
PARALLELISM, ADAPTATION AND FLEXIBLE DATA ACCESS IN
ON-DEMAND ERP SYSTEMS

Vadym Borovskiy1, Wolfgang Koch2 and Alexander Zeier1

1Hasso-Plattner-Institute, Potsdam, Germany
2SAP AG, Walldorf, Germany

Keywords: ERP system architecture, ERP data provisioning, Business object query language.

Abstract: On-premise enterprise resource planning (ERP) systems are costly to maintain and adapt to specific needs.
To lower the cost of ERP systems an on-demand consumption model can be employed. This requires ERP
systems to support multi-tenancy and multi-threading to enable consolidation of multiple businesses onto the
same operational system. To simplify the adaptation of ERP systems to customer-specific requirements the
former must natively support extensions, meaning that customer-specific behavior must be factored out from a
system and placed into an extension module. In this paper we propose the architecture of an ERP system that
i) exploits parallelism and ii) is able to accommodate custom requirements by means of enterprise composite
applications. We emphasize the importance of ERP data accessibility and contribute with a concept of business
object query language that allows building fine-grained queries. All suggestions made in the paper have been
prototyped.

1 INTRODUCTION

To effectively manage information and automate busi-
ness processes companies use enterprise resource
planning (ERP) systems. ERP systems are always as-
sociated with high cost and force companies to com-
mit themselves to specific software for quite long
time, which is not desirable. In fact, businesses re-
quire the opposite: low cost, flexible, and scalable
ERP systems, which require no special skills to use
them and are capable of delivering ERP data on both
desktop computers and mobile devices. Because clas-
sical on-premise ERP systems (e.g. SAP R/3 and
SAP Business Suite) cannot fulfill such expectations,
the concept of software as a service (SaaS) pene-
trated ERP sector. Although offering clear advan-
tages over existing on-premise systems, turning the
later into SaaS proved to be a difficult exercise. The
main reason for this is systems’ architecture consist-
ing of tightly coupled elements and based on propri-
etary protocols.

The current work contributes with the architecture
of an ERP system that suits the SaaS model. This goal
is achieved by decoupling the components of an ERP
system, employing parallelism and providing flexible
data access API. The importance of the last element
is highly emphasized. The corner stone of the API is

the business object query language (BOQL) offering
both the flexibility of SQL and encapsulation of SOA.
In addition to architecture of an on-demand ERP sys-
tem, the paper address the issue of adapting a sys-
tem to customer-specific needs, which has proved to
be one of the hottest topics in ERP systems develop-
ment. The adaptation is achieved by leveraging the
suggested data access API with enterprise compos-
ite applications (ECAs). ECA is a means of adding
customer-specific features on top of data and func-
tionality of an ERP system.

1.1 ERP as a Service

SaaS gains more and more momentum. Subscribing
to applications over the Internet and using them via
industry-standard browsers or Web services clients
proved to be efficient from both economic and com-
putational points of view (Jacobs, 2005). In the SaaS
model, a provider develops an application and oper-
ates the servers that host it. The provider’s benefits
stems from the economies of scale. The provider
aggregates many users and can share all aspects of
the IT infrastructure, including hardware, software,
staffing, and the data center itself among a number
of subscribers. From a subscriber’s point of view the
benefit comes from converting the fixed cost of own-

16
Borovskiy V., Koch W. and Zeier A. (2010).
PARALLELISM, ADAPTATION AND FLEXIBLE DATA ACCESS IN ON-DEMAND ERP SYSTEMS.
In Proceedings of the 5th International Conference on Software and Data Technologies, pages 16-22
DOI: 10.5220/0002932800160022
Copyright c© SciTePress



ing and maintaining on-premise infrastructure into the
variable cost of renting it on demand. On average on-
premise infrastructure is underutilized, because its ca-
pacity is driven by systems’ peak load. But peak loads
account for a small part of systems’ operating time.
For example, Amazon’s infrastructure has been de-
signed to guarantee an appropriate service level dur-
ing the Christmas week, but the workload during the
rest of the year is significantly lower. Therefore, most
of the time Amazon’s infrastructure is idle. Compa-
nies make large investments in infrastructure and find
it idle for most of the time. Hence, by subscribing to
SaaS companies pay only for actual usage, whereas
with on-premise hardware the amount of resources
they pay for is driven not by actual, but peak work-
load. The usage-based pricing model not only re-
duces capital expense, but also lowers an entry barrier
to computing intensive businesses. By subscribing to
on-demand services companies minimize risks of en-
tering a business and avoid sunk cost.

