
DESIGN PATTERNS WITH ASPECTJ, GENERICS, AND 
REFLECTIVE PROGRAMMING  

Adam Przybylek 
Department of Business Informatics, University of Gdansk, Piaskowa 9, 81-824 Sopot, Poland 

Keywords: Design patterns, AOP, Generics. 

Abstract: Over the past decade, there has been a lot of interest towards aspect-oriented programming (AOP). 
Hannemann and Kiczales developed AspectJ implementations of the Gang-of-Four (GoF) design patterns. 
Their study was continued by Hachani, Bardou, Borella, and others. However, no one has tried to improve 
the implementations by using generics or reflective programming. This research faces up to this issue. As a 
result, highly reusable implementations of Decorator, Proxy, and Prototype are presented. 

1 INTRODUCTION 

Capturing design knowledge in a way that makes it 
possible for others to reuse it is the basic idea behind 
design patterns (Noda & Kishi 2001). The solutions 
proposed in the original design pattern literature 
(Gamma et al. 1995) are shaped by techniques as 
well as language deficiencies from the object 
oriented (OO) paradigm. With the rise of the aspect-
oriented (AO) paradigm, new programming 
abstractions have been occured that suggest it is time 
for these solutions to be revised. 

First attempts to reshape design pattern solutions 
based on aspect-oriented programming (AOP) were 
initiated by Hannemann & Kiczales (2002) and then 
continued by Hachani & Bardou (2002), Borella 
(2003), Monteiro & Fernandes (2004), and Denier, 
Albin-Amiot & Cointe (2005). H&K developed 
AspectJ implementations of the Gang-of-Four (GoF) 
patterns. For 12 out of all 23 patterns, they found 
reusable implementations. However, AspectJ didn’t 
support generics (generic types), when they were 
doing their research. With the advent of this 
technique, a new support for more reusable 
implementations have been occured. Generic types 
let programmers define a type without specifying all 
the other types it uses. The unspecified types are 
supplied as parameters at the point of use. 

In this research the existing AO implementations 
were examined according to applying generics and 
reflective programming. It was found that generics 
bring advantages for the Decorator and the Proxy 
patterns, of which only the implementation of the 

former exhibits significant improvement. In 
addition, a highly reusable implementation of the 
Prototype pattern was achieved by combining AOP 
with reflective programming. 

The modeling language used in this study is the 
extension to UML that was proposed by Przybyłek 
(2008). The entire source code with examples is 
available at the author's homepage (Przybyłek 2010). 

2 MOTIVATIONS AND GOALS 

For 11 out of 23 GoF patterns reusable 
implementations aren’t known. Only the solutions of 
these patterns are considered reusable. As a 
consequence the programmer still has to implement 
the patterns for each application he is constructing 
(Borella 2003). However, to the best of the author's 
knowledge, there is no evaluation of the impact of 
generics or reflection in AspectJ on the GoF 
patterns. Generics were added to AspectJ in 2005 
and since that time, implementations of design 
patterns have had the potential to become more 
reusable. Hence, the solutions that have been 
presented so far should be revisited and 
reconsidered. The aim of this paper is to present the 
results of exploring the existing AO 
implementations according to apply generics and 
reflection. 
 
 

131
Przybylek A. (2010).
DESIGN PATTERNS WITH ASPECTJ, GENERICS, AND REFLECTIVE PROGRAMMING.
In Proceedings of the 5th International Conference on Software and Data Technologies, pages 131-136
DOI: 10.5220/0002923801310136
Copyright c© SciTePress



 

3 THE DECORATOR PATTERN 

The intent of the Decorator pattern is to perform 
additional actions on individual objects (Borella 
2003; Gamma et al. 1995). The additional actions 
and the decorated objects are selected at runtime. An 
alternative for this pattern is inheritance. However, 
the Decorator pattern has several advantages over 
subclassing. First, additional actions can be added 
and removed at runtime and per object. Second, 
combining independent extensions is easy by 
composing decorator objects. With subclassing 
every combination of extensions results in a new 
subclass and this can cause an explosion of 
subclasses. 

