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Abstract: In the Semantic Web, domain ontologies can provide the necessary support for linking together a large 
number of heterogeneous data sources. In our proposal, these data sources are describe as local ontologies 
using an ontology language. Then, each local ontology is rewritten as an application ontology, whose 
vocabulary is restricted to be a subset of the vocabulary of the domain ontology. Application ontologies 
enable the identification and the association of semantically corresponding concepts, so they are useful for 
enhancing tasks like data discovery and integration. The main contribution of this work is a strategy to 
automatically generate such application ontologies and mappings, considering a set of local ontologies, a 
domain ontology and the result of the matching between each local ontology and the domain ontology.  

1 INTRODUCTION 

The Web is a complex and vast repository of 
information that is often stored in heterogeneous and 
distributed data sources. Problems that might arise 
due to heterogeneity of the data are already well 
known within the database community: syntactic 
heterogeneity and semantic heterogeneity.  

In nearly all recent researches on data integration, 
ontologies provide a possible approach to address the 
problem of semantic heterogeneity. In general, two 
architectures for data integration can be identified: two-
level and three-level ontology-based architectures.  

The main components of the two-level 
architecture (Figure 1(a)) are: the domain ontology 
(DO); the local ontologies (LO), which describe the 
data sources using an ontology language; and the 
mapping that specifies the correspondences between 
the local ontologies and the domain ontology (LO-
DO mappings). The work presented in (Calvanese et 
al., 2007) adopts this architecture. The main 
components of the three-level architecture (Figure 
1(b)) are: the domain ontology (DO); the local 
ontologies (LO); the application ontologies (AO), 
which rewrite the local ontologies using a subset of 

the vocabulary of the domain ontology; the mapping 
that specifies the correspondences between the 
application ontologies and the domain ontology 
(AO-DO mappings); and the mapping that specifies 
the correspondences between the local ontologies 
and the application ontologies (LO-AO mappings). 
The work of (Lutz, 2006) adopts this architecture. 

 

Figure 1: (a) Two-Level Ontology-Based Architecture.  
(b) Three-Level Ontology-Based Architecture. 

The main problems that concern to both 
architectures are: (i) how to specify the mappings; 
and (ii) how to use the mappings to answer correctly 
the queries posed on the domain ontology. In the 
two-level architecture, the domain ontology is only 
used for specifying the mediated schema. So the user 
has to define, which we call heterogeneous
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Figure 2: (a) Domain Ontology; (b) Local Ontologies. 

mappings, between entities of the local ontologies 
and the domain ontology, as such ontologies do not 
share the same vocabulary and also because of the 
structural heterogeneity. In the three-level 
architecture, the domain ontology is used for both 
specifying the mediated schema and as a shared 
vocabulary. As the application ontologies are subsets 
of the domain ontology, the user can define 
homogeneous mappings between these ontologies.  

In our approach, application ontologies are used 
to divide the definition of the mappings into two 
stages: AO-DO mappings and LO-AO mappings. 
We use mediated mappings to define the classes and 
properties of the domain ontology in terms of the 
vocabularies of the application ontologies. The AO-
DO and the mediated mappings are represented 
using a Description Logics (DL) formalism 
(Calvanese et al. 1998) to take advantage of 
ontological reasoning tasks. Since, we need to 
represent object restructuration; the LO-AO 
mappings are expressed in an extended rule-based 
formalism to overcome DL limitations. 

This paper is organized as follows. Section 2 
gives some definitions and presents an example.  
Section 3 presents concepts about ontology 
matching. Section 4 describes our approach for 
generating application ontologies and mappings.  

2 BASIC DEFINITIONS 

We use extralite schemas (Leme et al., 2009) that 
supports the definition of classes and properties, and 
that admit domain and range constraints,  subset and 
disjoint constraints, minCardinality and 
maxCardinality constraints, with the usual meaning. 

We present an example, adapted from (Casanova 
et al., 2009) of a virtual store mediating access to 
online booksellers. The user provides a domain 
ontology, describing data about virtual sales of 
products; and two local ontologies describing data 
about Amazon and eBay virtual stores. We use the 
namespace prefixes “s:”, “a:” and “e:” to refer to the 
vocabulary of Sales domain ontology (Figure 2(a));  

Amazon and eBay local ontologies (Figure 2(b)). 

