
TOWARDS AUTOMATIC GENERATION OF APPLICATION
ONTOLOGIES

Eveline R. Sacramento, Vânia M. P. Vidal, José Antônio F. de Macêdo, Bernadette F. Lóscio
Fernanda Lígia R. Lopes, Fernando Lemos

Department of Computing, Federal University of Ceará, Fortaleza-CE, Brazil

Marco A. Casanova
Department of Informatics, PUC-Rio, Rio de Janeiro-RJ, Brazil

Keywords: Semantic Heterogeneity, Ontologies, Ontology Matching, Data Integration, Schema Mappings, Rules.

Abstract: In the Semantic Web, domain ontologies can provide the necessary support for linking together a large
number of heterogeneous data sources. In our proposal, these data sources are describe as local ontologies
using an ontology language. Then, each local ontology is rewritten as an application ontology, whose
vocabulary is restricted to be a subset of the vocabulary of the domain ontology. Application ontologies
enable the identification and the association of semantically corresponding concepts, so they are useful for
enhancing tasks like data discovery and integration. The main contribution of this work is a strategy to
automatically generate such application ontologies and mappings, considering a set of local ontologies, a
domain ontology and the result of the matching between each local ontology and the domain ontology.

1 INTRODUCTION

The Web is a complex and vast repository of
information that is often stored in heterogeneous and
distributed data sources. Problems that might arise
due to heterogeneity of the data are already well
known within the database community: syntactic
heterogeneity and semantic heterogeneity.

In nearly all recent researches on data integration,
ontologies provide a possible approach to address the
problem of semantic heterogeneity. In general, two
architectures for data integration can be identified: two-
level and three-level ontology-based architectures.

The main components of the two-level
architecture (Figure 1(a)) are: the domain ontology
(DO); the local ontologies (LO), which describe the
data sources using an ontology language; and the
mapping that specifies the correspondences between
the local ontologies and the domain ontology (LO-
DO mappings). The work presented in (Calvanese et
al., 2007) adopts this architecture. The main
components of the three-level architecture (Figure
1(b)) are: the domain ontology (DO); the local
ontologies (LO); the application ontologies (AO),
which rewrite the local ontologies using a subset of

the vocabulary of the domain ontology; the mapping
that specifies the correspondences between the
application ontologies and the domain ontology
(AO-DO mappings); and the mapping that specifies
the correspondences between the local ontologies
and the application ontologies (LO-AO mappings).
The work of (Lutz, 2006) adopts this architecture.

Figure 1: (a) Two-Level Ontology-Based Architecture.
(b) Three-Level Ontology-Based Architecture.

The main problems that concern to both
architectures are: (i) how to specify the mappings;
and (ii) how to use the mappings to answer correctly
the queries posed on the domain ontology. In the
two-level architecture, the domain ontology is only
used for specifying the mediated schema. So the user
has to define, which we call heterogeneous

403R. Sacramento E., P. Vidal V., F. de Macêdo J., Lóscio B., R. Lopes F., Lemos F. and Casanova M. (2010).
TOWARDS AUTOMATIC GENERATION OF APPLICATION ONTOLOGIES.
In Proceedings of the 12th International Conference on Enterprise Information Systems - Databases and Information Systems Integration, pages
403-406
DOI: 10.5220/0002909704030406
Copyright c© SciTePress

Figure 2: (a) Domain Ontology; (b) Local Ontologies.

mappings, between entities of the local ontologies
and the domain ontology, as such ontologies do not
share the same vocabulary and also because of the
structural heterogeneity. In the three-level
architecture, the domain ontology is used for both
specifying the mediated schema and as a shared
vocabulary. As the application ontologies are subsets
of the domain ontology, the user can define
homogeneous mappings between these ontologies.

In our approach, application ontologies are used
to divide the definition of the mappings into two
stages: AO-DO mappings and LO-AO mappings.
We use mediated mappings to define the classes and
properties of the domain ontology in terms of the
vocabularies of the application ontologies. The AO-
DO and the mediated mappings are represented
using a Description Logics (DL) formalism
(Calvanese et al. 1998) to take advantage of
ontological reasoning tasks. Since, we need to
represent object restructuration; the LO-AO
mappings are expressed in an extended rule-based
formalism to overcome DL limitations.

