
ATTACKS ON WEB SERVICES AND MITIGATION SCHEMES

Vipul Patel, Radhesh Mohandas and Alwyn R. Pais
Information Security Research Lab, National Institute of Technology Karnataka, Surathkal, India

Keywords: Attacks on Web Services, XML Injection, XSS Injection, Schema Validation, Schema Hardening,
Attachment Scanner, WS-Trust, WS-Security, Frankenstein Message.

Abstract: Web Services have become dependable platform for e-commerce and many B2B models. Extensive
adaptation of Web Services has resulted in a bunch of standards such as WS-Security, WS-Trust etc. to
support business and security requirements for the same. Majority of the web services are offered over Http
with Simple Object Access Protocol (SOAP) as an underlying exchange infrastructure. This paper describes
attacks targeted at Web Services such as XML injection, XSS injection, HTTP header manipulation,
sending stale message and other protocol specific attacks. We have used XML Re-Writing mechanism to
perform “timestamp modification attack” and WS-Trust, WS-SecureConversation protocols attack. Schemas
stated in WSDL file may not be accurate enough to validate messages effectively; Schemas should reflect
structure of all possible genuine requests. Hence, we have proposed a new self-adaptive schema hardening
algorithm to obtain fine-tuned schema that can be used to validate SOAP messages more effectively. We
have also proposed mitigation techniques to counter attacks using MIME/DIME attachments.

1 INTRODUCTION

A Web Service is used as a basic building block for
the implementation of SOA (Service Oriented
Architecture) based system. Ease of interoperability
and loose coupling are attributed to exchange
infrastructure that SOA based system relies on.

Web Service engine needs a XML parser to
extract the required parameters from an incoming
message. Exploiting this parser can successfully lead
to Denial of Service attacks. Often additional nodes
are injected or existing nodes are tweaked so as to
change the operation parameters. We have tried
these attacks on web services and also developed
mitigation techniques for some of these attacks. To
ensure confidentiality and integrity of SOAP
message, WS-Security standard is used that relies on
XML Encryption and XML Signature. Improper use
of these primitives gives scope for new attacks.
XML Signature Re-Writing attack is one such
attack. This attack paves way to further attacks. We
have shown attacks on WS-Trust and Timestamp
field in Microsoft’s implementation of WS-Security.
Many attacks can easily be circumvented by having
strong schema generation and validation system.

Section 2 reviews related work pertaining to
attacking and defending Web Services. In section 3,
we have discussed attacks carried out by us. In

section 4, we propose new mitigation techniques for
some attacks on Web Services. Section 5 lists our
future work and Section 6 concludes the paper.

2 RELATED WORK

There has been considerable effort in exploring
different kind of attacks on Web Services. Probing
Attacks, Coercive Parsing, External Reference
Attacks and SQL Injections attacks have been
discussed by (Negm, 2004). (Vorobiev, 2006) has
classified attacks as XML attacks, SOAP based
attacks or Semantic WS attacks based on exploits
used. (Jensen, 2007) has demonstrated SOAPAction
spoofing, oversized payload and cryptography based
attacks. The message validation as a technique to
thwart DoS attack is shown by (Gruschka, 2006). It
mentions the use of schema embedded in WSDL
(Web Service Description Language) to validate
messages. (McIntosh and Austel, 2005) have
discussed XML Re-Writing attack which shall serve
as a baseline for the attacks that we have described
here. Use of context sensitive signature as a
countermeasure of XML Re-Writing attack is
outlined by (Gajek, 2009).

499
Patel V., Mohandas R. and R. Pais A. (2010).
ATTACKS ON WEB SERVICES AND MITIGATION SCHEMES.
In Proceedings of the International Conference on Security and Cryptography, pages 499-504
DOI: 10.5220/0002960104990504
Copyright c© SciTePress

3 ATTACKS ON WEB SERVICES

In this section, we describe different attacks
performed on Web Services.