Despite the clear cost advantage SaaS has a num-
ber of drawbacks. Most of them have to do with the
principle of infrastructure sharing. In this regard SaaS
generates privacy and security concerns, because not
only a company’s data are stored outside of the com-
pany, but also the company has no influence on how
its ERP provider manages the data. Another draw-
back of infrastructure sharing is having the possibility
of different subscribers affecting each other (mySql,
2007). Nevertheless, the attractiveness of the SaaS
concept and the efforts of ERP software vendors out-
weigh the challenges and SaaS gradually enters ERP
sector.

The shift to SaaS model automatically implies that
existing ERP systems’ architecture must be revised in
order to meet new requirements. The section 2 of this
paper defines what it means to an ERP system to be
on-demand and how this is achieved.

2 ON-DEMAND ERP SYSTEM

What does it mean for an ERP system to be on-
demand? To answer this question we need to ad-
dress the cornerstone principle of on-demand systems
- infrastructure sharing. According to this principle
a system must be able to consolidate a big number
(tens or even hundreds) of subscribers. This implies
multi-tenancy in database layer and parallelism in ap-
plication server layer. Multi-tenancy is basically map-
ping a number of single-tenant logical schemas in one
multi-tenant physical schema in the database. Be-
cause the topic of multi-tenancy has received high at-
tention in the database research community we redi-

rect the reader to (Aulbach et al., 2008), (Jacobs et al.,
2009), (mySql, 2007). The topic of parallelization is
addressed in the following subsection.

2.1 Parallelism in ERP System

Because an on-demand system serves a big number of
subscribers increasing the throughput of the system
becomes an important goal when designing the sys-
tem. In our opinion, the increase of throughput must
be achieved by parallelization of request processing.

To enable efficient parallel execution of requests
the later must be independent from each other, that is
no task should require the results of other tasks’ ex-
ecution. In addition no task should compete for the
system’s resources with others. Task independence
implies no synchronization among the threads of the
system, which in turn allows to execute the threads
on different processors/cores at the same time with-
out blocking. In this case a system can dynamically
increase and decrease its throughput by acquiring and
releasing computational resources depending on the
workload placed on the system by its users.

To minimize the number of tasks that need syn-
chronization the principle of separation of concerns
must be applied. According to this principle an in-
formation system is separated into distinct elements
that overlap in functionality as little as possible. All
ERP systems that we are aware of use three-tier ar-
chitecture. The three-tier architecture scales well and
can exploit the potential of massive parallelism. Each
of the three tiers can accomplish its tasks in separate
threads/processes, which will not be blocked by each
other. When a tier receives a request it can spawn a
child thread to process the request independently of
other tasks in the system. To improve responsiveness
and availability of a system asynchronous communi-
cation between the tiers can be employed.

The separation of tiers from each other rises a
challenge of interfacing them. The interfaces among
the tiers should enable efficient data access, meaning
that the system must be able to satisfy data requests
of any granularity. Efficient data access is an indica-
tor of an ERP system’s openness and plays a crucial
role in enterprise composite application development.
Therefore, the next two sections address this issue in
details. The goal of the discussion in the sections is
to understand how internals of an ERP system must
be organized in order to enable efficient data access
to ERP data.

PARALLELISM, ADAPTATION AND FLEXIBLE DATA ACCESS IN ON-DEMAND ERP SYSTEMS

17



2.2 Flexible Data Access

Data access API of an ERP system highly depends on
internal details of the system. Not all architectures
can efficiently support data access from outside of the
system. In fact, most of the systems never allow such
access.

2.2.1 State of the Art

A straightforward approach to data access can be
to use SQL. Since ERP systems rely on relational
databases, SQL statements could be issued directly
against the databases to retrieve required data. Al-
though SQL is natively supported by the underlying
databases, this approach is unlikely to deliver the ex-
pected results. SQL statements need to be written
against an actual schema of a database. The problem
with this approach is that it violates the data encapsu-
lation principle. Basically SQL exposes too much of
control over the underlying database and greatly in-
creases the risk of corrupting data in the system. An
ERP system is not only a collection of structured data,
but also a set of business rules that apply to the data.
Generally these rules are not a part of the system’s
database. Direct access to the database circumvents
the rules and implies data integrity violation. There-
fore, to enforce the rules the direct access to data by
any means is strictly prohibited.

