a partyP ∈ {S,R} gets corrupted,S cor-
rupts the corresponding dummy partỹP and obtains
m. Let γ =m⊕ c. Following the steps (Step 1, Step 2
and Step 3) above, we further consider subcases be-
low:

Case 1.1.1.If the senderS gets corrupted in the
first corruption,S invokes the faking algorithmfake

which takesS’s internal staterS as input and inter-
pretseγ as a Diffie-Hellman quadruplereγ associated
with the auxiliary stringskγ and interpretse1−γ as
a garbled quadruplere1−γ . That is, the faking al-
gorithm fake interpretsgi, j ∈ G as a stringrgi, j ∈

{0,1}2|p| andhi, j ∈ G as a stringrhi, j ∈ {0,1}
2|p| (i

=1, 2, j =0, 1). Let reγ = (rg1,γ , rg2,γ , rh1,γ , rh2,γ) and
re1−γ = (rg1,1−γ , rg2,1−γ , rh1,1−γ , rh2,1−γ). The auxiliary
string skγ is associated withreγ such that(rg1,γ , rh1,γ)

∈ Dlog(skγ) and (rg2,γ , rh2,γ) ∈ Dlog(skγ) (Note that

given a string rgi, j ∈ {0,1}
2|p|, the corresponding

group element gi, j ∈G can be efficiently reconstructed
by applying the Canetti-Fischlin’s sampling algo-
rithm). S reveals(re0, re1), skγ andm to A .

If R gets corrupted in the second corruption,S
modifies the receiver’s internal staterR before it is
revealed toA . That is,S first invokes the faking al-
gorithm fake which takesR’s internal staterR as in-
put and interpretsfγ (=(uγ,vγ)) as a selection string
r fγ (=(ruγ , rvγ)) associated with the auxiliary string
(sγ, tγ) and interpretedf1−γ (=(u1−γ,v1−γ)) as a gar-
bled stringr f1−γ (=(ru1−γ , rv1−γ)). S reveals(r f0, r f1)

and(sγ, tγ) to A .
Case 1.1.2.WhenRgets corrupted in the first cor-

ruption, S corrupts the dummy partỹR in the ideal
world and obtainsm. S then invokes the faking algo-
rithm fake which takesR’s internal staterR as input
and interpretsfγ as a selection stringr fγ associated
with the auxiliary string(sγ, tγ) and interpretsf1−γ as
a garbled stringr f1−γ . S reveals(r f0, r f1) and(sγ, tγ)
to A .

If Sgets corrupted in the second corruption,S cor-
rupts the dummy partỹS in the ideal world and ob-
tainsm. S invokes the faking algorithmfake which
takesrS as input and interpretseγ as a Diffie-Hellman
quadruplereγ associated with the auxiliary stringskγ
and interpretse1−γ as a garbled stringre1−γ . S reveals
(re0, re1), skγ andm to A .

Case 1.2.The first corruption occurs after S has gen-
erated c, but before R receives c; Following the steps
(Step 1, Step 2 and Step 3) above, we further consider
subcases below:

Case 1.2.1.If Sgets corrupted in the first corrup-
tion after it has generatedc, but beforeR receivesc.
S corrupts the dummy partỹS in the ideal world and
obtainsm. Let γ = c⊕m. S invokes the faking al-
gorithmfake which takesrS as input and interpretseγ
as a Diffie-Hellman quadruplereγ associated with the
auxiliary stringskγ and interpretse1−γ as a garbled
stringre1−γ . S reveals(re0, re1), skγ andm to A .

If the second corruption occursbefore Rreceives
a ciphertextc′ (the received ciphertetxtc′ may not be

UNIVERSALLY COMPOSABLE NON-COMMITTING ENCRYPTIONS IN THE PRESENCE OF ADAPTIVE
ADVERSARIES

393

the same as the ciphertextc generated byS since the
real-world adversaryA may change the ciphertextc).
S invokes the faking algorithmfake which takesrR as
input and interpretsfγ as a selection stringr fγ asso-
ciated with the auxiliary string(sγ, tγ) and interprets
f1−γ as a garbled stringr f1−γ . S reveals(r f0, r f1) and
(sγ, tγ) to A .