3.1 Injection Attacks

The Web Service engine parses SOAP request and
converts extracted parameters to native types.
Injection attacks alter parameters within SOAP
request that get processed by the business logic. If a
message generated by a client is tweaked a bit then
validation on the server side can easily be bypassed
without getting noticed.

3.1.1 XML Injection

This attack modifies existing tags or injects new
XML tags inside operation parameters. We
developed .Net Web Service as depicted below:
[WebMethod]
public string Add(int no1, int no2,
string name);

We could override the value of parameter 'no2'
by injecting XML tags inside first method parameter
'no1' as shown in figure 1. Also, we could reset the
value of the first parameter by injecting a XML node
‘no23’.

Figure 1: Overriding values of ‘no2’ and ‘no1’.

3.1.2 XSS Injection

In XML, a CDATA section is used to escape a block
of text that would otherwise be parsed as mark up.
Characters like "<" and "&" are considered illegal if
appear as values of XML nodes. An attacker injects
JavaScript by embedding it inside a CDATA tag and
inserts CDATA within operation parameter.

3.2 Header Manipulation

The SOAPAction Http header helps uniquely
identify target operation among multiple operations
available at the same end point. In our setup, two
operations named “AddIntegers” and
“SubtractIntegers” were available at an endpoint:
http://myservice.com/WebService/Service.asmx. We
changed the SOAPAction attribute of “AddIntegers”
operation to http://

company.com/samples/wse/SubtractIntegers without
modifying the Http body. We could successfully
invoke the “SubtractIntegers” operation and
obtained zero as a result value. Hence, it is still
possible to cause unintended behaviour without
changing SOAP body but through manipulation of
SOAPAction header.

3.3 Attacks through SOAP Attachment

The SOAP with Attachments specification allows
transmitting attachments using MIME/DIME
package. The SOAP message package is constructed
using MIME's Multipart/related media type. The
SOAP message can refer to attachments through an
URI.

Binary files containing malware can be posted as
an attachment along with the SOAP message. If a
web service happens to store this attachment as a file
on the server or distribute it further to other entities
then it can result in serious consequences if it does
not check for the presence of virus in the attachment.

An attacker can attach extra attachments to the
original MIME package so as to make it busy by
forcing it to extract these attachments which may
result in a DoS attack. In an obfuscation attack, an
attacker encrypts content of an attachment and
places <xenc:EncryptedData> element inside the
<wsse:Security> header. If this encrypted
attachment contains malicious code then it becomes
difficult to scan it.

3.4 Frankenstein Message: Modify
Timestamp

A common concern in message-oriented systems
relates to the timeliness of data. To handle the time-
related issues Microsoft introduced the
wsu:Timestamp element in their implementation of
WS-Security. By knowing the creation and
expiration time, a receiver can decide if the data is
new or stale. Following elements appear inside
Timestamp element:
Created: The time when the message was created.
Expires: Identifies when the message should expire.

The replaying captured message would result in
a SOAP fault if it is sent past an expiration time. An
attacker can modify “Expires” field and then send
the message successfully. To mitigate such scenario,
digital signature over timestamp is used. The XML
Re-Writing attack comes handy for an attacker to
send stale messages.

SECRYPT 2010 - International Conference on Security and Cryptography

500

Figure 2: Signature section of stale message.

As shown in figure 2, we injected a new
Timestamp node immediately under Security
element. “Expires” element bears the value one day
ahead in future. We wrapped original Timestamp
element inside Dummy node qualified with
“mustUnderstand=0”. The Signature section refers
to the original timestamp element whose id equals
“Timestamp-553996f7-762b-4ff9-a0e4-
5aeb1b4d53bf” that has been moved intact inside
Dummy node. Again, server does not make sure that
the signed timestamp element is the one against
which server’s timestamp is compared. We could
send this message successfully without causing any
SOAP fault.

3.5 Attack on WS-Security

The WS-Security standard specifies the use of XML
Encryption and Signature operations for a SOAP
message which can be applied to the SOAP message
in either order.

