
WORK PRODUCT-DRIVEN SOFTWARE DEVELOPMENT
METHODOLOGY IMPROVEMENT

Paul Bogg, Graham Low
School of Information Systems, Technology and Management, University of New South Wale, Sydney, NSW 2052, Australia

Brian Henderson-Sellers
School of Software, University of Technology of Sydney, PO Box 123 Broadway, Sydney, NSW 2007, Australia

Ghassan Beydoun
School of Information Systems and Technology, University of Wollongong, Wollongong, NSW 2522, Australia

Keywords: Software Development Methodologies, Method Engineering, Software Process Improvement, MOBMAS.

Abstract: A work product is a tangible artifact used during a software development project; for example, a
requirements specifications or class model diagram. Towards a general approach for evaluating and
potentially improving the quality of methodologies, this paper proposes utilizing a work product-based
approach to method construction known as the “work product pool” approach to situational method
engineering to accomplish this quality improvement. Starting from the final software application and
identifying work product pre-requisites by working backwards through the methodology process, work
product inter-dependencies are revealed. Using method fragments from a specific methodology (here,
MOBMAS), we use this backward chaining approach to effectively recreate that methodology. Evaluation
of the artificially recreated methodology allows the identification of missing and/or extraneous method
elements and where process steps could be improved.

1 INTRODUCTION

Methodologies for software development involve
key elements of user roles, tasks they perform and
work products they produce and consume. In the
development stage of a methodology, either for
general, widespread use (e.g. as published in text
books) or for a specific organization, the traditional
approach has been to focus initially on the work that
is done (often given labels such as tasks, activities or
processes). Only secondarily is consideration given
to the work products that are either produced or
consumed. [A work product is a tangible artefact
used during a software development project, for
instance, requirements specifications, class model
diagrams, and use case specifications.] In other
words, the focus is on a methodology as a series of
connected transformation engines where each of
these transformation engines has one or more input

work products and one or more output work
products. The network of work units and work
products will ultimately lead to a work product that
is the final application but it does not guarantee that
there will be no cul de sacs i.e. by identifying first a
work unit in the early stages of the methodology’s
lifecycle, then taking the output (a work product) of
this work unit and making it the input of a second
work unit – and so on – we derive a network of work
units and work products that may culminate in a
work product that is of no value whatsoever. In other
words, this is a Taylorian approach by which
methodology is equivalent to a series of work units
that may include several non-essential elements.

As an alternative, arguing that the most
important element of software development is the
final application (a work product), we can invert the
argument and ensure that our final work product is
the target software application by working
backwards from this clearly necessary final work

5
Bogg P., Low G., Henderson-Sellers B. and Beydoun G. (2010).
WORK PRODUCT-DRIVEN SOFTWARE DEVELOPMENT METHODOLOGY IMPROVEMENT.
In Proceedings of the 5th International Conference on Software and Data Technologies, pages 5-13
DOI: 10.5220/0002898200050013
Copyright c© SciTePress

product to ask what work products are prerequisites
to it and then, and only then, what are the work units
(tasks acting as transformation engines, for example)
that will link this prerequisite work product (input)
to the output work product. Having established this
work product and work unit, we continue chaining
backwards until the initial requirements statements
are identified. This is the so-called “work product
pool” (WPP) approach, recently argued (Gonzalez-
Perez and Henderson-Sellers, 2008) to provide a
higher quality methodology – in the sense of
containing no redundant elements.

The WPP approach supports methodology
creation from method fragments (Harmsen et al.,
1994) within the auspices of the situational method
engineering (SME) paradigm (e.g. Ralyté et al.,
2007). SME is the engineering discipline aimed at
creating a methodology from the contents of a
previously constructed methodbase (Saeki et al.,
1993) specifically attuned to the project (or set of
projects) at hand. Furthermore, SME has a flexibility
that can be capitalized upon in the context of
software process improvement (Henderson-Sellers et
al., 2007). The analysis presented here of our case
study methodology can be regarded in the same
context of software process improvement (SPI)
although, generally, methods for SPI are process-
oriented rather than work product focussed and have
a wider scope for potential improvements than those
discussed here i.e. our approach makes a minor
contribution to SPI.