3 OWL SCHEMA MATCHING 

Ontology matching is the process of finding 
correspondences between semantically related 
entities of different ontologies (Euzenat and 
Shvaiko, 2000). In the following, we present the two 
main steps of our strategy to the generation of the 
application ontologies, adapted from (Leme et al., 
2009): (1) vocabulary matching, which generates the 
alignment between entities of two different 
ontologies; and (2) concept mapping, which induces 
the mapping rules from the ontology alignment.  

3.1 Vocabulary Matching 

Let OS and OT be two ontologies, and VS and VT be 
their vocabularies, respectively. Let CS and CT be the 
sets of classes and PS and PT the sets of datatype or 
object properties in VS and VT, respectively. A 
contextualized vocabulary matching (Leme et al., 
2009) between the source ontology OS and the target 
ontology OT can be represented by a finite set Q of 
quadruples (v1, e1, v2, e2) such that: (i) if  (v1, v2)  

CS × CT, then e1 and e2 are the top class ⊤; and (ii) if 
(v1, v2)  PS × PT, then e1 and e2 are classes in CS and 
CT that must be subclasses of the domains, or the 
domains themselves, of v1 and v2, respectively. 

If (v1, e1, v2, e2)  Q, we say that: (i) Q matches 
v1 with v2 in the context of e1 and e2; (ii) ei is the 
context of vi; and (iii) (ei, vi) is a contextualized 
concept, for i = 1, 2.  

Even though we do not focus on how these 
correspondences are created, we are aware that the 
correspondences obtained using an existing tool are 
often incomplete or incorrect; therefore, a user 
interaction might be necessary. Figures 3(a) and 3(b) 
show the vocabulary matching. 

3.2 Concept Mapping 

In  this  work,  concept mapping is  induced from the 
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vocabulary matching between ontologies. In general, 
a concept mapping  from OS into OT is a set of 
expressions that define concepts of OT in terms of 
concepts of OS, in such a way that they semantically 
correspond to each other (Leme et al., 2009).  

Concept mappings are usually represented by 
formalisms that deal with homogeneous mappings. 
DL, for example, can be used for inferring implicit 
taxonomic relationships between concepts or between 
concepts and individuals. However, it presents some 
limitations: DL cannot express ternary predicates and 
it does not define suitable mechanisms for the explicit 
building of object identifiers (OIDs). As both features 
are important in our approach, we use a Datalog 
variant with OID-invention (Hull and Yoshikawa, 
1990) to represent concept mappings. 

In the following definition consider that: (i) 
every variable v is a term; (ii) every constant c is a 
term; (iii) if t1, …, tn are terms, and f is an n-ary 
function symbol, then f(t1, …, tn) is a term. 

Let OS and OT be two ontologies and R be a rule 
language. A concept mapping is specified through a 
set of mapping rules, each one of the form: β1(w1)  
α1(v1),…, αm(vm) where α1(v1),…, αm(vm), called the 
body of the mapping, is an atom or a atom 
conjunction, where an atom αi can be an atomic 
concept or an atomic role occurring in the source 
ontology OS, and vi is a sequence of terms; and 
β1(w1), called the head of the mapping, is an atom 
that can be an atomic concept or an atomic role 
occurring in the target ontology OT, and w1 is a 
sequence of terms. This rule-based formalism 
supports Skolem functions (Hull and Yoshikawa, 
1990) for the creation of OIDs of entities in OT from 
one or more entities of OS. In our work, the Skolem 
functions are simply used as URIref generators.  

4 GENERATING APPLICATION 
ONTOLOGIES AND MAPPINGS 

Amazon Sales 
a:title a:Book s:title s:Book
a:pub a:Book s:pub s:Book

a:Book ⊤ s:Book ⊤
a:title a:Music s:title s:Music

a:Music ⊤ s:Music ⊤
a:name a:Publ s:name s:Publ

a:address a:Publ s:address s:Publ
a:Publ ⊤ s:Publ ⊤

Figure 3(a): Vocabulary matching between Amazon local 
ontology and Sales domain ontology. 