If the second corruption occursafter R has re-
ceived a ciphertextc′. The simulator invokesfake
which takesrR as input and interpretsfγ as a selec-
tion string associated with the auxiliary string(sγ, tγ)
and interpretsf1−γ as a garbled string. Letm′ =γ⊕c′.
S reveals(r f0, r f1), (sγ, tγ) andm′ to A .

Case 1.2.2.If the receiverR gets corrupted in the
first corruption,S corrupts the corresponding dummy
party R̃ and obtainsβ. Let γ =β. S invokes the fak-
ing algorithmfake which takesR’s internal staterR as
input and interpretsfγ as a selection stringr fγ asso-
ciated with the auxiliary string(sγ, tγ) and interprets
f1−γ as a garbled stringr f1−γ . S reveals(r f0, r f1) and
(sγ, tγ) to A .

If the second corruption occurs,S corrupts the
corresponding dummy partỹSand obtainsm. S then
invokes the faking algorithmfake which takesrS as
input and interpretseγ as a Diffie-Hellman quadruple
reγ associated with the auxiliary stringskγ and inter-
pretse1−γ as a garbled stringre1−γ . S reveals(re0, re1),
skγ andm to A .

Case 1.3.The first corruption occurs before S gener-
ates c; Following the simulation steps (Step 1, Step 2
and Step 3) above, we consider the following two sub-
cases:

Case 1.3.1.If the senderS gets corrupted in the
first corruption,S corrupts the corresponding dummy
party S̃ in the ideal world and obtainsm. S picks a
random bitγ ∈ {0,1} uniformly at random. Letα = γ
andβ =γ. S invokes the faking algorithmfake which
takesrS as input and interpretseγ as a Diffie-Hellman
quadruplereγ associated with the auxiliary stringskγ
and interpretse1−γ as a garbled quadruplere1−γ . S
reveals(re0, re1), skγ andm to A .

If R gets corrupted in the second corruption,S in-
vokes the faking algorithmfake which takesR’s in-
ternal staterR as input and interpretsfγ as a selection
string r fγ associated with the auxiliary string(sγ, tγ)
and interpretsf1−γ as a garbled stringr f1−γ . S reveals
(r f0, r f1) and(sγ, tγ) to A .

Case 1.3.2.If the receiverR gets corrupted in the
first corruption,S picks a bitγ ∈ {0,1} uniformly at
random and then invokes the faking algorithmfake
which takesrR as input and interpretsfγ as a se-
lection stringr fγ associated with the auxiliary string
(sγ, tγ) and interpretsf1−γ as a garbled stringr f1−γ . S

reveals(r f0, r f1) and(sγ, tγ) to A .
If Sgets corrupted in the second corruption,S cor-

rupts the corresponding dummy partyS̃ and obtains
m. S invokes the faking algorithmfake which takesrS
as input and interpretseγ as a Diffie-Hellman quadru-
ple reγ associated with the auxiliary stringskγ and in-
terpretse1−γ as a garbled quadruplere1−γ . The simu-
lator reveals(re0, re1), skγ andm to A .

Case 2. The first corruption occurs after the sender
S has received R’s first message. If the real world ad-
versaryA makes its first corruption after the senderS
has receivedR’s first message(f0, f1), the constructed
ideal world adversaryS must simulate any of the fol-
lowing three subcases: 1) the first corruption occurs
after S has generatedb andR has receivedb; or 2)
the first corruption occurs afterShas generatedb, but
beforeR receivesb; or 3) the first corruption occurs
beforeSgeneratesb. We describe the corresponding
simulatorS below

• Step 1: S picks gi,0 ∈U G, gi,1 ∈U G, sk0 ∈U
Zq and sk1 ∈U Zq, and then computeshi,0

= gsk0
i,0 mod p, hi,1 = gsk1

i,1 mod p. Let ei

=(g1,i ,g2,i ,h1,i,h2,i), i =1, 2.S keeps the auxiliary
stringssk0 andsk1 secret.

