
TOWARDS A ‘UNIVERSAL’ SOFTWARE METRICS TOOL
Motivation, Process and a Prototype

Gordana Rakić, Zoran Budimac
Department of Mathematics and Informatics, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia

Klaus Bothe
Institute of Informatics, Humboldt University, Berlin, Germany

Keywords: Software engineering, Software metrics, Software metrics tool, Compiler construction, Parser generator.

Abstract: In this paper we investigate main limitations of actual software metrics techniques/tools, propose a unified
intermediate representation for calculation of software metrics, and describe a promising prototype of a new
metrics tool. The motivation was the evident lack of wider utilization of software metrics in raising the
quality of software products.

1 INTRODUCTION

Software metric (SM) can be defined as a numerical
value that reflects some property of: a whole
software product, its one piece or its specification.
There are numerous categorizations of SM.
Considering the measurement target, metrics could
be divided in three main categories: product metrics,
process metrics and project metrics (Kahn, 2003). In
this paper we shall deal with the product metrics and
primarily code metrics as its sub-category.

SM tools are being used for calculation,
processing and analysis of the SM values.
Improvements in the field of SM tools, such is
creating of a new SM tool with advanced features
may lead to better results of software projects.

This paper will introduce the reader to the
development of one such tool. However, in this
paper we concentrate on just some aspects of such a
tool – independency on input programming language
(IPL) and on SM algorithms to be applied.

Motivations behind designing a new tool lay in
reports on existing tools’ flaws and in tools review
(section 2). We list some of recognized flaws:
 SM tools are generally not independent on IPL.

The different tools are often used for different
projects, for different software components, or even
within a single component.
 SM tools usually compute only a subset of

possible SM and rarely combine them to gain higher

measure quality.
 SM tools rarely interpret the meaning of

computed numerical results and their correlations in
order to suggest what typical actions should be taken
in order to improve the quality.
 SM tools are usually insensitive to the existence

of additional, useless and duplicate code, as well as
to attempts to ‘cheat’ the metrics algorithm.

Developing an SM tool that will solve the
enumerated flaws would increase the level of
application of SM in practice and improve the
development process and final product quality. This
is underlined as our implicit objective.

The paper is organized as follows. In section 2
the state of the art and open problems in the field
will be presented. This has been used as a guideline
for a development of a new tool. Section 3 explains
the process of designing a tool. Description of the
developed prototype of the new tool follows in
section 4, and conclusions and further work are
given in section 5.

2 RELATED WORK

One of the main problems in wider application of
SM techniques and tools lays in limitations and
inadequacy of available tools.
With the intention to discover main of mentioned
weaknesses, review of available SM tools has been

263
Rakić G., Budimac Z. and Bothe K. (2010).
TOWARDS A ‘UNIVERSAL’ SOFTWARE METRICS TOOL - Motivation, Process and a Prototype.
In Proceedings of the 5th International Conference on Software and Data Technologies, pages 263-266
DOI: 10.5220/0002916502630266
Copyright c© SciTePress

Table 1: The overview of the results of software metric tools review.

Tool See ref Platform
independ.

IPL
independ.

Supported SM Code
hist.

Metrics
storing CC H LOC OO others

SLOC (Wheeler, 2009) - + - - + - - - +
Code Counter Pro (Geronesoft, 2009) - + - - + - - - +
Source Monitor (Campwood Software, 2009) - - + - + + + - +

Understand (ScientificToolworks, 2009) + - + + + + + - +
RSM (MSquaredTechnologies, 2009) + - + + + + + + +

Krakatau Power Software, 2009 - +* + + + + + - +

done. Criteria for evaluation of each of analyzed tool
are related to the possibility of wide usage of the
tool. Those are: platform dependency, IPL
dependency, and supported SM. Additionally,
following two criteria are related to storing of
produced results and intermediate results: history of
code and metrics storing facility.

The analysis included 20 tools, but actual
situation can be represented by restricted set of six
representative tools (Table 1). Symbol “+” in a cell
of the table indicates that listed tool possess
corresponding characteristic, while “-“ indicates that
this criterion is not satisfied. Mark “*” next to the
symbol “+” means that tool only partially satisfies
specified criterion.