This paper is organized as follows. Section 2
gives some definitions and presents an example.
Section 3 presents concepts about ontology
matching. Section 4 describes our approach for
generating application ontologies and mappings.

2 BASIC DEFINITIONS

We use extralite schemas (Leme et al., 2009) that
supports the definition of classes and properties, and
that admit domain and range constraints, subset and
disjoint constraints, minCardinality and
maxCardinality constraints, with the usual meaning.

We present an example, adapted from (Casanova
et al., 2009) of a virtual store mediating access to
online booksellers. The user provides a domain
ontology, describing data about virtual sales of
products; and two local ontologies describing data
about Amazon and eBay virtual stores. We use the
namespace prefixes “s:”, “a:” and “e:” to refer to the
vocabulary of Sales domain ontology (Figure 2(a));

Amazon and eBay local ontologies (Figure 2(b)).

3 OWL SCHEMA MATCHING

Ontology matching is the process of finding
correspondences between semantically related
entities of different ontologies (Euzenat and
Shvaiko, 2000). In the following, we present the two
main steps of our strategy to the generation of the
application ontologies, adapted from (Leme et al.,
2009): (1) vocabulary matching, which generates the
alignment between entities of two different
ontologies; and (2) concept mapping, which induces
the mapping rules from the ontology alignment.

3.1 Vocabulary Matching

Let OS and OT be two ontologies, and VS and VT be
their vocabularies, respectively. Let CS and CT be the
sets of classes and PS and PT the sets of datatype or
object properties in VS and VT, respectively. A
contextualized vocabulary matching (Leme et al.,
2009) between the source ontology OS and the target
ontology OT can be represented by a finite set Q of
quadruples (v1, e1, v2, e2) such that: (i) if (v1, v2)

CS × CT, then e1 and e2 are the top class ⊤; and (ii) if
(v1, v2) PS × PT, then e1 and e2 are classes in CS and
CT that must be subclasses of the domains, or the
domains themselves, of v1 and v2, respectively.

If (v1, e1, v2, e2) Q, we say that: (i) Q matches
v1 with v2 in the context of e1 and e2; (ii) ei is the
context of vi; and (iii) (ei, vi) is a contextualized
concept, for i = 1, 2.

Even though we do not focus on how these
correspondences are created, we are aware that the
correspondences obtained using an existing tool are
often incomplete or incorrect; therefore, a user
interaction might be necessary. Figures 3(a) and 3(b)
show the vocabulary matching.

3.2 Concept Mapping

In this work, concept mapping is induced from the

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

404

vocabulary matching between ontologies. In general,
a concept mapping from OS into OT is a set of
expressions that define concepts of OT in terms of
concepts of OS, in such a way that they semantically
correspond to each other (Leme et al., 2009).

Concept mappings are usually represented by
formalisms that deal with homogeneous mappings.
DL, for example, can be used for inferring implicit
taxonomic relationships between concepts or between
concepts and individuals. However, it presents some
limitations: DL cannot express ternary predicates and
it does not define suitable mechanisms for the explicit
building of object identifiers (OIDs). As both features
are important in our approach, we use a Datalog
variant with OID-invention (Hull and Yoshikawa,
1990) to represent concept mappings.

In the following definition consider that: (i)
every variable v is a term; (ii) every constant c is a
term; (iii) if t1, …, tn are terms, and f is an n-ary
function symbol, then f(t1, …, tn) is a term.

Let OS and OT be two ontologies and R be a rule
language. A concept mapping is specified through a
set of mapping rules, each one of the form: β1(w1)
α1(v1),…, αm(vm) where α1(v1),…, αm(vm), called the
body of the mapping, is an atom or a atom
conjunction, where an atom αi can be an atomic
concept or an atomic role occurring in the source
ontology OS, and vi is a sequence of terms; and
β1(w1), called the head of the mapping, is an atom
that can be an atomic concept or an atomic role
occurring in the target ontology OT, and w1 is a
sequence of terms. This rule-based formalism
supports Skolem functions (Hull and Yoshikawa,
1990) for the creation of OIDs of entities in OT from
one or more entities of OS. In our work, the Skolem
functions are simply used as URIref generators.