Although the WPP approach can be argued to be
generally applied in all kinds of software
development (and perhaps, arguably, to a wider
range of human-intensive methods than just
software), in this paper we make a choice – and
investigate its application in a case study of a single
agent-oriented software engineering (AOSE)
methodology: MOBMAS (Methodology for
Ontology-Based Multi-Agent Systems
Development: Tran et al., 2006; Tran and Low,
2008). MOBMAS has been constructed with the
traditional mindset of retaining a focus on work
units as transformation engines. Here, we
investigate, firstly, whether the WPP approach can
be successfully used in re-constructing MOBMAS
using backward chaining rather than the forward
chaining implicit in the methodology descriptions in
the MOBMAS literature and, secondly, whether the
WPP approach can give added insights and perhaps
improvements to MOBMAS. For example, a
backward chained, reconstructed MOBMAS may
have additional work products or we may be able to
identify unnecessary work products as postulated by

Tran and Low (2008) but which the WPP approach
identifies as having little or no value in creating the
final software application work product.

In the next section, we outline the overall
background to software development methodology
creation followed by an evaluation of how a work-
product-driven approach may be applied to the issue
of methodology improvement and possible
improvement. Section 4 then applies the general
arguments of Section 3 to the chosen MOBMAS
methodology. Final discussions and conclusions are
to be found in Section 5.

2 WORK PRODUCT DRIVEN
METHODOLOGY
EVALUATION AND SPI

When members of a software development team use
a methodology, they need to be assured of its
quality, particularly in terms of completeness and,
conversely, in ensuring that they do not undertake
any tasks that provide no real value. Here, we apply
the WPP approach, as outlined above, as an
evaluative tool for existing software development
methodologies. In this section we describe the way
in which quality assessment could be undertaken
and, in Section 4, we illustrate this with a case study
of one specific methodology from the literature –
MOBMAS (Tran and Low, 2008) as being one that
is familiar to us.

The decision to undertake this methodology
evaluation could be either as a simple quality check
for a newly constructed methodology or because
there is some indication that the methodology in use
either lacks elements or contains extraneous
elements. Whatever the reason for deciding to
undertake a methodology assessment, the result of
the assessment will have the same format:
recommendations for “improvements”, which may
loosely be called SPI.

We propose a four step assessment process:
1. Work Product elicitation – identifying work

product types, and relationships (inter-
dependencies) between work product types: both
then stored as method fragments in a
methodology-specific repository or methodbase
(Saeki, et al., 1993).

2. Using the backward chaining approach of the
WPP approach, and using only method
fragments (identified in step 1) from the
methodology-under-investigation, recreate the
target methodology. This we will call the “WPP-

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

6

reconstituted methodology” or WPPM.
3. Analyze the WPPM for missing elements or for

work product types that are outputs only (using
the rule that all work products output during a
development must necessarily also be inputs to
some other process element – excepting the final
deliverable software of course).

4. Draw up a document making suggestions for
revising the methodology for presentation to
decision-makers such as in-house methodologist,
CTO, project manager.

These steps are detailed in the following.

2.1 Step 1: Work Product Type
Elicitation and Specification

Work product type elicitation begins by considering
(a model of) a software application. Then, by
working backwards through the methodology
process, work product pre-requisites are identified.
The elicitation of work products enables
identification of the process steps required to
produce them and is guided by definitions for four
key methodology components:
 Work Product type – specification of an artefact

of interest, to be of use for a methodology
instance

 Work Product Group – a group of closely
interrelated work product types

 Task type – specification of a small-grained job
performed within a methodology instance,
including production of work products

 Process steps – a collection of task types that
produce a work product type
The elicitation of work product types, work

product groups, task types and process steps is the
basis upon which evaluations (in Step 3) are
conducted on the methodology as a whole. For each
Work Product type, we then identify the following:
 Work Product type dependencies between pairs

of work product types. There are two types:
▫ Production dependencies – where this work

product type is (partially) derived from
another work product type.