Given a local ontology LO, a domain ontology DO, 
a set of quadruples representing the vocabulary 

matching between LO and DO, our algorithm 
generates: (i) classes and properties of AO; (ii) a set 
of LO-AO mapping rules; and (iii) a set of mediated 
mappings. The algorithm checks if each quadruple 
satisfies one of the conditions of Table 1, in order to 
apply the corresponding actions. It follows the order 
of the cases listed in this table, and it is 
deterministic, as the number of quadruples is finite. 

eBay Sales 
e:title e:Product s:title s:Product

e:Product ⊤ s:Product ⊤
e:publisher e:Product s:name s:Publ

Figure 3(b): Vocabulary matching between eBay local 
ontology and Sales domain ontology. 

We now show the results obtained from the 
execution of our algorithm. Figure 4 shows the 
application ontologies. We use the namespace 
prefixes “ap:” and “ep:” to refer to the vocabularies 
of Amazon and eBay application ontologies, 
respectively. 

 

Figure 4: Application Ontologies. 

Figures 5(a) and 5(b) show the LO-AO rules 
induced from the vocabulary matching of Figures 
3(a) and 3(b). In Figure 5(b), the function fpubl is 
used to add an object of class ep:Publ and the 
properties ep:name and ep:pub in the application 
ontology. Figure 6 presents some mediated 
mappings, which allow the definition of a class 
(property) of the domain ontology through a unique 
axiom, composed by unions of classes (properties) 
of the application ontologies. They can be used for 
unfolding a query submitted over the domain 
ontology directly over the application ontologies. 

#1: ap:Book(b)  a:Book(b)  
#2: ap:Product(b)  a:Book(b) 
#3: ap:Music(m)  a:Music(m) 
#4: ap:Product(m)  a:Music(m) 
#5: ap:Publ(p)  a:Publ(p)  
#6: ap:title(b,t)  a:title(b, t), a:Book(b)
#7: ap:pub(b,p)  a:pub(b, p) 
#8: ap:title(m,t) a:title(m, t), a:Music(m) 
#9: ap:name(p, n)  a:name(p, n) 
#10: ap:address(p,a) a:address(p, a) 

Figure 5(a): Mapping rules from the Amazon local 
ontology to the Amazon application ontology. 
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Table 1: From Vocabulary Matching to AO, LO-AO, AO-DO and mediated mappings. 

  Q = set of quadruples qi (lo:v1, lo:e1, do:v2, do:e2) 
  C  = set of classes of AO and  P  = set of properties of AO 

M’ =  set of LO-AO mapping rules 
M_concept  =  set of mediated mappings of this concept 

Condition analyzed for each qi Actions 

Case 1: lo:v1 and do:v2 are classes 

 C := C U {ao:v2};  M_v2 := M_v2 + “⊔”+ {ao:v2};  
 M’ := M’ U {ao:v2(x)  lo:v1(x)};   
 for each superclass S of do:v2 do 
      M’ := M’ U {ao:S(x)  lo:v1(x)};   
       if (ao:S  C) then 
           C:= C U {ao:S};  M_S:= M_S + “⊔”+ {ao:S}; 

Case 2: lo:v1 and do:v2 are properties. Let lo:e1 and do:e2 be the contexts of lo:v1 and do:v2, respectively: 

Case 2.1: Q matches lo:e1 with do:e2 and do:v2 belongs to the class 
do:e2 or to a superclass S of the class do:e2. 

  P  := P  U {ao:v2};  M_v2:= M_v2 + “⊔”+ {ao:v2}; 
 M’ := M’ U {ao:v2(x, y)  lo:v1(x, y), lo:e1(x)};   

Case 2.2: Q does not match lo:e1 with do:e2 but there is a property
path (lo:pk1, lo:pk2, …, lo:pkm) in the source ontology
corresponding to the alignment between lo:v1 and do:v2. 