The table contains analysis of support for the
following SM: Cyclomatic Complexity (CC),
Halstead Metrics (H), Lines of Code (LOC) SM
family including Comment LOC (CLOC), Source
LOC (SLOC), etc., Object Oriented Metrics (OO)
and any other SM which is not in list. For details
see (Kan S., 2003).
The most important conclusions of the review
follow.
 Available tools could be divided in two

categories. The first category includes tools that
calculate only simple metrics as are metrics from
LOC family, but for wide set of IPL. The second
category is characterized with wide range of metrics,
but limited to small set of IPL. There are attempts to
bridge the gap between these categories, but without
final success. This is a big limitation if we take into
account that currently most software projects are
being written in more than one PL, usually different
by nature and type. There is also a significant
number of legacy software written in ‘ancient’
languages such are FORTRAN and COBOL. To all
these subsystems, one and uniform SM tool should
be applied to get reliable and uniform results and
interpretation.
 Even if tools support some object-oriented

metrics, this is still weak point of available tools, in
opposite to the wide application of the object-
oriented approach in software development.

General conclusion is that a new tool is needed.

3 TOWARD THE NEW TOOL

The basic idea is to split complete tool development
in three steps with the following explicit goals for
each step (Figure 1):
- Step 1 - to generate an appropriate intermediate
structure for the representation of a source code to
which SM algorithms can be applied.
- Step 2 - to apply SM algorithms to the given
structure and to produce appropriate numerical
values as a result.
- Step 3 - to apply advanced algorithms to the values
of SM calculated in step 2, in order to produce more
usable information to the end user.

Figure 1: Development roadmap.

3.1 Step 1 - Intermediate Structure

Achieving the IPL independency requires creating a
special intermediate structure for particular program
representation. Such structure has to be suitable for
representing source code written in "any" IPL.

Many other tools aiming for language
independency show (e.g., Christodoulakis et al.,
1989; CodeSquale, 2009) that usual intermediate
structure for this purpose is some sort of syntax tree.

The basic idea is to start from parser generator
(e.g., ANTLR (Parr, 2007)) which as input receives
a IPL grammar and as output provides the IPL
scanner and parser.

Parser generators usually generate Abstract
(AST) and Concrete (CST) Syntax Tree, as
intermediate structures. Structure and content of
these trees is determined by IPL grammar and used

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

264

parser generator. The CST contains all information
about IPL constructions and elements of the source
code, so it would be possible to apply SM
algorithms to such structure directly.

ANTLR generates AST and CST which is easy
to be extended with additional (imaginary) nodes
and enriched with additional information. This
enrichment is possible by simple changes inserted in
the IPL grammar – see (Parr, 2007) for details.

Generally, structure of the CST is always the
same and independent on the IPL. This is not the
case for the content of the nodes which differs for
different languages even if it represents analogue
IPL constructions. Application of SM algorithms to
this structure requires modification of the CST to
avoid implementation of SM algorithms for each
IPL.

For this purpose a separate tree structure that is
suitable for representation of the CST generated by
the parser generator was developed and called
‘enriched CST’ (eCST). It is based on XML
structure that provides independency with respect to
the IPL and SM. Tree representation of the source
code prepared in this way is the starting point in the
second step.

3.2 Step 2 - Calculating Metrics Values

The eCST representation of the source code is the
starting point for implementation of as many SM
algorithms as possible and to produce rich enough
set of numerical characteristics of the source. The set
of SM which is to be calculated consists of code
metrics and other SM which could be calculated on a
source code represented by the given structure.

Calculated values should be stored and well
organized for further manipulation in the third step.

3.3 Step 3 - Usable Information

After application of all SM algorithms and collecting
required values, calculated data should be input
parameters to advanced algorithms for delivering
useful information to the end user in the form of
advice for improving the software product or its
elements.

4 THE PROTOTYPE

Determination of the eCST structure was based on:
 comparative analysis of application of a single

SM to different IPLs;
 comparative analysis of application of different

SM to a single IPL.
eCST is designed to be suitable for unique

representation of a source code written in different
IPLs and for application of different SM algorithms
(see section 4.1)

The prototype of the new SM tool has been
implemented in Java. It dynamically recognizes IPL,
after which the source code is being parsed and
eCTS is generated and stored to an XML file
(section 4.1). Production of eCST is a result of a
simple modification of the language grammar rules
by adding generation of imaginary nodes in the tree.

The calculated SM values are also stored into
XML document together with brief information
about corresponding elements of the source code.