▫ Verification dependencies – where a work
product type specifies retrospective
verification with another work product type.
Verification might mandate further revision
to work product types to bring about
consistency. Consistency is important for
ensuring the integrity of the development
process (i.e. requirements are addressed with
analysis, and ultimately in design).

Verification may require that work products
are mutually revised to ensure consistency.

Consequently we can identify:
 Task types that produce the work product types
 Work Product Groups – where work product

types are closely related by similarity
Work product types are identified from the

published literature on the target methodology. Each
work product type is defined, and: production and
verification dependencies identified.

Once these model fragments have been identified
in isolation and stored in a methodology-specific
methodbase, in Step 2 we now use them to
reconstruct the methodology following the WPP
approach for method construction.

2.2 Step 2: Develop WPPM

In Step 2, the WPPM is constructed from the work
product types, connected using task types. The
WPPM may make use of work product groups to
provide a higher-level overview, which is
particularly beneficial when making global, project
wide comparisons to a methodology.

Conducting the reconstruction process may
identify methodology problems when:
 Work products are redundant;
 Work product dependencies are missing or

unnecessary;
 Work products are introduced at an inappropriate

point in the process
These problems may mandate methodology

revision if they cause inefficiencies for project
contexts. Where one or more of these problems
arise, further analysis can determine how they
should be resolved. Suggestions on how to address
the problems are discussed in Step 3 and formalized
in Step 4.

2.3 Step 3: Analyze the WPPM

The aim of this step is to detail possible areas for
improvement, elaborating on those areas identified
in Step 2 as potentially problematical and/or identify
new concerns. Two types of analysis are:
i) Identifying whether work products can be

developed in parallel
ii) Identifying types of skill sets necessary for

enacting the methodology
Where traditional software development

processes are enacted in a linear order,
recommendations for methodology improvement
may be made to improve coordination of software

WORK PRODUCT-DRIVEN SOFTWARE DEVELOPMENT METHODOLOGY IMPROVEMENT

7

development. For i), identifying that two work
product groups can be developed in parallel might
be beneficial for streamlining software development.
For ii), identifying skill sets might be beneficial for
understanding in what parts of the development
process particular skills are needed. Management
recommendations are proposed amendments to the
methodology that may improve the efficiency of
methodology enactments (Step 4).

2.4 Step 4: Document and Formalize
the Recommended Improvements
to the Methodology

Where problems have been identified in Steps 2 and
3, methodology revisions might be needed. It is
recommended that further analysis is made to
understand the significance of problems identified.
For significant problems, the following heuristics
may be used to formalize problems:

Where a Work Product type has no dependencies
of any kind, it is removed
 Where a Work Product type has missing

dependencies, then add a task type connection
 Where a Work Product type has unnecessary

dependencies, remove a task type connection
 Where two similar Work Product types have the

same dependencies to other work products,
attempt to identify whether the two Work
Product typescanb e consolidated to one.

 Where Work Product types have been introduced
at inappropriate points, use the dependencies to
work out the best place to introduce them in the
methodology process
There are notable exceptions to these heuristics.

For instance, initial work products will not have
dependencies and may not need to be removed.
Ultimately, revision to the methodology should only
be undertaken when it is certain that the revision will
lead to an improvement to the methodology as a
whole.

3 REVISING MOBMAS

The application of this WPP-driven revision of a
methodology is further illustrated by one specific
case study – the analysis of MOBMAS.