There are many variations of the Decorator 
pattern, but in this paper the one used is that defined 
by Borella (2003). The first AO approach to this 
pattern was presented by Hannemann & Kiczales 
(2002). Their solution has three limitations (Borella 
2003). Firstly, it does not allow for dynamic 
attaching and dynamic detaching of decorators. 
Secondly, it is not possible at runtime to define an 
order of activation among decorators. Thirdly, after 
inserting the decorator aspect in the system, all 
instances of the intended class are decorated. 

Other solutions were proposed by Monteiro & 
Fernandes (2004) and Hachani & Bardou (2002) but 
these do not add anything new and so need not be 
considered. A significant contribution to 
implementing the Decorator pattern was made by 
Borella (2003). He uses a per-target instantiation 
model to decorate only a subset of the instances of a 
class. His solution enables decorators to be 
composed dynamically. The order of activation of 
each decorator is given at runtime.  

The Borella solution has two main 
imperfections. Firstly, the around advice and the 
wrap method are not generic, and depend on the type 

of the decorated object. Secondly, the decorator 
classes could directly implement the Decorator 
interface. Introducing the Decorator interface via the 
parent declaration unnecessarily complicates the 
solution. Fig. 1 presents a new solution to the 
Decorator pattern. 

WrapperProtocol<E> describes the generic 
structure and behaviour that is determined by the 
pattern and it does not define any application 
specific behaviour. This solution reduces the non-
reusable parts of the implementation. The around 
advices are responsible for intercepting objects 
which should be decorated and passing them to the 
wrap(E e) method as argument. This method iterates 
through all the registered decorators and gives them 
its argument to decorate (Listing 1). After 
decoration, the argument is returned. A concrete 
decoration process is implemented in the 
StarDecorator and DollarDecorator classes. 

The joinpoints at which the object to decorate 
should be captured are specified by the 
returned_object and object_passed_as_argument 
pointcuts. Thus it is possible to decorate the object, 
which is passed as an argument or returned as a 
result of a method call. The definitions of both 
pointcuts are empty, so at least one of them should 
be overridden in a subaspect.  

The concrete subaspect, which knows what type 
of object is captured and in which context, has to be 
derived from WrapperProtocol<E> by giving a 
bound type to the E parameter. One of such 
subaspects is StringWrapper that binds the E 
parameter with String. StringWrapper intercepts 
requests to the getNextWord() method and performs 
a decoration on the object returned by this method. 
An example of the use of StringWrapper is shown in 
Listing 2. 

public E wrap(E e) { 
  for ( Decorator<E> dec: decorators.values() ) e=dec.decorate(e); 
  return e; 
} 

Listing 1: The wrap method. 

public class testDecorator { 
  public static void main(String[] args) { 
    WordPrinter w = new WordPrinter();     //1 
    StringWrapper wrapper = StringWrapper.aspectOf(w);  //2 
    wrapper.addDecorator( new StarDecorator(), 2 );   //3 
    wrapper.addDecorator( new DollarDecorator(), 1 );  //4 
    w.setWord(0,"XXX");       //5 
    System.out.println( w.getNextWord() );    //6 
  } 
} 

Listing 2: A use of the Decorator pattern. 

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

132



 
Figure 1: The Decorator pattern. 

In order to decorate a specific object, the 
instance of StringWrapper that is associated with 
this object is retrieved (line 2). Zero or more 
decorators are then attached to this instance (lines 3 
and 4). Without any decorator, the getNextWord() 
method would return "AA". However, the wrapper 
object has registered (lines 3 and 4) the 
StarDecorator and DollarDecorator instances, which 
wrap the returned object with "***" and "$$$" 
respectively. As a result, the "*** $$$ AA $$$ ***" 
string is printed on the screen (line 6). 

4 THE PROXY PATTERN 

The proxy pattern allows the developer to provide a 
surrogate object in place of the actual object in case 
access to the real object needs to be delegated or 
controlled. The following are some of the more 
common uses for proxies (Grand 2002):  
– Represent an object that is complex or time 

consuming to create with a simpler one. 

– Create the illusion that an object on a different 
machine is an ordinary local object. 

– Control access to a service-providing object 
based on a security policy.  