Assume that the message is encrypted first and
then signed. Let’s assume an online marketing
company that sells products online. There are
several registered sellers who sell goods through the
aforementioned company. Company has made a
provision for these sellers to upload details of their
products they offer through a Web Service. Also,
each registered supplier is provided a digital
certificate. All the sellers have a copy of the digital
certificate of the marketing company with them. The
Body of a SOAP message contains product details
which are encrypted with the public key of an online
marketing company so that it is not legible to
unintended recipients.

Figure 3: Genuine Encrypted and Signed Message.

Figure 4: Message with modified Signature.

Figure 3 shows a genuine message sent by a
seller whose certificate is identified by
‘X509OrigUserToken’. Now, let’s assume that there
exists a seller with mala fide intentions who
possesses a digital certificate identified as
‘X509NewUserToken’. The malicious seller
captures SOAP message sent by the other seller and
removes a signature node from the security header
and embeds his own signature node to sign original
message body using his own key as shown in the
figure 4. On processing this message, server assumes
as if message has arrived from the malicious seller
because the key used for signature points to the
malicious seller’s certificate.

3.6 Attack on WS-Trust,
WS-SecureConversation

The Web service may expect an incoming SOAP
message to prove a set of claims. If the requestor
does not have the necessary tokens to prove the

ATTACKS ON WEB SERVICES AND MITIGATION SCHEMES

501

required claims to a service, it can contact an entity
called “security token service” to obtain a security
token using a mechanism specified by WS-Trust.
The requestor can now produce obtained security
token to get an access to the web service. The WS-
SecureConversation specifies the use of such
obtained token for multiple message exchange
between the client and a web service.

Figure 5: Request Security Token Message.

The client requests for security token by sending
RST (Request Security Token) message to the token
service as shown in figure 5. Token Service sends
back token response containing secret to be used for
subsequent message exchange.

3.6.1 Attack: Changing Service End-point

The Requestor may include “AppliesTo” element
inside “RequestSecurityToken” message. This
element specifies the web service for which the
token is being requested. An obtained security token
can only be used to communicate with the web
service identified by “AppliesTo” element. The
token service would include the same “AppliesTo”
element in a response when issuing the security
token.

The figure 6 shows the token service response
after modification. Issuing service has included
“AppliesTo” element in signature calculation. In this
attack, an attacker changes “AppliesTo” element of
a response so that the client discards obtained
security token and there won’t be any context
establishment with the Web Service. An attacker
would add a Dummy node qualified with
“mustUnderstand=0” and move original
“AppliesTo” element inside it. The signature
verification would be successful as original
“AppliesTo” element is still present though it has
been moved inside Dummy node. However, an
injected new “AppliesTo” element no longer points
to the web service for which token was requested
(Forged node points to
http://www.Hacker.com/NoStockWatch.asmx web
service). The token requestor would discard the
token since it didn’t receive token corresponding to
the service it asked for (http://
www.myservice.com/StockWatch.asmx).

Figure 6: Modified ‘AppliesTo’ element.

4 MITIGATION TECHNIQUES

Here, we shall see SOAP message validation
mechanism along with self-adaptive hardened
schema generation algorithm. Also, we shall see
solution to thwart SOAP attachment based attacks.

4.1 Schema Validation

To mitigate issues such as XML Injection and
SOAPAction manipulation discussed before, we
need an extra layer of input validation in addition to
the default validation functionality provided by the
web service engine. We implemented a solution in
the form of SOAP Extension that works with
Internet Information Services (IIS) server. We
developed a tool that scans through a WSDL file to
identify SOAP ports and then associated operations
along with the value of SOAPAction. Having
identified operations, it generates a set of Xml
Schema Definition (XSD) corresponding to each
operation by processing schema section of WSDL
file. These generated XSDs are then used by our
extension for performing validation.