  P := P  U {ao:v2}; M_v2:= M_v2 + “⊔”+ {ao:v2};  
 M’ := M’ U {ao:v2(x, y)  lo:pk1(x, x1), lo:pk2(x1, x2),…,   
lo:pkm(xm-1,z), lo:v1(z,y)};    

Case 2.3: Q does not match lo:e1 with do:e2 and there is no 
property path that can align properties lo:v1 and do:v2, but the user 
can identify an equivalence between them: 

 C := C U {ao:e2};  M_e2:= M_e2 + “⊔”+ {ao:e2};   
 P := P  U {ao:v2}; M_v2:= M_v2 + “⊔”+ {ao:v2};   

Case 2.3.1: The user proposes a selection condition identifying a 
property lo:pk in the source ontology that allows the alignment 
between properties lo:v1 and do:v2 and contexts lo:e1 and do:e2. 
 

 M’ := M’ U {ao:e2(x)  lo:e1(x), lo:pk(x, ‘select value’)};  
 M’ := M’ U {ao:v2(x, y)  lo:v1(x,y), lo:pk(x, ‘select value’)};  
 for each superclass S of do:e2 do 
        M’ := M’ U {ao:S(x)  lo:e1(x), lo:pk(x, ‘select value’)};  
 if (ao:S  C) then 
     C := C U {ao:S}; M_S:= M_S + “⊔”+ {ao:S};    

Case 2.3.2: The user proposes a restructuring of information in 
the enrolled ontologies creating a function f that allows the 
alignment between properties lo:v1 and do:v2 (y is an inverse 
functional property passed as argument to f). 

 M’ := M’ U {ao:e2(f(y))  lo:v1(x,y)};  
 M’ := M’ U {ao:v2(f(y), y)  lo:v1(x,y)};  
 P := P  U {ao:p2}; M_p2:= M_p2 + “⊔”+  {ao:p2};   
 M’ := M’ U {ao:p2 (x, f(y))  lo:v1(x,y)};  
 

#1:ep:Book(p)  e:Product(p),e:type(p,´book´) 
#2:ep:Product(p) e:Product(p),e:type(p,´book´) 
#3:ep:Music(p) e:Product(p),e:type(p,´music´) 
#4:ep:Product(p) e:Product(p),e:type(p,´music´) 
#5:ep:title(p,t) e:title(p,t),e:type(p,´book´) 
#6:ep:title(p,t) e:title(p,t),e:type(p,´music´) 
#7:ep:Publ(fpubl(n))e:publisher(b,n),e:type(b,´book´) 
#8:ep:name(fpubl(n),n)e:publisher(b,n),e:type(b,´book´) 
#9:ep:pub(b,fpubl(n)) e:publisher(b,n),e:type(b,´book´) 

Figure 5(b): Mapping rules from the eBay local ontology 
to the eBay application ontology. 

Product ≡ ap:Product ⊔ ep:Product      
title ≡ ap:title ⊔ ep:title   
Book ≡ ap:Book ⊔ ep:Book  ... 

Figure 6: Some of the mediated mappings. 

REFERENCES 

Calvanese, D., De Giacomo, G., Lenzerini, M., Lembo, 
D., Poggi, A., Rosati, R., 2007. MASTRO-I: Efficient 
Integration of Relational Data through DL Ontologies. 
In: Proc. DL Workshop'07, pp. 227 – 234.  

Calvanese, D., Lenzerini, M., Nardi, D., 1998. Description 
Logics for Conceptual Data Modeling. In: Logics for 
Databases and Information Systems. Kluwer 
Academic Publisher. 

Casanova, M.A., Lauschner, T., Leme, L.A.P., Breitman, 
K.K; Furtado, A.L., Vidal, V. M. P., 2009. A Strategy 
to Revise the Constraints of the Mediated Schema. In: 
Proc. 28th Conf. on Conceptual Modeling, pp. 265-
279, Gramado, Brazil. 

Euzenat, J., Shvaiko, P., 2007. Ontology Matching. 
Springer, Heidelberg. 

Hull, R., Yoshikawa, M., 1990. ILOG: Declarative 
Creation and Manipulation of Object Identifiers. In: 
Proc. VLDB 1990, pp. 455-468. 

Leme, L. A. P., Casanova, M. A., Breitman, K. K., 
Furtado, A. L., 2009. Instance-based OWL Schema 
Matching. In: Proc. 11th International Conf. on 
Enterprise Information Systems, Milan, Italy. 

Lutz, M., 2006. Ontology-based Discovery and 
Composition of Geographic Information Services. Phd 
Thesis, Institut für Geoinformatik. 

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

406