An alternative to SQL can be data as a service ap-
proach. In this case a system exposes a number of
Web services with strictly defined semantics. This ap-
proach has an advantage of hiding internal organiza-
tion of data. Instead of a data schema a set of oper-
ations that return data are exposed by a system. By
choosing operations and calling them in an appropri-
ate sequence required data can be retrieved. Because
of using Web services this approach is platform inde-
pendent. However, this method has a serious disad-
vantage: lack of flexibility. Although an ERP system
vendor can define many data accessing operations,
they will never cover all possible combinations of data
pieces of an ERP system. Often these operations are
limited to one business object. ECAs on the other
hand address very specific or fine-granular needs and
deliver value by assembling information coming from
different locations of a system. Therefore, the granu-
larity of data services does not match the granularity
of ECAs’ operations and the services cannot provide
adequate support for the ECAs. For this reason ECAs
need to issue multiple service calls and combine a re-
sult set on their own. This greatly complicates the
development of ECAs and undermines their perfor-
mance. This situation clearly demonstrates the ad-
vantage of the SQL approach. The ability to construct

fine-granular queries that fully match the information
needs of ECAs makes SQL a much more flexible API
than data as a service.

As one can see both approaches have advantages
and disadvantages. SQL as a data access API gives
great flexibility by allowing to construct queries that
match the granularity of a user’s information needs.
However, SQL exposes too much control over the
database, circumvents business logic rules and binds
ECAs to a specific implementation platform. The data
as a service approach on the other hand enforces busi-
ness rules by exposing a set of Web operations which
encapsulate data access and hide data organization.
However, the granularity of the exposed operations
does not match that of a user’s needs, which creates
inflexibility and hits performance.

2.2.2 Business Object Query Language

In this subsection we contribute with an idea of
how to combine the advantages of discussed ap-
proaches while eliminating their disadvantages and
propose a concept called business object query lan-
guage (BOQL).

It is clear that accessing raw data directly and
circumventing business logic contradicts with data
encapsulation. For this reason business objects ap-
peared. They fully control the access to the data and
protect the integrity of data. From external perspec-
tive business objects are simply a collection of seman-
tically related data, e.g. invoice, bill of material, pur-
chase order, and a number of business operations that
can be performed on the data, e.g. read, create, etc. A
business object can be represented as set of data fields
or attributes, e.g. id, count, name, and associations or
links with other business objects, e.g. a SalesOrder
is associated with a Customer and Product business
objects.

Despite the diverse semantics of business objects
they all have the same structure (an array of attributes
and associations) and behavior (a set of operations).
After a number of experiments we have found that
the most important operations to support by a busi-
ness object are Create, Retrieve, RetrieveByAssocia-
tionChain, Delete and Update. Therefore, all busi-
ness objects can be derived from the same base class
featuring the mentioned arrays and operations. Such
uniform behavior and structure allow to introduce a
query language for business objects very much like
SQL for relational entities. We propose the following
scenario:

1. A programmer composes a query, the description
of what to retrieve from the system, according to
some SQL-like grammar and sends the query as

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

18



a string to the system via a generic service opera-
tion, for example Execute.

2. The system parses the string to detect present
clauses (from, select, where, etc.) and builds an
abstract syntax tree - an internal representation of
the query. The tree is then passed for further pro-
cessing to a query execution runtime.

3. Using the from clause the runtime obtains refer-
ences to the business objects from which the re-
trieval must be performed: source business ob-
jects. Then the runtime traverses the tree in a spe-
cific order and converts recognized query tokens
to appropriate operation calls on the source busi-
ness objects. For example, tokens from a select
clause are converted to Retrieve or RetrieveByAs-
sociationChain operations.

4. Having extracted the values from the query string,
the runtime executes the operations with the ex-
tracted values passed as input parameters and
composes the result. After that the result is for-
matted in XML and sent back to the calling pro-
gramm.

In its essence the query language performs an or-
chestration of calls to objects’ operations based on
user-defined queries. These queries are transformed
to a sequence of operation calls that yield the required
data. Business object query language has an advan-
tage of supporting fine-grained queries as in the case
of SQL without circumventing business rules as in
the case of the data as a service approach. Such an
approach is allowed by a uniform representation of
business objects (in terms of the structure and behav-
ior).