4.1 Storing the Generated eCST

Generated eCST consists of nodes and branches.
Some of the nodes are imaginary and provide useful
additional information about structure of the source
code and IPL elements. These imaginary nodes have
been added by modification of IPL grammar to
enrich the tree for IPL independency purpose by
enabling application of unique implementation of
the SM algorithms for different languages.

For example one of the CC calculation
algorithms is based on counting certain IPL
constructs indicating loops, branches, logical
operations, etc. These constructs are usually
different in different IPLs. This is the reason for
adding unique imaginary node before each branch,
each loop, etc. which will initiate recognition and
counting of the factor independently of IPL.

This tree modification does not affect the
structure of the tree. Each node consists of general
data about character and position of the source code
element and possible sub-nodes. This is basic
structure of syntax trees, and parsers generated by
different parser generators are usually producing
trees in that or in slightly modified form.XML
schema for keeping generated eCST is presented in
figure 2.

Figure 2: XML structure of an eCST.

TOWARDS A 'UNIVERSAL' SOFTWARE METRICS TOOL - Motivation, Process and a Prototype

265

The following example shows how the simple “if’
statement is stored to the given structure. Let the
statement that we want to store be the following one.
if (a >= b) //SomeStatement;

Let part “//SomeStatement(s)” represents list of
statements. The graphical representation of the
matching part of the eCST is presented in figure 3.

Figure 3: Simple "if" statement.

Figure 4 illustrates equivalent part of the XML tree.

Figure 4: XML tree representing “if” statement.

“BRANCH_STATEMENT”, “BRANCH” and
“CONDITION” are imaginary nodes added to achieve
IPL independency. “BRANCH_STATEMENT”
represents the beginning of the block that contains
“if” branching. It may contain one or more sub-trees
whose root is node named “BRANCH”. It represents
start of the each branch in the branching block.
Moreover, each sub-tree that contains single branch
may contain sub-tree representing condition. Root of
this sub-tree is “CONDITION” node.

5 CONCLUSIONS

SM tools are at this moment a weak point in SM
field and their wider application because of the
numerous limitations of available implementations.

In this paper, the most important weaknesses in

this area have been examined and presented together
with possible solutions. In that direction the basic
idea for development of a new SM tool and its
prototype were proposed.

Current prototype works for IPLs Modula-2 and
Java, calculating two characteristic SM (LOC and
CC). It is based on usage of parser generator
producing eCST which is stored in XML structure.

The immediate following task is to add more
IPLs by generating appropriate scanners and parsers.
Similarly much more SM algorithms will be
supported, primarily by adding imaginary nodes.

ACKNOWLEDGEMENTS

We acknowledge support of DAAD (German
Academic Exchange Service), project "Software
Engineering: Computer Science Education and
Research Cooperation" for partial support of the
reported work. We are also grateful to a bilateral
project between Serbia and Slovenia (project no. 27)
that enabled the exchange of visits and ideas with
colleagues of Faculty of Electronics, Computing and
Informatics (Maribor, Slovenia).

REFERENCES

CampwoodSoftware, 2009, Source Monitor,
http://www.campwoodsw.com/sourcemonitor.html

Christodoulakis D.N, Tsalidis C, C.J.M. van Gogh,.
Stinesen V.W, 1989, Towards an automated tool for
Software Certification, , International Workshop on
Tools for Artificial Intelligence,. Architectures,
Languages and Algorithms, IEEE, ISBN: 0-8186-
1984-8, pp. 670-676

CodeSquale, 2009, http://codesquale.googlepages.com/
Geronesoft, 2009, Code Counter Pro

http://www.geronesoft.com/
Kan S., 2003, Metrics and Models in Software Quality

Engineering - Second Edition, Addison-Wesley,
Boston, ISBN 0-201-72915-6

MSquaredTechnologies, 2009, Resource Standard Metrics
– RSM, http://msquaredtechnologies.com/

Parr T., 2007, The Definitive ANTLR Reference - Building
Domain-Specific Languages, The Pragmatic
Bookshelf, USA, ISBN: 0-9787392-5-6

PowerSoftware, 2009, Krakatau Essential PM (KEPM)-
User guide 1.11.0.0, http://www.powersoftware.com/

PowerSoftware, 2009, Krakatau Suite Management
Overview, http://www.powersoftware.com/

ScientificToolworks, 2009, Understand 2.0 User Guide
and Reference Manual March 2008,
http://www.scitools.com

Wheeler D. A., 2009, SLOCCount User's Guide,
http://www.dwheeler.com/sloccount/

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

266