4 GENERATING APPLICATION
ONTOLOGIES AND MAPPINGS

Amazon Sales
a:title a:Book s:title s:Book
a:pub a:Book s:pub s:Book

a:Book ⊤ s:Book ⊤
a:title a:Music s:title s:Music

a:Music ⊤ s:Music ⊤
a:name a:Publ s:name s:Publ

a:address a:Publ s:address s:Publ
a:Publ ⊤ s:Publ ⊤

Figure 3(a): Vocabulary matching between Amazon local
ontology and Sales domain ontology.

Given a local ontology LO, a domain ontology DO,
a set of quadruples representing the vocabulary

matching between LO and DO, our algorithm
generates: (i) classes and properties of AO; (ii) a set
of LO-AO mapping rules; and (iii) a set of mediated
mappings. The algorithm checks if each quadruple
satisfies one of the conditions of Table 1, in order to
apply the corresponding actions. It follows the order
of the cases listed in this table, and it is
deterministic, as the number of quadruples is finite.

eBay Sales
e:title e:Product s:title s:Product

e:Product ⊤ s:Product ⊤
e:publisher e:Product s:name s:Publ

Figure 3(b): Vocabulary matching between eBay local
ontology and Sales domain ontology.

We now show the results obtained from the
execution of our algorithm. Figure 4 shows the
application ontologies. We use the namespace
prefixes “ap:” and “ep:” to refer to the vocabularies
of Amazon and eBay application ontologies,
respectively.

Figure 4: Application Ontologies.

Figures 5(a) and 5(b) show the LO-AO rules
induced from the vocabulary matching of Figures
3(a) and 3(b). In Figure 5(b), the function fpubl is
used to add an object of class ep:Publ and the
properties ep:name and ep:pub in the application
ontology. Figure 6 presents some mediated
mappings, which allow the definition of a class
(property) of the domain ontology through a unique
axiom, composed by unions of classes (properties)
of the application ontologies. They can be used for
unfolding a query submitted over the domain
ontology directly over the application ontologies.

#1: ap:Book(b) a:Book(b)
#2: ap:Product(b) a:Book(b)
#3: ap:Music(m) a:Music(m)
#4: ap:Product(m) a:Music(m)
#5: ap:Publ(p) a:Publ(p)
#6: ap:title(b,t) a:title(b, t), a:Book(b)
#7: ap:pub(b,p) a:pub(b, p)
#8: ap:title(m,t) a:title(m, t), a:Music(m)
#9: ap:name(p, n) a:name(p, n)
#10: ap:address(p,a) a:address(p, a)

Figure 5(a): Mapping rules from the Amazon local
ontology to the Amazon application ontology.

TOWARDS AUTOMATIC GENERATION OF APPLICATION ONTOLOGIES

405

Table 1: From Vocabulary Matching to AO, LO-AO, AO-DO and mediated mappings.

 Q = set of quadruples qi (lo:v1, lo:e1, do:v2, do:e2)
 C = set of classes of AO and P = set of properties of AO

M’ = set of LO-AO mapping rules
M_concept = set of mediated mappings of this concept

Condition analyzed for each qi Actions

Case 1: lo:v1 and do:v2 are classes

 C := C U {ao:v2}; M_v2 := M_v2 + “⊔”+ {ao:v2};
 M’ := M’ U {ao:v2(x) lo:v1(x)};
 for each superclass S of do:v2 do
 M’ := M’ U {ao:S(x) lo:v1(x)};
 if (ao:S C) then
 C:= C U {ao:S}; M_S:= M_S + “⊔”+ {ao:S};

Case 2: lo:v1 and do:v2 are properties. Let lo:e1 and do:e2 be the contexts of lo:v1 and do:v2, respectively:

Case 2.1: Q matches lo:e1 with do:e2 and do:v2 belongs to the class
do:e2 or to a superclass S of the class do:e2.

 P := P U {ao:v2}; M_v2:= M_v2 + “⊔”+ {ao:v2};
 M’ := M’ U {ao:v2(x, y) lo:v1(x, y), lo:e1(x)};

Case 2.2: Q does not match lo:e1 with do:e2 but there is a property
path (lo:pk1, lo:pk2, …, lo:pkm) in the source ontology
corresponding to the alignment between lo:v1 and do:v2.