This method of accessing data can be used by
both an ERP system itself and ECAs. In the later
case a problem of communicating ERP data model
arises. In order to develop ECAs users must have a
strong understanding of the system’s business object
model. In other words, they need to know what busi-
ness objects are in the system, what attributes the ob-
jects have and how the objects are linked among each
other. To communicate this information we use ori-
ented graphs. The vertices of a graph denote business
objects and oriented edges denote associations. A set
of attributes is attached to every vertex (see Figure 2).
For the sake of compactness we will not list the at-
tributes on diagrams. The graph plays the same role
for business objects as the schema for a database. It
depicts the structure of business data and is essential
to know to compose queries.

2.3 System’s Architecture

The current subsection demonstrates a possible im-
plementation of an ERP system built according to the
principles discussed in earlier in this section in a way
that uses massive parallelism. The Figure 1 sketches
the architecture of a prototyped system. It has five
elements: user interface, a user request handing and
dispatching layer, a query engine, a business object
engine and a storage.

In our prototype we used Silverlight as a UI-
building technology, but any other technology capable
of executing Web service calls can be used. The main
responsibility of the user interface it to render forms
based on the information in a user’s configuration pro-
file and the actual data returned by the backend sys-
tem. Note that there can be two types of client appli-
cation: (i) those that connect directly the backend sys-
tem and profile storage and execute BOQL queries on
their own and (ii) those that use intermediary request
handling and dispatching layer. The applications of
first type are so called fat clients and provide richer
functionality and put less workload of the backend
system, but are more complex. The later ones are thin
clients that essentially are terminals via which users
access the system. A good example of a thin client is
an application running on a mobile device. For long
time thin clients have been considered to be easier to
deploy. With the technology like Silverlight this is
no longer the case. A Silverlight application is essen-
tially a .Net application running inside a Web browser.
In other words this is a fully-fledged desktop applica-
tion (fat client) running on the client side and hosted
by a Web browser. Every time a user opens a web
page with a Silverlight application the browser down-
loads the application and executes it. Hence with Sil-
verlight we can achieve the power of a fat client for
the deployment price of a thin client.

To effectively support thin clients (like mobile
phones and Web pages with server-side logic like
ASP.NET and PHP) we had to develop a scalable user
request handling and dispatching layer. The point is
that the Web service to which thin clients connect
can easily become a bottleneck in the system. There-
fore we factored out the actual BOQL query execut-
ing from the Web service to reduce its workload and
thus improve the responsiveness and performance of
the overall system. For this we run so called work-
ing processes (each process can be run on any physi-
cal server to which the Web service hosting machine
can establish a tcp connection). This allowed us to
avoid blocks of the Web service caused by waiting
for results from the query engine. Now if a block oc-
curs (because of long query execution time) none of

PARALLELISM, ADAPTATION AND FLEXIBLE DATA ACCESS IN ON-DEMAND ERP SYSTEMS

19



the other working processes is affected. To minimize
the thread and connection management overhead ev-
ery working process has two objects instantiated at a
process’s start up time, namely the thread pool and
connection pool. We encapsulate thread management
related code inside a separate component in order to
make threading transparent for the rest of the system.
Whenever our system needs a thread it simply picks
up one from the pool. The same motivation is be-
hind the connection pool: whenever the system needs
a connection it acquires one from the pool. Because
pool pattern is a very well know approach we redi-
rect the reader to other works ((Richter, 2008) for the
thread pool, (Kircher and Jain, 2004) for the connec-
tion pool) for more details on it.

The business object engine manages business ob-
jects and the query engine provides access to them
from outside of the owning process via a query-like
interface. These two elements are instances of Bo-
Engine and QueryEngine classes respectively. Both
are created at the system’s startup time. Business
object engine is instantiated first to assemble busi-
ness objects and store references to them in a pool.
Because business objects are independent from each
other they can be instantiated in parallel. This will
greatly improve the system’s start up time. Then the
instance of the query engine is created. It has ac-
cess to the pool and thus can manipulate the objects.
Query engine is another potential bottleneck of the
system. Because all BOQL queries go through this
element of the system it may become overloaded and
slow down the work of the system for this reason we
used the same approach as with the Web service: we
factored out query parsing and service call execution
from query engine to independent processes.

