A DISTRIBUTED ALGORITHM FOR FORMAL CONCEPTS PROCESSING BASED ON SEARCH SUBSPACES

Nilander R. M. de Moraes, Luis E. Zárate and Henrique C. Freitas
Informatics Institute, Pontifical Catholic University of Minas Gerais, Dom José Gaspar av., Belo Horizonte, Brazil

Keywords: Formal concept analysis, FCA, Information retrieval.

Abstract: The processing of dense contexts is a common problem in Formal Concept Analysis. From input contexts, all possible combinations must be evaluated in order to obtain all correlations between objects and attributes. The state-of-the-art shows that this problem can be solved through distributed processing. Partial concepts would be obtained from a distributed environment composed of machine clusters in order to achieve the final set of concepts. Therefore, the goal of this paper is to propose, develop, and evaluate a distributed algorithm with high performance to solve the problem of dense contexts. The speedup achieved through the distributed algorithm shows an improvement of performance, but mainly, a high-balance workload which reduces the processing time considerably. For this reason, the main contribution of this paper is the distributed algorithm, capable of accelerating the processing for dense formal contexts.

1 INTRODUCTION

Formal Concept Analysis (FCA) is a field of mathematics presented in the 1980’s (Ganter, 2002; Ganter and Wille, 1997). The main goal of FCA is in the knowledge representation based on specific diagrams named Hasse Diagrams (Carpineto and Romano, 2004). In the 2006 edition of the International Conference on Formal Concept Analysis (ICFCA), in Desdren, the challenge to process high-dimensional contexts was presented and, as an example, a context of order 120,000 objects and 70,000 attributes were mentioned. For this reason, traditional and sequential algorithms have high computational cost, and consequently, a high execution time. This characteristic shows that the extraction of all formal concepts based on a high dimension context is not feasible.

So a possible solution to process high-dimension formal contexts is through a distributed algorithm. Partial formal concepts would be processed in several nodes in order to achieve a distributed and parallel behavior capable of reducing the execution time.

Mathematics formalism was proposed by several researchers to explore distributed systems focused on Formal Concept Analysis (Qi et al., 2004; Hu et al., 2007; Fu and Nguifo, 2003). However, related work does not present the impact evaluation of context density in the final performance. Moreover, the related results have a lack of information about used resources, such as environment configuration, number of computers, and more details from the cluster.

According to this problem, this paper presents a strategy to process dense contexts. Therefore, the main goal of this paper is to present a distributed algorithm focusing on development methodology and performance evaluation. The distributed algorithm achieves a speedup up to 139 relative to a sequential algorithm to solve the same workloads. For this reason, in accordance with the problem statement and lack of information from related work, the main contribution of this paper is the distributed algorithm. It is necessary to highlight that Formal Concept Analysis is very important for fields such as data mining, social networks and knowledge search, and a distributed algorithm can represent an alternative approach for feasible processing of high dimension contexts.

This article is divided into 6 sections. The following section presents the theoretical foundations of Formal Concept Analysis. In the third section are presented the related work. The fourth section presents the proposed algorithm. Section 5 presents an experimental analysis of the distributed algorithm. Finally, section 6 presents a brief conclusion and points out future works.
2 FORMAL CONCEPT ANALYSIS

In this section the theoretical fundamentals of the Formal Concept Analysis will be presented. A more careful review about this subject can be found in (Ganter and Wille, 1997).

2.1 FCA Overview

In the Formal Concept analysis (FCA) a Formal Context is a basic structure used to represent a given data base through a cross table (formal context). In the Table 1 an example of Formal Context for a hypothetical domain is presented. Such Table represents a structure that defines objects (lines), attributes (rows), and their respective incidence relations.

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Definition 2.1. A formal context $K(G,M,I)$ consists in two sets G and M, and a relation I among them. The elements of G are called objects, while the elements of M are called attributes. If an object g has a relation I with a attribute m, this relationship can be expressed by gIm or $(g,m) \in I$. This can be interpreted as “object g has attribute m”.

Definition 2.2. For a set $A \subseteq G$ of objects, it is defined

$$A' := \{ m \in M | gIm \forall g \in A \}$$ \hspace{1cm} (1)

as a set of common attributes to the objects in A. In correspondence, to the set $B \subseteq M$ of attributes, it is defined

$$B' := \{ g \in G | gIm \forall m \in B \}$$ \hspace{1cm} (2)

as the set of common objects to the attributes in B.

Definition 2.3. A Formal Concept is a pair (A,B), where $A \subseteq G$, $B \subseteq M$, $A' = B$ e $B' = A$. A is called of extension and B of intention. $\beta(G,M,I)$ defines all the concepts of the context (A,B).

2.2 Search Space

Definition 2.4. Formally, the search space of concepts, or search space, is defined as the set formed by all subsets of attributes and objects of a formal context, which can or not give origin to formal concepts.