• Step 2: S picks si ∈ Zq andti ∈ Zq uniformly at
random, and then computesui = gsi

1,ig
ti
2,i mod p, vi

=hsi
1,ih

ti
2,i mod p. Let fi = (ui ,vi), i =0, 1. S keeps

the auxiliary strings(s0, t0) and(s1, t1) secret.

Case 2.1.The first corruption occurs after the sender
S has received(f0, f1) and R has received a bit b. Fol-
lowing the simulation steps (Step 1 and Step 2) above,
we further consider subcases below:

Case 2.1.1.If b=1 and a partyP∈ {S,R} gets cor-
rupted in the first corruption, the corresponding sim-
ulator can be constructed exactly as that described in
Case 1.

Case 2.1.2.If b=0 and if the senderS gets cor-
rupted in the first corruption, the simulatorS cor-
rupts the corresponding dummy partyS̃ in the ideal
world and obtainsm. S then chooses a random bit
γ ∈U {0,1}. Let α =γ andβ =1− γ. S invokes the fak-
ing algorithmfake which takesrS as input and inter-
pretseγ as a Diffie-Hellman quadruplereγ associated
with the auxiliary stringskγ and interpretse1−γ as a
garbled quadruplere1−γ and reveals(re0, re1), skγ and
m to the real world adversaryA .

If the receiverR gets corrupted in the second cor-
ruption,S invokesfake which takesrR as input and in-
terpretsf1−γ as a selection stringr f1−γ associated with
the auxiliary string(s1−γ, t1−γ) and interpretsfγ as a
garbled stringr fγ and reveals(r f0, r f1) and(s1−γ, t1−γ)
to A .

SECRYPT 2010 - International Conference on Security and Cryptography

394

Case 2.1.3.If b=0 and if the receiverR gets cor-
rupted in the first corruption,S picks a bitγ ∈ {0,1}
uniformly at random and setsβ =γ andα =1− γ. S
invokes the faking algorithmfake which takesrR as
input and interpretsfγ as a selection stringr fγ asso-
ciated with the auxiliary string(sγ, tγ) and interprets
f1−γ as a garbled stringr f1−γ . S reveals(r f0, r f1) and
(sγ, tγ) to A .

If the senderS gets corrupted in the second cor-
ruption, the simulatorS corrupts the corresponding
dummy partyS̃ in the ideal world and obtainsm. S
then interpretse1−γ as a Diffie-Hellman quadruple
re1−γ associated with the auxiliary stringsk1−γ and in-
terpretseγ as a garbled quadruplereγ . S then reveals
(re0, re1), sk1−γ andm to A .

Case 2.2.The first corruption occurs after S has re-
ceived(f0, f1) and S has generated b but before R
receives the bit b. Following the simulation steps
(Step 1 and Step 2) above, we further consider sub-
cases below:

Case 2.2.1. If S gets corrupted in the first cor-
ruption and ifb =1, S corrupts a dummy partỹSand
obtainsm. S then picks a bitγ ∈U {0,1}. Let α =γ
andβ =γ. S invokes the faking algorithmfake which
takesrS as input and interpretseγ as a Diffie-Hellman
quadruplereγ associated with the auxiliary stringskγ
and interpretse1−γ as a garbled quadruplere1−γ . S
reveals(re0, re1), skγ andm to A .

If the receiverR gets corrupted beforeR receives
the bitb (=1) in the second corruption,S invokesfake
algorithm which takesrR as input and interpretsfγ
as a selection stringr fγ associated with the auxiliary
string (sγ, tγ) and interpretsf1−γ as a garbled string
r f1−γ . S reveals(r f0, r f1) and(sγ, tγ) to A . If the re-
ceiverR gets corrupted after it has received a bitb′

(the generated bit might be changed byA) in the sec-
ond corruption, the corresponding simulator can be
constructed exactly as that described in Case 2.1.