 P := P U {ao:v2}; M_v2:= M_v2 + “⊔”+ {ao:v2};
 M’ := M’ U {ao:v2(x, y) lo:pk1(x, x1), lo:pk2(x1, x2),…,
lo:pkm(xm-1,z), lo:v1(z,y)};

Case 2.3: Q does not match lo:e1 with do:e2 and there is no
property path that can align properties lo:v1 and do:v2, but the user
can identify an equivalence between them:

 C := C U {ao:e2}; M_e2:= M_e2 + “⊔”+ {ao:e2};
 P := P U {ao:v2}; M_v2:= M_v2 + “⊔”+ {ao:v2};

Case 2.3.1: The user proposes a selection condition identifying a
property lo:pk in the source ontology that allows the alignment
between properties lo:v1 and do:v2 and contexts lo:e1 and do:e2.

 M’ := M’ U {ao:e2(x) lo:e1(x), lo:pk(x, ‘select value’)};
 M’ := M’ U {ao:v2(x, y) lo:v1(x,y), lo:pk(x, ‘select value’)};
 for each superclass S of do:e2 do
 M’ := M’ U {ao:S(x) lo:e1(x), lo:pk(x, ‘select value’)};
 if (ao:S C) then
 C := C U {ao:S}; M_S:= M_S + “⊔”+ {ao:S};

Case 2.3.2: The user proposes a restructuring of information in
the enrolled ontologies creating a function f that allows the
alignment between properties lo:v1 and do:v2 (y is an inverse
functional property passed as argument to f).

 M’ := M’ U {ao:e2(f(y)) lo:v1(x,y)};
 M’ := M’ U {ao:v2(f(y), y) lo:v1(x,y)};
 P := P U {ao:p2}; M_p2:= M_p2 + “⊔”+ {ao:p2};
 M’ := M’ U {ao:p2 (x, f(y)) lo:v1(x,y)};

#1:ep:Book(p) e:Product(p),e:type(p,´book´)
#2:ep:Product(p) e:Product(p),e:type(p,´book´)
#3:ep:Music(p) e:Product(p),e:type(p,´music´)
#4:ep:Product(p) e:Product(p),e:type(p,´music´)
#5:ep:title(p,t) e:title(p,t),e:type(p,´book´)
#6:ep:title(p,t) e:title(p,t),e:type(p,´music´)
#7:ep:Publ(fpubl(n))e:publisher(b,n),e:type(b,´book´)
#8:ep:name(fpubl(n),n)e:publisher(b,n),e:type(b,´book´)
#9:ep:pub(b,fpubl(n)) e:publisher(b,n),e:type(b,´book´)

Figure 5(b): Mapping rules from the eBay local ontology
to the eBay application ontology.

Product ≡ ap:Product ⊔ ep:Product
title ≡ ap:title ⊔ ep:title
Book ≡ ap:Book ⊔ ep:Book ...

Figure 6: Some of the mediated mappings.

REFERENCES

Calvanese, D., De Giacomo, G., Lenzerini, M., Lembo,
D., Poggi, A., Rosati, R., 2007. MASTRO-I: Efficient
Integration of Relational Data through DL Ontologies.
In: Proc. DL Workshop'07, pp. 227 – 234.

Calvanese, D., Lenzerini, M., Nardi, D., 1998. Description
Logics for Conceptual Data Modeling. In: Logics for
Databases and Information Systems. Kluwer
Academic Publisher.

Casanova, M.A., Lauschner, T., Leme, L.A.P., Breitman,
K.K; Furtado, A.L., Vidal, V. M. P., 2009. A Strategy
to Revise the Constraints of the Mediated Schema. In:
Proc. 28th Conf. on Conceptual Modeling, pp. 265-
279, Gramado, Brazil.

Euzenat, J., Shvaiko, P., 2007. Ontology Matching.
Springer, Heidelberg.

Hull, R., Yoshikawa, M., 1990. ILOG: Declarative
Creation and Manipulation of Object Identifiers. In:
Proc. VLDB 1990, pp. 455-468.

Leme, L. A. P., Casanova, M. A., Breitman, K. K.,
Furtado, A. L., 2009. Instance-based OWL Schema
Matching. In: Proc. 11th International Conf. on
Enterprise Information Systems, Milan, Italy.

Lutz, M., 2006. Ontology-based Discovery and
Composition of Geographic Information Services. Phd
Thesis, Institut für Geoinformatik.

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

406