Our extension captures the SOAP message when
it is available in a raw XML form and subjects it to
the validation against XSDs before it gets converted
to native objects with wrong values. Our Extension
maintains repository of schemas corresponding to
each operation stored according to SOAPAction
attribute. On intercepting incoming SOAP request,
extension obtains SOAPAction HTTP header value.
Then it uses this value to perform lookup in to
schema repository to extract appropriate schema.
The message is then subjected to validation against
retrieved schema. If it is learnt that the schema is
violated then it may be an instance of attack vector
and we do not allow it to be de-serialized and

SECRYPT 2010 - International Conference on Security and Cryptography

502

prevent it from reaching a web service. This
technique also helps us thwart any discrepancy
between SOAPAction and message body as schema
is retrieved in accordance with the value of
SOAPAction attribute.

In addition to validating messages against
schemas, extension should also do the following:
1. An XML node can have text content along with
CDATA section within it. The resultant text of a
node is the concatenation of content inside CDATA
and an actual text content of the node. This resultant
text is matched against a set of regular expressions
that check a presence of potentially dangerous
JavaScript or html mark-up.
2. For XML-Rewriting, mitigation technique would
be to incorporate check that makes sure that signed
nodes do not reside within a node marked with
‘mustUnderstand=0’.

For IIS, such a solution can be implemented in
the form of SOAP Extension as demonstrated
earlier. For servers like apache/tomcat, we can write
an input module which does the similar job.

4.2 Self Adaptive Schema Hardening

Efficacy of validation mechanism largely depends
on an accuracy of schemas used. Easiest way would
be to manually harden schema mentioned in WSDL
file. The quality schema allows all good requests to
pass validation while blocks bad requests. Such a
schema can be obtained by scanning through the
SOAP messages encountered by the web service and
categorizing them into bad and good requests. Then
an XML schema (XSD) can be hand crafted that
would allow good messages to pass validation.
However, this process is cumbersome and an error
prone as schema has to take into account all likely
patterns of the good messages. Here, we propose a
theoretical model of self-adaptive algorithm to
automate hardened schema generation process. Our
algorithm has its roots in the fact that XSDs
corresponding to a good SOAP requests would
either be same or differ insignificantly. These good
schemas can be merged together to obtain a single
schema. The web server extension as described
before would log all incoming SOAP messages in a
data store. Extension (Schema Validator) shall
initially rely on XSD Schemas generated from a
WSDL file (using our tool as mentioned before).
The goal is to deduce a set of schemas based on the
measure of similarity among messages. Figure 7
shows overall architecture of the system.

This algorithm shall run periodically and
operates as follows:

1. Sampling: Pick subset of SOAP requests from the
corpus of SOAP requests logged by an extension.
2. Schema Generation: SOAP message comparison
is easier in XSD domain then in XML domain.
Hence, we generate schema (XSDs) from each of the
sampled SOAP request.
3. Cluster Messages: Messages sharing identical or
similar generated schema become part of the same
cluster. Corresponding schemas are merged together
to obtain a resultant schema that would become
representative of the cluster.
4. Select Winner Cluster: All good requests would
have been mapped to the same cluster due to the fact
that they all share similar schemas. Hence, cluster
representing relatively large number of SOAP
requests would be considered winner cluster.
5. Refine Schemas stored in repository: Fine tune
schemas installed in a repository in line with the
schema corresponding to the winner cluster.
6. Purge logged SOAP requests that have already
been processed.

Figure 7: Schematic of Adaptive Schema Hardening
Algorithm.

Web Services are often used with standards like
WS-Security, WS-Routing etc. The use of these
standards introduces additional nodes within SOAP
header and body. However, schemas stated in
WSDL do not necessarily highlight presence of
these nodes in SOAP messages. Our algorithm helps
refine schema to include such nodes which would be
difficult to anticipate otherwise if done manually.
Also, it replaces generic data types used with the
concrete data types based on the values of operation
parameters encountered while processing logged
SOAP messages.

ATTACKS ON WEB SERVICES AND MITIGATION SCHEMES

503

4.3 Thwart SOAP Attachment Attacks

The best mitigation would be to have a SOAP
message interceptor that scans incoming SOAP
request for the presence of an attachment. Then
extract and scan attachment for the presence of virus
signature before being given to a web service. We
used open source ClamAV antivirus to scan
attachments. To prevent inclusion of extra
attachments, mitigation would be to ensure that all
attachments are signed. If any attachment referred
from SOAP message is not found to be signed then
it’s probably an instance of an attachment insertion
attack.