Case 2.2.2. If R gets corrupted in the first cor-
ruption and ifb=1, S picks a random bitγ ∈U {0,1}
and setsβ =γ andα =γ. S interpretsfγ as a selection
string r fγ associated with the auxiliary string(sγ, tγ)
and interpretsf1−γ as a garbled stringr f1−γ . S reveals
(r f0, r f1) and(sγ, tγ) to A

If Sgets corrupted in the second corruption,S cor-
rupts the dummy partỹSand obtainsm. S then inter-
pretseγ as a Diffie-Hellman quadruplereγ associated
with the auxiliary stringskγ and interpretse1−γ as a
garbled quadruplere1−γ . S reveals(re0, re1), skγ andm
to A .

Case 2.2.3. If S gets corrupted in the first cor-
ruption and ifb =0, S corrupts a dummy partySand
obtainsm and picks a bitγ ∈ {0,1} uniformly at ran-

dom. Letα =γ andβ =1− γ. S invokes the faking
algorithmfake which takesrS as input and interprets
eγ as a Diffie-Hellman quadruplereγ associated with
the auxiliary stringskγ and interpretse1−γ as a garbled
quadruplere1−γ . S reveals(re0, re1), skγ andm to A .

If the receiverRgets corrupted before it receives a
bit b′ in the second corruption,S interpretsf1−γ a se-
lection stringr f1−γ associated with the auxiliary string
(s1−γ, t1−γ) and interpretsfγ as a garbled stringr fγ . S
reveals the randomness(r f0, r f1), (s1−γ, t1−γ) to A . If
the receiverR gets corrupted after it has received a
bit b′, the simulator can be constructed exactly as that
described in Case 2.1.

Case 2.2.4. If R gets corrupted in the first cor-
ruption and ifb=0, S picks a random bitγ ∈ {0,1}
uniformly at random and setsβ =γ andα =1− γ. S in-
terpretsfγ as a selection stringr fγ associated with the
auxiliary stringskγ and interpretsf1−γ as a garbled
string r f1−γ . S then reveals(r f0, r f1), (sγ, tγ) to A . If
Sgets corrupted in the second corruption,S corrupts
S̃and obtainsm, and then interpretse1−γ as a Diffie-
Hellman quadruplere1−γ associated with the auxiliary
string sk1−γ and interpretseγ as a garbled quadruple
reγ . S reveals(re0, re1), sk1−γ andm to A .

Case 2.3.The first corruption occurs after the sender
S has received(f0, f1), but before S generates b. Fol-
lowing the simulation steps (Step 1 and Step 2) above,
S picks a bitb∈ {0,1} uniformly at random. We fur-
ther consider the following subcases

Case 2.3.1.If Sgets corrupted in the first corrup-
tion and ifb =1, the corresponding simulatorS can be
constructed exactly as that described in Case 2.2.1;

Case 2.3.2.If R gets corrupted in the first corrup-
tion and ifb =1, the corresponding simulatorS can be
constructed exactly as that described in Case 2.2.2;

Case 2.3.3.If Sgets corrupted in the first corrup-
tion and ifb= 0,the corresponding simulatorS can be
constructed exactly as that described in Case 2.2.3;

Case 2.3.4.If R gets corrupted in the first corrup-
tion and ifb= 0, the corresponding simulatorS can
be constructed exactly as that described in Case 2.2.4.

Case 3.The first corruption occurs after S has gen-
erated its first message, but before it receives R’s first
message. If the real world adversaryA makes its first
corruption request afterShas generated its first mes-
sage, but before it receivesR’s first message, an ideal
world adversaryS must simulate any of the follow-
ing subcases: 1) the first corruption occurs afterRhas
received(e0,e1) and have generated its first message
(f0, f1) but beforeS receives it; or 2) the first cor-
ruption occurs afterR has received(e0,e1) but before
R generates(f0, f1); or 3) the first corruption occurs
after S has generated its first message, but beforeR

UNIVERSALLY COMPOSABLE NON-COMMITTING ENCRYPTIONS IN THE PRESENCE OF ADAPTIVE
ADVERSARIES

395

receivesS’ first message.

Case 3.1.If the first corruption occurs after R has re-
ceived(e0,e1) and R has generated(f0, f1) but before
S receives it. The corresponding simulatorS can be
constructed as follows.