Definition 2.5. The set of attributes M of a formal context $K(G,M,I)$, is formed by $\{a_1, a_2, \ldots, a_i, \ldots, a_m \}$. Given a attribute $a_i \in M$, the set F_{a_i} is denominated closed set of a_i, and can be defined by

$$F_{a_i} = \{ a_j \in M | \forall i < j \leq m \}$$ \hspace{1cm} (3)

For example, the closed set of the attribute a_{m-1} is $\{a_{m-1}, a_m\}$. For the attribute a_m corresponds the null set.

Definition 2.6. An attribute is joined to all subsets of its respective closed set to form new sets. These new sets are elements of a search subspace denominated search subspace of an attribute ($F3S$) (Fu and Nguiño, 2003).

For example, the search subspace of the attribute a_{m-2} is defined by: $\{a_{m-2}\}$, $\{a_{m-2}, a_{m-1}\}$, $\{a_{m-2}, a_{m-1}, a_m\}$. That is, by all subsets that include the attribute a_{m-2}.

Based on the definition statement 2.5, note that the size of the closed set of an attribute is well defined, that is, the closed set itself will have no more than $m-i$ attributes. Thus, as the search subspace of attributes is defined as the union of the attribute with all the elements of its respective closed set, the size of a subspace is defined by

$$|F3S_{a_i}| = 2^{m-i} \hspace{1cm} for \hspace{1cm} 1 \leq i \leq m$$ \hspace{1cm} (4)

Therefore, the size of the search space of attributes, that is, the set of all search subspaces of attributes can be expressed as

$$|F3S| = \sum_{i=1}^{m} |F3S_{a_i}|$$ \hspace{1cm} (5)

3 RELATED WORKS

An important contribution for the Formal Concept analysis field is presented in (Qi et al., 2004), where the authors propose a new distributed algorithm for formal concepts extraction through the search space partitioning of the concepts. In that work, an approach for validation of the subspaces, that is, of the subsets that have more possibility of generating formal concepts, was presented. Besides, the distributed proposal presents a polynomial complexity order.

Therefore, in that work, only the mathematical formalism is presented, what makes it little impactable from the practicable aspect, since it does not present the experimental results of the proposed approach.
In (Fu and Nguifo, 2003), an algorithm to obtain the concepts from search spaces is also presented. Although, in that proposal, redundant attributes are removed from input formal context before the stage of generation of partitions, in order to diminish the effort of the algorithm for extracting the formal concepts. Another important characteristic to be highlighted about this approach is that it uses the NextClosure algorithm (Carpineto and Romano, 2004) to obtain the formal concepts, and it does not take the workload balance into consideration.

The authors conclude, through experimental results, that as a consequence of the usage of the NextClosure algorithm to obtain the concepts, the distributed proposal is able to deal with high-dimensional contexts. However, due to the non-balancing of the workloads, the algorithm can present strong performance variations depending on the chosen load factor (i.e. DP).

In (Hu et al., 2007), a partitioning approach for the formal context is presented, what makes it different from the works mentioned before, since the context is horizontally or vertically divided, in order to obtain subcontexts. Obtained these subcontexts, the subconcepts are then extracted and joined through a specific operator, with the objective to find the final formal concepts set. In (yun Li et al., 2003), all the mathematical formalism necessary to the generation of formal concepts in distributed systems is presented, ensuring its viability.

In this work, a distributed solution to obtain the formal concept from high dimensional formal contexts, referring to number of objects and high density, is proposed. As a strategy for the distributed solution, the proposal of the search space (Qi et al., 2004) will be considered.

4 DEVELOPMENT AND EVALUATION METHODOLOGY

In order to obtain an experimental scenario more reliable to evaluate the proposed algorithm, the tool SCGaz (Rimsa et al., 2009) was used to generate all contexts. This tool is capable of generating random formal contexts, and specifying the desired density within a minimum and maximum value.

Table 2 shows the formal contexts used in this paper.

<table>
<thead>
<tr>
<th>cxt</th>
<th>no. of obj</th>
<th>no. of attrib</th>
<th>density</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>20</td>
<td>91%</td>
</tr>
<tr>
<td>2</td>
<td>200</td>
<td>20</td>
<td>90.5%</td>
</tr>
<tr>
<td>3</td>
<td>500</td>
<td>20</td>
<td>87.3%</td>
</tr>
</tbody>
</table>

4.1 Distributed Algorithm

The distributed algorithm based on search subspaces is the fair division of the workload (Algorithm 1). Thus, the search space of attributes between the different nodes makes up the cluster and the effective union of subconcepts, extracted from these nodes in a central node. Therefore, after all search subspaces processing we obtain the final set of formal concepts for the input context.