Every business object encapsulates an in-memory
table to cache data. The in-memory table is populated
with data taken from a private database. Every ob-
ject also encapsulates logic to synchronize/backup its
in-memory table with the database. To improve the
responsiveness of the system the synchronization is
done independently for every business object and in a
separate execution thread in the background mode. To
the query execution runtime an object is seen through
its interface: a collection of attributes and associations
to other objects and CRUD (Create, Retrieve, Update,
Delete) operations. How those are implemented is
completely hidden inside the object. Typically, at-
tributes and associations are bound to data fields and
relations of the underlying physical storage or local
in-memory cache. In this prototype we concentrate
on only read operations (accessors) from the inter-
face: Retrieve to get attributes of a given object and
RetrieveByAssociationChain to navigate from one ob-

Figure 1: The architecture of the test system.

ject to another via specified associations. These oper-
ations retrieve data from the underlying physical stor-
age or the local cache according to internal business
logic. By default the accessors assume one-to-one
correspondence between a business object’s logical
and physical schemas. For example, if an attribute
Attr1 of a business object Bo1 is queried the query
runtime looks for data field named Attr1 in a table
corresponding to a given business object; if an associ-
ation Assoc1 of a Bo1 is queried the runtime looks for
a foreign key relationship corresponding to the asso-
ciation and constructs a join.

Neither a business object nor its in-memory cache
nor database tables can be directly accessed outside
of the owning process. The direct access to the data
is prohibited to enforce integrity rules and internal
business logic implemented by business objects. To
access the business data an external application must
use the standardized query-like interface exposed by
the query engine. When the latter receives a query it
acquires a thread object from the thread pool, parses
the query and transforms recognized tokens to cor-
responding operation invocations. Then the work is
handed over to the runtime engine that is responsible

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

20



for performing actual service calls and constructing
the result set. Whenever is possible the service calls
are done in parallel. To figure out what calls to exe-
cute at the same time we analyze the abstract syntax
tree built by the parser for a given query and issue ev-
ery call, which does not rely on yet not retrieved data,
in a separate thread. The result of these invocations is
assembled in a single XML document and sent back
to a client application.

As an implementation platform for the prototype
we chose .NET. The system is implemented as a Win-
dows service and the query interface is published as
a Web service hosted by Internet Microsoft Informa-
tion Services (IIS). The Web service is meant to dis-
patch a query to the system and serves as a request
entry point. There is no other way to invoke or ac-
cess the system except for issuing a call to the Web
service. The physical data storage is implemented as
a Microsoft SQL Server 2005 database.

2.4 Enterprise Composite Applications
as Extension Modules

A composite application is an application generated
by combining content, presentation, or application
functionality from desperate Web sources. CAs aim
at combining these sources to create new useful ap-
plications or services (Yu et al., 2008). An enterprise
composite application is a CA application which has
an ERP system as one of its sources1. CA access
their sources via thoroughly specified application pro-
gramming interface (API). The key characteristics of
a CA are its limited/narrowed scope and straightfor-
ward result set. CAs often address situational needs
and provide replies to fine-grained information re-
quests. They are not intended to provide complex so-
lutions for general problems rather they offer compact
answers to clear-cut questions.

CAs create value by pulling all data and services a
user needs to perform a task on a single screen. These
data and services can potentially come from many
sources, including an ERP system. Very often users
are confronted with a problem of having necessary
information and functionality distributed across many
forms. By creating a CA that assembles them on the
same screen users can substantially increase the pro-
ductivity of their work. Additional benefit here is that
a CA can present information in a way that meets per-
sonal preferences of a user.

1From now on we consider only enterprise composite
applications. The terms ”CA” and ”ECA” for the sake of
brevity are considered to mean the same in the rest of the
paper.

The architecture we suggest natively supports CA.
The main enabler of composite applications is the
BOQL, which basically provides a mechanism for
query-like invocation of business objects’ services.
BOQL allows CAs to manipulate ERP data from out-
side of a system without violating internal business
logic. Because the query engine supports SOAP pro-
tocol, CAs can be developed and executed on any
platform that is suitable for a user and has support for
XML.

The process of developing CAs we see as follows.

1. A user2 figure out on which business objects they
want to perform custom operations. This depends
on the actual task and application domain. Then
the user composes BOQL queries that will return
the data from the business objects. To compose
the queries the user can use Object Explorer and
Schema Explorer tools described earlier.

2. Using SOAP interface of the query engine the user
executes the queries and retrieves ERP data.

3. Using selected programming language the user
develops code that operates on the selected data
and performs the required operations.

4. In case the CA needs to change the data in the
source ERP system it composes BOQL queries
that do so and executes the queries using the same
SOAP interface of the query engine.