• Step 1: S picks gi,0 ∈U G, gi,1 ∈U G, sk0 ∈U
Zq and sk1 ∈U Zq, and then computeshi,0

= gsk0
i,0 mod p, hi,1 = gsk1

i,1 mod p, i =1,
2. Let e0 =(g1,0,g2,0,h1,0,h2,0) and e1 =
(g1,1,g2,1,h1,1,h2,1). S keeps the auxiliary strings
sk0 andsk1 secret.

• Step 2: S then pickssi ∈U Zq and ti ∈U Zq,
and then computesui = gsi

1,ig
ti
2,i mod p, vi

=hsi
1,ih

ti
2,i mod p. Let fi = (ui ,vi), i =0, 1. S keeps

the auxiliary strings(s0, t0) and(s1, t1) secret.

Following the simulation steps (Step 1 and Step 2)
above, we consider the following subcases:

Case 3.1.1. If S gets corrupted in the first cor-
ruption,S corrupts the corresponding dummy partyS̃
in the ideal world and obtainsm. S then picks a bit
γ ∈U {0,1} uniformly at random and setsα= γ; S in-
vokes the faking algorithmfake which takesrS as in-
put and interpretseγ as a Diffie-Hellman quadruplereγ
associated with the auxiliary stringskγ and interprets
e1−γ as a garbled quadruplere1−γ . S reveals(re0, re1),
skγ andm to A .

If R gets corrupted in the second corruption,S
chooses a bitb ∈U {0,1} uniformly at random. We
further consider the following cases

• if b= 1, then letβ =γ. S invokes the faking algo-
rithm fake which takesrR as input and interprets
fγ as a selection stringr fγ associated with the aux-
iliary string(sγ, tγ) and interpretsf1−γ as a garbled
stringr f1−γ . S reveals(r f0, r f1) and(sγ, tγ) to A .

• if b =0, then letβ = 1− γ. S invokes the fak-
ing algorithmfake which takesrR as input and in-
terpretsf1−γ as a selection stringr f1−γ associated
with the auxiliary string(s1−γ, t1−γ) and interprets
fγ as a garbled stringr fγ . S reveals(r f0, r f1) and
(s1−γ, t1−γ) to A .

Case 3.1.2.If R gets corrupted in the first corrup-
tion, S picks a bitγ ∈U {0,1} uniformly at random
and setsβ= γ; S invokes the faking algorithmfake
which takesrR as input and interpretsfγ as a selection
string r fγ associated with the auxiliary string(sγ, tγ)
and interpretsf1−γ as a garbled stringr f1−γ . S reveals
(r f0, r f1) and(sγ, tγ) to A .

If the senderSgets corrupted in the second corrup-
tion,S chooses a bitb∈U {0,1} uniformly at random.
We further consider the following cases

• if b= 1, let β =γ. S invokes the faking algorithm
fake which takesrR as input and interpretsfγ as
a selection stringr fγ associated with the auxiliary
string(sγ, tγ) and interpretsf1−γ as a garbled string
r f1−γ . S reveals(r f0, r f1) and(sγ, tγ) to A .

• if b =0, let β = 1− γ. S invokes the faking al-
gorithm fake which takesrR as input and inter-
prets f1−γ as a selection stringr f1−γ associated
with the auxiliary string(s1−γ, t1−γ) and interprets
fγ as a garbled stringr fγ . S reveals(r f0, r f1) and
(s1−γ, t1−γ) to A .

Case 3.2. If the first corruption occurs afterR has
received(e0,e1) but beforeR generates(f0, f1), the
corresponding simulatorS can be constructed as fol-
lows.

• Step 1: S picks gi,0 ∈U G, gi,1 ∈U G, sk0 ∈U Zq
and sk1 ∈U Zq uniformly at random, and then

computeshi,0 = gsk0
i,0 mod p, hi,1 = gsk1

i,1 mod p,
i =1, 2. Let e0 =(g1,0,g2,0,h1,0,h2,0) and e1 =
(g1,1,g2,1,h1,1,h2,1). S keeps the auxiliary strings
sk0 andsk1 secret.