In MOBMAS, the MAS development starts with
a domain ontology, used initially to identify goals
and roles of the system to index an appropriate set of
problem solving capabilities from an appropriate
existing library of capabilities. Individual ontologies

corresponding to the knowledge requirements of
each capability are then extracted from the initial
common ontology to provide knowledge
representation and allow reasoning by individual
agents. Those ontologies form the basis for an
iterative process to develop a common
communication ontology between all agents and
verify the knowledge requirements of chosen
capabilities. Individual, localised ontologies may
require incremental refinement during the iterative
process. Appropriate ontology mappings are needed
between local ontologies and the communication
ontology. The development of an MAS using
MOBMAS has five activities (Figure 1). Each
focuses on one of the following key area of MAS
development: Analysis, Organization Design, Agent
Internal Design, Agent Interaction Design and
Architecture Design.

Analysis Activity: This aims to form a
conception of the target MAS from the domain
ontology and the system requirements, giving a first-
cut identification of the roles and tasks that compose
the MAS. It consists of developing the following
five models: System Task Model, Organizational
Context Model, Role model, Ontology Model as
well as identification of Ontology-Management
Role. The Role Model is developed in a highly
iterative manner with the System Task Model, given
the association between roles, role tasks and system
tasks. The Ontology Model is used to refine and
validate those models (and vice versa). This activity
also specifies the ontological mappings between the
MAS Application Ontologies.

MAS Organization Design: This refines the
organizational structure of the target MAS and
identifies a set of agent classes composing the
system. If the MAS is a heterogeneous system that
contains non-agent resources, these are also
identified and their applications are conceptualized.
It consists of the following four steps: Specify the
MAS Organizational Structure, Develop the Agent
Class Model; Develop the Resource Model; and
Refine the Ontology Model of the previous activity.
The developer also specifies the mappings between
Resource Application Ontologies and relevant MAS
Application Ontologies, to enable the integration of
these resources into the MAS application and to
support the interoperability between heterogeneous
resources.

Agent Internal Design: For each agent class, this
activity specifies belief conceptualization, agent
goals, events, plan templates and reactive rules. It
consists of the following five steps: Specify Agent
Class’ Belief Conceptualization identifying which

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

8

1. Develop System Task Model

2.Analyze organizational
context (optional)

3. Develop Role
Model

4. Develop Ontology Model

5.Identify ontology management role

ANALYSIS

AGENT INTERNAL DESIGN
1.Specify agent class’ belief

conceptualization

2.Specify agent goals

3.Specify events

4.Develop Agent Behavior
Model

AGENT INTERACTION DESIGN

2.Develop Agent Interaction
Model

1.Select interaction mechanism

MAS ORGANISATION DESIGN

2.Develop Agent Class
Model

1.Specify organizational structure

3.Specify resources (optional)

4.Extend Ontology Model to include
Resource application ontologies

(optional)

4.Instantiate agent classes

3.Specify infrastructure facilities

2.Select agent architecture

1.Identify agent-environment interface
requirements

ARCHITECTURE DESIGN

5.Develop Deployment Diagram

1. Develop System Task Model

2.Analyze organizational
context (optional)

3. Develop Role
Model

4. Develop Ontology Model

5.Identify ontology management role

ANALYSIS

AGENT INTERNAL DESIGN
1.Specify agent class’ belief

conceptualization

2.Specify agent goals

3.Specify events

4.Develop Agent Behavior
Model

AGENT INTERACTION DESIGN

2.Develop Agent Interaction
Model

1.Select interaction mechanism

MAS ORGANISATION DESIGN

2.Develop Agent Class
Model

1.Specify organizational structure

3.Specify resources (optional)

4.Extend Ontology Model to include
Resource application ontologies

(optional)

4.Instantiate agent classes

3.Specify infrastructure facilities

2.Select agent architecture

1.Identify agent-environment interface
requirements

ARCHITECTURE DESIGN

5.Develop Deployment Diagram

Figure 1: MOBMAS development process: Solid arrows represent the flow of steps within and across activities; dotted
arrows indicate potential iterative cycles of steps. Models produced or refined by each step are shown in square brackets.

part(s) of the Ontology Model are needed by an
agent class to conceptualize its run-time beliefs;
Specify Agent Goals identifying the states of the
world that an agent class aims to achieve or satisfy
using the Role Model; Specify Events in the
environment that agents need to respond to at run-
time; Develop Agent Behaviour Model specifying

how each agent class behaves to achieve or satisfy
each agent goal as planning behaviour or reactive
behaviour; and Update the Agent Class Diagram
with the details identified in the previous three steps.
The Agent Behaviour Model is checked for
consistency against the Ontology Model and vice
versa.