The algorithm to define the search subspaces of attributes (i.e. Algorithm 1) is responsible for dividing the search space between slave nodes from the cluster. This task is performed in a central node, which from here will be called node coordinator or master. In this node, besides the effective division of attribute search space, it is also performed the matching of simple subconcepts generated from the processing of attribute search subspaces. This partitioning algorithm is expressed by Algorithm 1.

As it can be seen, the search space of attributes partitioning algorithm depends just on the number of attributes \(M\) from the input formal context and the maximum size \(BS\) of each partition. After the calculation of the size of the search space of attributes \(L\), the algorithm provides the workload for each node. Note that the partition definition has independence between the operations performed by the algorithm and the formal context. Since in this phase, the relevant information is only the input parameters \(M\) and \(BS\), mentioned earlier.

Another feature that deserves special attention is the calculation of combinations to be performed on the set of attributes of the Formal Context. Such feature limits the space of possible solutions to the pro-
posed algorithm. As we know, the calculation of combinations is an operation that has high computational cost and tends to get worse exponentially with the increase on input data. Thus, according to the following section, the experiments were performed with contexts with relatively few attributes and many objects.

Regarding the calculation of the concepts (Algorithm 2), the extraction of subconcepts is performed by slave nodes. This is a fully independent task which allows the execution of parallel partitions on each node. Besides the fair division of the workload, we can present an estimate of time to generate all Formal Concepts, since the number of partitions is known and the processing time of each node is very close to each other.

The algorithm to obtain the subconcepts is described by Algorithm 2.

ALGORITHM 2: Extraction of formal concepts

INPUT: Formal Context, partition offset, block size
OUTPUT: formal concepts
Begin
1. \(r = -1 \)
2. \(\text{insidePartition} = \text{false} \)
3. \(\text{sum} = 0 \)
4. **while** not insidePartition **do**
5. \(r = r + 1 \)
6. \(\text{sum} = \text{sum} + C(M, i) \)
7. **if** offset < sum **then**
8. \(\text{insidePartition} = \text{true} \)
9. **end if**
10. **end while**
11. \(i\text{-th} = C(M, r) - \text{sum} - \text{offset} \)
12. output \((K, M, r, i\text{-th}, BS)\)
End.

In Algorithm 2, \(r \) denotes the subset of combinations, \(\text{offset} \) expresses the offset within the search space of attributes, that is, the number of combinations already calculated and \(i\text{-th} \) is the \(i \)th combination of the search space. The attainment of subconcepts is preceded by the phase of discovery of the partition beginning. In other words, from which subset \(r \) of combinations the slave node has to begin the effective extraction of formal concepts. After calculating the \(i \)th combination, the algorithm extracts the subconcepts that belong to the partition up to \(BS \) combinations for the input context \(K \).

Due to the behavior presented by Algorithm 2, it reveals its parallel nature. The operations performed on the input parameters are independent of any shared structure, except the Formal Context that is not yet modified by the algorithm.

The proposed algorithm is based on the calculation of combinations and on the set of attributes in order to generate the search subspaces. Even though one can consider a large number of steps, we show that the strategy adopted to obtain a response is still acceptable.

5 ANALYSIS OF THE DISTRIBUTED ALGORITHM

This section presents the obtained results for the distributed algorithm, as well as the application architecture and the computational environment used in the experiments.

5.1 Application Architecture

Figure 1 presents the application architecture used for the realization of our experiments. Note that rectangles represent applications, arrows represent the direction of program flow and diamonds are input/output of data.

It is worth mentioning that the effective implementation of the distributed algorithm is the bigger rectangle (i.e. the one labeled Albatroz). Since Albatroz is just a distributed application for the extraction of formal concepts, other tools were used to create its workloads, as well as give meaning to its outputs.

Finally, in Figure 2 is presented Albatroz’s sequence diagram.

5.2 Distributed Computational Environment

The distributed computational environment used to perform the experiments consists of a cluster based on 16 computers. Fifteen machines represent the slave nodes, and one node represents the master. Table 3 shows the machine configurations used to process the workloads. The master (coordinator node) is responsible for distributing the workload and for joining the concepts.
5.3 Experimental Results

As mentioned before, the formal contexts used were generated in a random form, with the aim to obtain a more reliable scenario for the tests. Besides, the maximum density was considered for the workload, since this value affects the algorithm performance to extract the formal concepts (i.e., Algorithm 2).

All algorithms of the present work were implemented in the Java programming language, since the goal of this work is to present through experiments the validity of the proposed distributed algorithm.

In order to measure the optimal size of the workload for the distributed algorithm, a sequential algorithm for the extraction of concepts was used. This sequential algorithm uses the search space approach for the calculation of concepts and displays the execution time for the extraction of concepts of each subset attributes, as well as, the time required to process all these subsets (cumulative total).