Following the simulation Step 1 above, we further
consider subcases below:

Case 3.2.1.If the senderS gets corrupted in the
first corruption,S corrupts the corresponding dummy
partyS̃ in the ideal world and obtainsm. S then picks
a bit γ ∈ {0,1} uniformly at random and setsα= γ;
S invokes the faking algorithmfake which takesrS as
input and interpretseγ as a Diffie-Hellman quadruple
reγ associated with the auxiliary stringskγ and inter-
pretse1−γ as a garbled quadruplere1−γ . S revealsm,
(re0, re1) andskγ to A .

• if R gets corrupted before it generates(f0, f1) in
the second corruption,S revealsR’s internal state
rR toA ; The rest of simulation is trivial since both
parties have already corrupted.

• if R gets corrupted after it has generated(f0, f1)
in the second corruption,S picks a bitb∈ {0,1}
uniformly at random

1) if b = 1, S invokes the faking algorithmfake
which takesrR as input and interpretseγ as a
Diffie-Hellman quadruplereγ associated with the
auxiliary stringskγ and interpretse1−γ as a garbled
quadruplere1−γ . S reveals(re0, re1) andskγ to A .

2) if b = 0, S invokes the faking algorithmfake
which takesrR as input and interpretse1−γ as
a Diffie-Hellman quadruplere1−γ associated with
the auxiliary stringsk1−γ and interpretseγ as a gar-
bled quadruplereγ . S reveals(re0, re1) andsk1−γ
to A .

SECRYPT 2010 - International Conference on Security and Cryptography

396

Case 3.2.2.If the receiverR gets corrupted in the
first corruption,S simply revealsrR to A .

• if Sgets corrupted before it obtains(f ′0, f ′1) in the
second corruption,S corrupts the corresponding
dummy partyS̃ in the ideal world and obtains
m. S picks a bitγ ∈ {0,1} uniformly at random
and setsα= γ. S invokes the faking algorithm
fake which takesrS as input and interpretseγ as a
Diffie-Hellman quadruplereγ associated with the
auxiliary stringskγ and interpretse1−γ as a garbled
quadruplere1−γ . S revealsm, (re0, re1) andskγ to
A .

• if Sgets corrupted after it has received(f ′0, f ′1) in
the second corruption. We consider the following
two cases:
1) if (f ′0, f ′1) is not well-defined, i.e., any of the
conditions 16= ui ∈G and 16= vi ∈G (i =0, 1) are
violated,S picks a bitb∈ {0,1} uniformly at ran-
dom. If b= 1, letα =γ; if b =0, letα =1− γ. The
rest work of simulator is same as that described in
Case 2.1.
2) if (f ′0, f ′1) is well-defined, i.e., 16= ui ∈ G and
1 6= vi ∈ G (i =0, 1),S picks a bitb∈ {0,1} uni-
formly at random. Ifb= 1, letβ =γ; If b= 0, letβ
=1− γ. The rest work of simulator is same as that
described in Case 2.1.

Case 3.3. If the first corruption occurs afterS has
generated(e0,e1) but beforeR receives it, the corre-
sponding simulatorS can be constructed as follows.

• Step 1: S picks gi,0 ∈U G, gi,1 ∈U G, sk0 ∈U
Zq and sk1 ∈U Zq, and then computeshi,0

= gsk0
i,0 mod p, hi,1 = gsk1

i,1 mod p, i =1,
2. Let e0 =(g1,0,g2,0,h1,0,h2,0) and e1 =
(g1,1,g2,1,h1,1,h2,1). S keeps the auxiliary strings
sk0 andsk1 secret.

Following the simulation Step 1 above, we further
consider subcases below:

Case 3.3.1.If Sgets corrupted in the first corrup-
tion, S picks a bitγ ∈ {0,1} uniformly at random and
setsα= γ; S invokes the faking algorithmfake which
takesrS as input and interpretseγ as a Diffie-Hellman
quadruplereγ associated with the auxiliary stringskγ
and interpretse1−γ as a garbled quadruplere1−γ . S
revealsm, (re0, re1) andskγ to A .