Table 1: Summary of Attacks and Mitigation Schemes.

Attack on/through Newly
mentioned

Mitigation by
others

Mitigation
by us

XML Injection No Yes Yes1
XSS Injection No Yes Yes
XML Re-Writing No Yes Yes2

Header
manipulation No No Yes

SOAP
Attachments No Yes Yes3

Frankenstein
Message Yes - -

WS-Security Yes - -
WS-Trust Yes - -

1 Our proposed solution also highlights mechanism to
automate the process of hardened schema generation.

2 We have shown the check that makes sure that the
signed nodes do not reside within a dummy node.

3 We have specifically described the use of open source
antivirus ClamAV for SOAP attachment scanning.

5 FUTURE WORK

Many of the attacks discussed above are direct
consequence of lack of thorough validation. The
XML Injection and Header Manipulation attacks can
be mitigated if we have strong validation logic in
place which in turn depends on quality of schema.
Our future work will focus on materializing efficient
schema hardening algorithm.

6 CONCLUSIONS

Table 1 highlights our contribution. In this paper, we
have shown injection based attacks. We have also
introduced Frankenstein message attack and attacks
on WS-Security and WS-Trust standards. We have

suggested mitigation techniques for subset of these
attacks. From the attacks discussed, it is apparent
that the mere use of security primitives does not
always evade all possible attacks. Use of these
security and other standards in a mature way can
supress new kind of attacks. Also, we have
introduced self-adaptive schema hardening
algorithm to automate the process of hardened
schema generation.

REFERENCES

Lindstrom, P., 2004. “Attacking and Defending Web
Services”, Spire Research Report.

Vorobiev, A., 2006. “Security Attack Ontology for Web
Services”, IEEE Proceedings of the Second
International Conference on Semantics, Knowledge,
and Grid.

Gruschka, N., 2009. “Vulnerable Cloud: SOAP Message
Security Validation Revisited”, IEEE International
Conference on Web Services.

Negm, W., 2004. “Anatomy of a Web Services Attack”,
Forum Systems.

McIntosh, M. and Austel, P., 2005. “XML signature
element wrapping attacks and countermeasures”, In
Workshop on Secure Web Services.

Gajek, S., Jensen, M., Liao, L., and Schwenk, J., 2009.
"Analysis of signature wrapping attacks and
countermeasures", In IEEE International Conference
on Web Services.

Jensen, M., Gruschka, N., Herkenhoner, R., Luttenberger,
N., 2007. “SOA and Web Services: New
Technologies, New Standards – New Attacks”, Fifth
European Conference on Web Services.

Gruschka, N., and Luttenberger, N., 2006. “Protecting
Web Services from DoS Attacks by SOAP Message
Validation", In Proceedings of IFIP International
Federation for Information Processing, pp 171–182.

 Orrin, S., "The SOA/XML Threat Model and New
XML/SOA/Web 2.0 Attacks & Threats", Intel
Corporation.

Bidou, R., 2009. “Attacks on Web Services”, OWASP.
Testing for XML Injection (OWASP-DV-008), [online],

Available: http://www.owasp.org/index.php/Testing
_for_XML_Injection_(OWASP-DV-008) “Web
Services Security: SOAP Message Security 1.0”,
OASIS Security Standard, March 2004.

“WS-SecureConversation 1.3”, OASIS Standard, March
2007.

“WS-Trust 1.3”, OASIS Standard, March 2007.
Understanding WS-Security, [online], Available: http://

msdn.microsoft.com/en-us/library/ms977327.aspx
"Web Services Security: SOAP Messages with

Attachments (SwA) Profile 1.1", OASIS Standard, Feb
2006.

ClamAV Anti-Virus, [online], Available: http://
www.clamav.net/

SECRYPT 2010 - International Conference on Security and Cryptography

504