2.4.1 Business Case

In this section we present a business case, which ben-
efits from the flexible data access of the suggested
approach. Consider a Web retailer that sells items
on-line and subcontracts a logistics provider to ship
sold products to customers. The retailer operates in
a geographically large market (e.g. the US or Eu-
rope3). In this situation the consolidated shipment of
items can generate considerable savings in delivery
and thus increase the profit of the retailer. Consolida-
tion means that a number of sold items is grouped in a
single bulk and sent as one shipment. The bigger the
shipment size, the higher the bargaining power of the
retailer when negotiating the shipment with a logis-
tics provider. The savings come from price discounts
gained from higher transportation volume4. In this
way the retailer can lower the transportation cost per
sold product. The consolidation of shipment is done
anyway by all logistics providers in order to minimize
their operating costs. By controlling the delivery of

2power user or application programmer
3The greater the territory and the higher the sales vol-

ume, the more relevant the case.
4So called economies of scale in transportation

PARALLELISM, ADAPTATION AND FLEXIBLE DATA ACCESS IN ON-DEMAND ERP SYSTEMS

21



Figure 2: Schema of the Web retailer’s CRM.

sold items explicitly, the retailer captures the savings
that otherwise go to a logistics provider.

Let the retailer use a system with a business ob-
ject graph as Figure 2 presents to manage their sales.
We assume that the system exposes a query-like Web
service interface as described in the section 2.3. The
query returning the shipping address for all sales or-
der items that are to be delivered looks as follows:

SELECT
SO˜id, SO.Contact.Customer˜name,
SO.Contact.Address˜FormattedAddress

FROM
SalesOrder As SO

WHERE
SO.Status = "ToDeliver"

GROUP BY
SO.Contact.Address˜city

By invoking the query-liked Web service and
passing the above query to it, a third-party applica-
tion consolidates the items by their destination. The
next step for the application is to submit a request for
quote to a logistics provider and get the price of trans-
porting each group of items. Many logistics providers
have a dedicated service interface for this, so the ap-
plication can complete this step automatically. Once
the quote has been obtained and the price is appropri-
ate the products can be packaged and picked up by the
logistics provider.

To enable applications like the one just described
the system must expose a flexible data access API.
That is, the system must be able to return any piece
of data it stores and construct the result set in a user-
defined way. As mentioned in the section 2.2.1 tradi-
tional APIs cannot completely fulfill this requirement:
SQL against views circumvents the business rules en-
forced outside the database; Web services limit the
retrievable data to a fixed, predefined set. The archi-
tecture suggested in the current work overcomes the
existing limitations and offer the necessary degree of
data access flexibility.

3 CONCLUSIONS

On-demand model offers a better pricing option for
enterprises than the traditional on-premise approach.
For ERP software vendors a shift to ERP as a service
implies challenge of making an ERP system able to
consolidate multiple business customers. The chal-
lenge is intensified by the need of adapting standard
ERP software to specific needs of customers.

The current work contributes with an architecture
of an ERP system that exploit massive parallelism in
order to cope with high workload put onto a system by
many concurrent users and argues in favor of ECAs
as an adaptation tool. The ability to support ECAs
comes from the high accessibility of a system’s data,
which is achieved with the help of business object
query language. We outlined the major components
of the architecture and prototyped the system using
Microsoft platform. We also demonstrated how an
ECA can be developed.

REFERENCES

Aulbach, S., Grust, T., Jacobs, D., Kemper, A., and Rit-
tinger, J. (2008). Multi-tenant databases for soft-
ware as a service: schema-mapping techniques full.
In Proceedings of the 2008 ACM SIGMOD inter-
national conference on Management of data, pages
1195–1206.

Jacobs, D. (2005). Enterprise software as service. Queue,
3(6):36 – 42.

Jacobs, D., Aulbach, S., Kemper, A., and Seibold, M.
(2009). A comparison of flexible schemas for software
as a service. In Proceedings of the 35th SIGMOD in-
ternational conference on Management of data, pages
881–888.

Kircher, M. and Jain, P. (2004). Pattern-Oriented Software
Architecture: Patterns for Resource Management. Wi-
ley.

mySql (2007). Anatomy of mysql on the grid.
http://blog.mediatemple.net/weblog/2007/01/19/
anatomy-of-mysql-on-the-grid/.

Richter, J. (2008). Windows Via C/C++. Microsoft Press.

Yu, J., Benatallah, B., Casati, F., and Daniel, F. (2008).
Understanding mashup development. IEEE Internet
Computing, pages 44–52.

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

22