• if Rgets corrupted before it receives(e′0,e
′
1) in the

second corruption,S revealsR’s internal staterR
to A . The rest of simulation is trivial since both
parties have already got corrupted.

• if Rgets corrupted after it has received(e′0,e
′
1). If

(e′0,e
′
1) is not well-defined, i.e., any of the condi-

tions 1 6= gi, j ∈ G and 16= hi, j ∈ G (i =1, 2, j =0,

1) are violated, thenS revealrR to A ; If (e′0,e
′
1)

is well-defined, i.e., 16= gi, j ∈G and 16= hi, j ∈G
(i =1, 2, j =0, 1),S picks a random bitγ ∈ {0,1}
and setsα = γ. The rest work ofS is same as that
described in Case 3.2.

Case 3.3.2.If R gets corrupted in the first corrup-
tion, S revealsR’s internal staterR to A . If S gets
corrupted in the second corruption, we consider the
following two cases:

• if (f ′0, f ′1) has not been received,S picks a ran-
dom bitγ ∈U {0,1} and setsα =γ. S then invokes
the faking algorithmfake which takesrS as input
and interpretseγ as a Diffie-Hellman quadruplereγ
associated with the auxiliary stringskγ and inter-
pretse1−γ as a garbled quadruple.S revealsm,
(re0, re1) andskγ to the real world adversaryA .

• if (f ′0, f ′1) has been received, and if(f ′0, f ′1) is not
well-defined, the rest work ofS is same as that
described in Case 3.2; if(f ′0, f ′1) has been re-
ceived and if(f ′0, f ′1) is well-defined,S can be
constructed exactly as that described in Case 2.3.

Case 4.The first corruption occurs before(e0,e1) has
been generated. If A makes its first request beforeS
generates(e0,e1), the corresponding simulatorS can
be constructed as follows.

Case 4.1. If S gets corrupted in the first corruption,
S corrupts the corresponding dummy partyS̃ in the
ideal world and obtainsm. S reveals its internal state
rS together with its inputm to A .

• if R gets corrupted beforeR generates(f0, f1) in
the second corruption,S revealsR’s internal state
rR to A .

• if R gets corrupted afterR has generated(f0, f1)
in the second corruption,S picks a bitγ ∈U {0,1}
uniformly at random and setsβ = γ. S invokes
the faking algorithmfake which takesrR as input
and interpretsfγ as a selection stringr fγ associated
with the auxiliary string(sγ, tγ) and interpretsf1−γ
as a garbled stringr f1−γ . S reveals(r f0, r f1) and
(sγ, tγ) to A .

Case 4.2.If R gets corrupted in the first corruption,
the corresponding simulatorS can be constructed as
follows.

• Step 1: S picks gi,0 ∈U G, gi,1 ∈U G, sk0 ∈U
Zq and sk1 ∈U Zq, and then computeshi,0

= gsk0
i,0 mod p, hi,1 = gsk1

i,1 mod p, i =1,
2. Let e0 =(g1,0,g2,0,h1,0,h2,0) and e1 =
(g1,1,g2,1,h1,1,h2,1). S keeps the auxiliary strings
sk0 andsk1 secret.

UNIVERSALLY COMPOSABLE NON-COMMITTING ENCRYPTIONS IN THE PRESENCE OF ADAPTIVE
ADVERSARIES

397

Following Step 1 above,S corrupts the corre-
sponding dummy partỹR in the ideal world and re-
vealsR’s internal staterR to A . If Sgets corrupted in
the second corruption, we further consider subcases
below:

• if Sgets corrupted beforeR generates(f ′0, f ′1), or
if S gets corrupted afterR has generated(f ′0, f ′1),
but beforeS receives(f ′0, f ′1), S corrupts the cor-
responding dummy partỹS in the ideal world and
obtainsm. S picks a random bitγ ∈ {0,1} uni-
formly at random and setsα =γ. S invokes the
faking algorithmfake which takesrS as input and
interpretseγ as a Diffie-Hellman quadruplereγ as-
sociated with the auxiliary stringskγ and inter-
pretse1−γ as a garbled quadruplere1−γ . S reveals
(re0, re1), skγ andm to A .