WORK PRODUCT-DRIVEN SOFTWARE DEVELOPMENT METHODOLOGY IMPROVEMENT

9

Agent Interaction Design: This models the
interactions between agent instances, by selecting a
suitable interaction mechanism for the target MAS
and modelling the interactions. It has two steps:
Decide which interaction mechanism is best suited
to the target MAS (direct or indirect); and then
Define how agents interact depending on the
selected interaction mechanism. The resultant Agent
Interaction Model is represented by a set of
Interaction Protocol Diagrams. The developer
validates the Agent Interaction Model against the
Ontology Model. The Agent Class Model is also
checked to ensure that all communicating agent
classes share the same application ontologies that
govern their interactions. Lastly, the Agent
Relationship Diagram is updated to show descriptive
information about each interaction pathway between
agent classes.

Architecture Design: This activity deals with
various design issues relating to agent architecture
and MAS architecture. It has the following five
steps: Identify Agent-Environment interface
requirements; Select Agent Architecture for the most
appropriate architecture(s) for agents in the MAS;
Specify MAS Infrastructure facilities identifying
system components that are needed to provide
system-specific services; Instantiate agent classes;
and Develop MAS deployment plan.

The application of Step 1 is the elicitation of
work products from the MOBMAS methodology,
beginning from the final work product, MAS
Deployment Diagram. Each work product type that
is identified (as a method fragment) is shown in
Table 1, together with an allocated ID number.
These IDs are then used in the fourth and fifth
columns of this matrix table to identify the work
product types with which the work product type in
column 2 has a dependency (either a production
dependency or a verification dependency).

To simplify the analysis in this proof-of-concept
example, we group the various models in MOBMAS
as shown in column 1 of Table 1.

Step 2 focuses on the construction of a WPPM
for MOBMAS. To limit our discussion here, rather
than individual work products, we propose to
continue to use work product groups.

Starting with the deliverable software
application, the immediately precedent models are
those of the Architecture Group. In order to be able
to create these models, it is necessary to have in
hand the models of the Agent Interaction Model,
Agent Class Model and Agent Behaviour Model
groups. We then link these with available
relationship types (dependencies) — Figure 2.

This reconstruction continues iteratively until the
full methodology is created (Figure 3) with work
product types connected to task types.

Analysis of this diagram (Step 3) reveals there
are four work product types (System Task Model,
Organisation Context Chart, Agent Tuple-Centre
Diagram and Agent Architecture Diagram) that do
not have dependencies on other work products. For
these, further analysis is required to determine
whether they contribute to the overall methodology.
The first three each have work product types that are
dependent on them while the fourth, Agent
Architecture Diagram, documents the selected
architecture to be used. MOBMAS recommends the
adoption of an existing architecture where possible.
This closer analysis suggests no changes are
required.

A number of work products may also have
unnecessary work product dependencies:
 Interaction Protocol Diagram
 Agent-Tuple-Space Interaction Diagram

If both of these work product types are derived from
Agent Plan Template, Reflexive Rule Specification
and Agent Plan Diagram, then they should already
be consistent with work products used previously;
these were already verified against the same work
products as suggested for the Interaction Protocol
Diagram and Agent-Tuple Space Interaction
Diagram work products. By identifying unnecessary
verification dependencies that may lead to
development process overhead, methodology
revision is suggested to perhaps remove some of the
verification steps.