– Create the illusion that a service object exists 
before it actually does. 

The structure of this pattern, that uses generics, is 
shown on Fig. 2. ProxyProtocol<Subject> is a 
reusable part of the implementation. Subject is a 
parameter. The client binds this parameter with the 
type of the object to be "proxied". The 
requestsToSubjectByCaller pointcut intercepts calls 
to the subject. If a call is proxy protected, the 
handleProxyProtection method is called instead of 
the original method. The isProxyProtected method 
checks whether the request should be handled by the 
proxy or not. By default it returns true. The 
handleProxyProtection method provides an 
alternative return value if a call is proxy protected. 
The default implementation returns null. Concrete 
subaspects are forced to implement the requests 
pointcut. This pointcut defines which requests need 
to be handled by the proxy. 

DESIGN PATTERNS WITH ASPECTJ, GENERICS, AND REFLECTIVE PROGRAMMING

133



-alternateSubject 

-requestsToSubjectByCaller(caller:Object, target:Subject): 
  requests() && this(caller) && target(target);

#isProxyProtected(caller:Object, target:Subject, joinPoint:JoinPoint): boolean

#handleProxyProtection(caller:Object, target:Subject, joinPoint:JoinPoint): Object

ProxyProtocol

Object around(caller:Object, target:Subject): 
requestsToSubjectByCaller(caller, target)  { 
  if (! isProxyProtected(caller, target, thisJoinPoint) )
    return proceed(caller, target);
  return handleProxyProtection(caller, target, thisJoinPoint);
}

#requests()

<Subject>

«bind» <Subject → OutputImplementation>

RequestDelegation

#requests(): 
  call(* OutputImplementation.safeRequest(..));

+safeRequest(s:String):String
+regularRequest(s:String):void
+unsafeRequest(s:String):void

OutputImplementation

#isProxyProtected(caller:Object, target:Subject, 
joinPoint:JoinPoint): boolean

#handleProxyProtection(caller:Object, target:Subject, 
joinPoint:JoinPoint): Object

+alternateRequest(s:String):String

AlternateOutputImplementation

 
Figure 2: The Proxy pattern. 

5 THE PROTOTYPE PATTERN 

The Prototype pattern allows an object to create a 
copy of itself without knowing its direct class. This 
pattern can avoid expensive “creation from scratch”. 
The most important requirement for objects to be 
used as prototypes is that they have a method, 
typically called copy, that returns a new object that 
is a copy of the original object. How to implement 
the copy operation for the prototypical objects is 
another important implementation issue. There are 
two basic strategies for implementing the copy 
operation (Grand 2002): 
– Shallow copying means that the attributes of the 

cloned object contain the same values as the 
attributes of the original object and that all object 
references indicate the same objects.  

– Deep copying means that the attributes of the 
cloned object contain the same values as the 
attributes of the original object, except that 
attributes that refer to objects refer to copies of 
the objects referred to by the original object. In 
other words, deep copying also copies the 
objects that the object being cloned refers to. 
Implementing deep copying can be tricky. You 

will need to be careful about handling any 
circular references. 

Shallow copying is easier to implement because all 
classes inherit a clone method for the Object class 
that does just that. However, unless an object’s class 
implements the Cloneable interface, the clone 
method will throw an exception and will refuse to 
work. This paper presents the first strategy with 
some modification (Figure 3). 
The PrototypeProtocol aspect attaches a default 
copy() method on all Prototype participants. The 
implementation of that method is (1) to find the 
nearest clone() method up the class hierarchy, (2) to 
invoke it, and (3) to return the result (Listing 3). The 
searching process starts with the runtime class of the 
object to which the copy() request was sent. If that 
class does not define the clone method, then the 
search is made in its superclass. In the worst case, 
the search repeats until the Object class is reached. 
MyPrototypes assigns the Prototype interface to Car. 