• if Sgets corrupted afterShas received(f ′0, f ′1), we
further consider the following two cases:
- 1) if (f ′0, f ′1) is not well-defined,S picks a ran-
dom bitγ ∈U {0,1} and setsα =γ. S then invokes
the faking algorithmfake which takesrS as input
and interpretseγ as a Diffie-Hellman quadruplereγ
associated with the auxiliary stringskγ and inter-
pretse1−γ as a garbled quadruplere1−γ . S reveals
m, (re0, re1) andskγ to A .
- 2) if (f ′0, f ′1) is well-defined,S further checksv′i
?
= u′ i ski for i =0, 1. If both indices are invalid,
S does the same procedure in the above case and
revealsm, (re0, re1) andskγ to A . If there exists
an indexi satisfied with the check condition,S
picks a bitb ∈ {0,1} uniformly at random. If
b=1, then letα =i. S invokes the faking algorithm
fake which takesrS as input and interpretseγ as a
Diffie-Hellman quadruplereγ associated with the
auxiliary stringskγ and interpretse1−γ as a garbled
quadruplere1−γ . S revealsm, (re0, re1) andskγ to
A . If b = 0, let α =1− i. S invokes the faking
algorithmfake which takesrS as input and inter-
pretse1−γ as a random Diffie-Hellman quadruple
re1−γ associated with the auxiliary stringsk1−γ and
interpretseγ as a garbled quadruple.S revealsm,
(re0, re1) andsk1−γ to A .

By the DDH assumption, we know that the distribu-
tion of random variableeγ is computationally indis-
tinguishable from that ofe1−γ. Due to the random-
ness of Naor-Pinkas randomizer, the distribution of
random variablefγ is computationally indistinguish-
able from that off1−γ. This means that REALπ,A ,Z
and IDEALF ,S ,Z are computationally indistinguish-
able in all cases. As a result, the real-world protocol

π realizesF NSC.

5 CONCLUSIONS

In this paper, a new implementation of non-
committing encryptions has been presented and an-
alyzed. We have shown that the proposed non-
committing encryption scheme realizes the UC-
security in the presence of adaptive adversary as-
suming that the decisional Diffie-Hellman problem is
hard.

REFERENCES

Beaver, D. (1997). Plug and play encryption. InCRYPTO.
Springer.

Beaver, D. and Haber, S. (1992). Cryptographic protocols
provably secure against dynamic adversaries. InEU-
ROCRYPT. Springer.

Canetti, R. (2001). a new paradigm for cryptographic pro-
tocols. InFOC. IEEE.

Canetti, R. (2005). Universally composable security: A
new paradigm for cryptographic protocols. InePrint.
eprinter.iacr.org.

Canetti, R., Feige, U., Goldreich, O., and Naor, M. (1996).
Adaptively secure multi-party computation. InSTOC.
IEEE.

Canetti, R. and Fischlin, M. (2001). a new paradigm for
cryptographic protocols. InCRYPTO. Springer.

Damgård, I. and Nielsen, J. (2000). Improved non-
committing encryption schemes based on a general
complexity assumption. InCRYPTO. Springer.

Garay, J., Wichs, D., and Zhou, H. (2009). Somewhat non-
committing encryption and efficient adaptively secure
oblivious transfer. InCRYPTO. Springer.

Moni Naor, B. P. (2001). Efficient oblivious transfer proto-
cols. InSODA. ACM.

Nielsen, J. (2002). Separating random oracle proofs from
complexity theoretic proofs: The non-committing en-
cryption case. InCRYPTO. Springer.

Nielsen, J. (2003). On protocol security in the cryptographic
model. Inthesis. www.brics.dk/ jbn/thesis.pdf.

S.Choi, Dachman-Soled, D., Malkin, T., and Wee, H.
(2009). Adaptively secure multi-party computation.
In Asiacrypt. Springer.

SECRYPT 2010 - International Conference on Security and Cryptography

398