<table>
<thead>
<tr>
<th></th>
<th>master</th>
<th>slave</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU model</td>
<td>Intel Pentium IV</td>
<td>Intel Core 2 Duo</td>
</tr>
<tr>
<td>Clock</td>
<td>3200.329MHz</td>
<td>2197.565MHz</td>
</tr>
<tr>
<td>Cache</td>
<td>1024KB</td>
<td>2048KB</td>
</tr>
<tr>
<td>CPU cores</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>RAM</td>
<td>2027.0859MB</td>
<td>1985.2773MB</td>
</tr>
<tr>
<td>O. S.</td>
<td>GNU/Linux PelicanHPC</td>
<td></td>
</tr>
</tbody>
</table>

Having the time accumulated for the processing of subsets of attributes, the size was selected, deemed ideal for the workloads used in the experiments. Figure 4 shows the sum of execution time for processing these search subspaces for an input context with 100 objects and 20 attributes. It is noteworthy that it was used only one Formal Context for the representation of the curve, since the performance function always shows the same behavior, no matter which dimensionality of the input context.

Based on this graphic, it is worth to note the slightly non linear behavior of the performance function against the accumulation of subconcepts previously calculated, which shows the interdependence between the effective time for the extraction of concepts of the input context and the adopted block size. Thus, in order to obtain a reasonable time for the processing of partitions, we tried to select block sizes not larger than a certain threshold (t) in the lower curve of Figure 4. In addition to this, it can be seen that the value of the derivative is smaller at the extremes of the curve. Moreover, the lower region of the performance function provides greater flow of concepts, since the partition sizes in that region are smaller.

Figures 5, 6 and 7 present the results of execution of the distributed algorithm for extraction of concepts for 6, 11 and 16 computer nodes, respectively. The main objective of these simulations is to verify the behavior of the distributed algorithm in the variation of partitions size, as well as in the increase in the number.
of objects in the input context.

Note that, from the analysis of the experimental results, the increase in the number of objects leads to a linear increase in the execution time of the proposed algorithm. In addition, the behavior of the performance curve of the algorithm is closely related to the amount of nodes used and the adopted block size for the workloads.

For the graphic of Figure 5, varying the block size of a Formal Context with 100 objects and 20 attributes, there was a reduction of approximately 25% in the runtime of the algorithm. This behavior also repeats for other formal contexts used in this test. However it is important to note here that mere reduction in the block size for the workloads does not ensures a decrease of the runtime of the algorithm. This can be verified from the performance curve of an input context with 500 objects, where the minimum time was obtained with blocks of size 6196 (maximum threshold).

In Figures 6 and 7, the increase in the number of nodes for the extraction of formal concepts provides a considerable stress in the measurement curve of performance of the distributed algorithm. In Figures 5, 6 and 7, for a context with 100 objects and 20 attributes, using blocks of size 3000 and 6196, the runtime of the algorithm suffers noticeable increase when the num-
ber of nodes used is greater than 11. This behavior also occurs for a context with 200 objects and 20 attributes, where for blocks of size 3000, the increase was approximately 7.73% in the runtime of the algorithm, while for blocks of size 6196, the increase was around 11.67%.

Figure 8 expresses the graphic of the relationship between the number of nodes used for the processing of formal contexts and the effective time to obtain all formal concepts for blocks of size 1000.

Based on the graphic of Figure 8, it can be noted that the performance of the distributed algorithm is closely related to the amount of nodes used in the extraction of concepts. Furthermore, it is worth mentioning that the performance curve tends to stabilize with the gradual increase in the number of computers, due to the overhead introduced by the use of a network.

It is also possible to observe that the reducing in the runtime of the algorithm for an input context with 100 objects and 20 attributes was approximately 57.88%, while for a context with 200 and 500 objects the reductions were close to 62.85% and 66.23%, respectively.

6 CONCLUSIONS

In this paper, a distributed approach for the extraction of formal concepts for contexts with high density and large number of objects was presented. It was verified that with this approach it is possible to determine an estimative of the time required for the processing of all concepts of a Formal Context, since the number of interactions are known and the time for extraction of concepts in the slave nodes are close to each other. However, as shown in the experiments, the partition size has some impact on the final performance of the distributed algorithm. As a result, the values used for the block size are not always the best ones. Consequently, this may result in a substantial increase in the runtime of the algorithm.

From this, it can be pointed for future works the calculation of the best size for the workloads, as well as test on Formal Context with huge number of objects (approximately 120,000). It is also important to mention that through our preliminary studies it would be possible to manipulate social network models characterized through few attributes and large quantity of objects.

ACKNOWLEDGMENTS

This research has received financial support of the FAPEMIG through the PPMII-67/09 Project and CNPq, 471089/2008 Project.

REFERENCES