6 DISCUSSION 

This research presents how AO implementations of 
the Decorator and the Proxy pattern can be improved   

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

134



 
Figure 3: The Prototype pattern. 

privileged abstract aspect PrototypeProtocol {  
 
  public interface Prototype extends Cloneable{}     
 
  public Object Prototype.copy() {    
    Object copy = null;  
    Method cloneMethod=null; 
    try { 
      Class thisClass = ((Object) this).getClass();      
      cloneMethod = theNearestCloneMethod(thisClass); 
      cloneMethod.setAccessible(true); 
      copy = cloneMethod.invoke(this, null);    
    } catch(Exception ex) { 
      System.out.println(ex); 
    } 
    return copy; 
  } 
 
  protected static Method theNearestCloneMethod(Class startClass) { 
    Method cloneMethod=null; 
    do { 
        try { 
          cloneMethod = startClass.getDeclaredMethod("clone", null); 
        } catch(NoSuchMethodException ex) { 
          startClass = startClass.getSuperclass(); 
        } 
    } while( cloneMethod == null ); 
    return cloneMethod; 
  }    
} 

Listing 3: The PrototypeProtocol aspect. 

using generics. Parametrized aspects, which serve as 
protocols, were created for both patterns. For the 
Prototype pattern reflective programming was 
employed to provide a default implementation for 
cloning. For Decorator not only implementation but 
also a new solution was developed. The solution is 

simpler then the one proposed by Borella, whereas 
the implementation is much more reusable. The only 
thing a programmer has to implement is two 
pointcuts. For the Proxy pattern, Hannemann & 
Kiczales’s solution was used, and only the 
implementation was adapted. In order to use these 

DESIGN PATTERNS WITH ASPECTJ, GENERICS, AND REFLECTIVE PROGRAMMING

135



 

patterns, concrete sub-aspects have to be created to 
make all general properties specific. The 
implemented patterns can be plugged or unplugged 
depending on the presence or absence of aspects. 

7 SUMMARY 

Hannemann and Kiczales introduce solutions that 
make an application independent of design patterns 
and improve reusability of the application core part. 
However, the code for a design pattern is still not 
reusable. This paper presents the results of exploring 
the existing AO implementations according to 
applying generics and reflective programming. It 
was found that only Decorator and Proxy are 
suitable to use with generics, while Prototype is 
suitable to use with reflection. In each case, the 
applied programming techniques enhanced 
reusability of the design pattern part. 

REFERENCES 

Borella, J., 2003. Design Patterns Using Aspect-Oriented 
Programming. MSc thesis, IT University of 
Copenhagen 

Denier, S., Albin-Amiot, H., Cointe, P., 2005. Expression 
and Composition of Design Patterns with Aspects. In: 
2nd French Workshop on Aspect-Oriented Software 
Development (JFDLPA'05), Lille , France 

Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995. 
Design Patterns: Elements of Reusable Object-
Oriented Software. Addison Wesley, Boston 

Grand, M., 2002. Patterns in Java, Volume 1: A Catalog 
of Reusable Design Patterns Illustrated with UML. 
John Wiley & Sons 

Hachani, O., Bardou, D., 2002. Using Aspect-Oriented 
Programming for Design Patterns Implementation. In: 
Workshop Reuse in Object-Oriented Information 
Systems Design, Montpellier, France 

Hannemann, J., Kiczales, G., 2002. Design Pattern 
Implementation in Java and AspectJ. In: 17th 
Conference on Object-Oriented Programming 
Systems, Languages, and Applications, Seattle 

Monteiro, M.P., Fernandes, J.M., 2004. Pitfalls of AspectJ 
Implementations of Some of the Gang-of-Four Design 
Patterns. In: Desarrollo de Software Orientado a 
Aspectos (DSOA’04), Málaga, Spain 

Noda, N., Kishi, T., 2001. Implementing Design Patterns 
Using Advanced Separation of Concerns. In: 
Workshop on Advanced SoC in OO Systems at 
OOPSLA’01, Tampa Bay, Florida 

Przybyłek, A., 2008. Separation of Crosscutting Concerns 
at the Design Level: An Extension to the UML 
Metamodel. In: 3rd International Multiconference on 

Computer Science and Information Technology 
(IMCSIT’08), Wisła, Poland 

Przybyłek, A., 2010. http://przybylek.wzr.pl/AOP/ 
icsoft2010.zip 

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

136