By analysing the WPPM, it is possible to suggest
two sets of groups that can be developed in parallel
without hampering the methodology:
 System Task Model Group and Organisational

Context Model Group
 Role Model Group and Ontology

Model/Resource Model Group
For the first, neither work product groups have

dependencies. Since both are also initial work
products, then they can be developed in parallel. In
the case of the second, there are no direct task links
between the two groupings. A further check on
production dependencies also confirms that no
relationship between the two groupings exists;
consequently they could be developed in parallel.

In assessing whether any other work product
groups could be developed in parallel, the only other
possibility is the Agent Interaction Model Group and
Agent Behaviour Model Group. Although neither
are exclusively dependent on one another, they both
require mutual verification (and possible revision)

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

10

Table 1: Work Product Types and their Dependencies.

Model Group Work Product Types elicted
(ID) ID Production Dependencies

(by ID)

Verification & Refinement
Dependencies

(by ID)

Architecture Model MAS Deployment Diagram 1 6, 7, 8, 9, 10, 11, 12, 13 -

 Class Instantiation 2 13 -

 Infrastructure facility specification 3 - 6, 7, 8, 9, 10, 11

 Agent architecture diagram 4 - -

 Environment Interface 5 6, 7, 8 -

Agent Interaction Interaction Protocol Diagram 6 9, 10, 11 12, 13, 14, 15, 16, 17, 18, 19

 Agent-Tuple-Space Interaction Diagram 7 9, 10, 11 12, 13, 14, 15, 16, 17, 18, 19

 Agent TupleCentre Diagrams (Optional) 8 - -

Agent Behaviour Agent Plan Template 9 11, 14, 15, 16, 17, 18, 19 12, 13, 15, 16, 17, 18, 19

 Reflexive Rule Specification 10 15, 16, 17, 18 12, 13, 14, 15. 16, 17, 18, 19

Agent Class Agent Plan Diagram 11 19 -

 Agent Class Diagram 12 14, 15, 16, 17, 18, 19 -

 Agent Relationship Diagram 13 12, 19 -

 Agent Goal Diagram (optional) 14 19 -

Ontology Application Domain Ontology 15 19, 21 -

 Application Task Ontology 16 19, 21 -

Resource Resource Ontology 17 18 -

 Resource Diagram 18 19, 21 -

Role Role Diagram 19 20, 21 15, 16

Organisation Organisation Context Chart 20 -

System Task System task model 21 - 15, 16

of the Agent Class Model Group and Ontology
Model Group. This mutual verification may make it
difficult to develop any further work products in
parallel.

In Step 4, these recommendations are formalized,
ensuring that they reach the appropriate decision
maker(s): in this case the authors of MOBMAS (one
author of which kindly agreed to co-author this
paper). A formal recommendation might thus have
the following form and content.

 The System Task model and the Organisational
Context diagram can be developed in parallel.
These work products do not depend on any other
work products. Furthermore, the Role Diagram
and the Domain, Task and Resource Ontologies
are also able to be developed in parallel. It should
be noted that parallel development requires that
both System Task model and Organisational
Context Diagrams have both been completed.

 Omit the verification dependencies for the
Interaction Protocol Diagram and Agent-Tuple-
Space Interaction Diagram work products.

4 DISCUSSION AND
CONCLUSIONS

A work product pool approach (Gonzalez-Perez &
Henderson-Sellers, 2008) was adapted for use in
devising a method to identify weaknesses in
methodologies, and subsequently recommend
revision(s). The rationale is that, since the final work
product is the most important aspect of the
methodology (as opposed to the process steps that
produce the final work product and all necessary
intermediate work products), a work product focus
to methodology revision is well suited.
Methodology revision proposed in this paper is

WORK PRODUCT-DRIVEN SOFTWARE DEVELOPMENT METHODOLOGY IMPROVEMENT

11

Figure 2: Initial version of the WPPM for the MOBMAS methodology.

Figure 3: Group-level WPPM for the MOBMAS methodology.

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

12

fragments from the target methodology, recreating
the target methodology from the fragments using the
work product pool approach, identifying weaknesses
in the methodology (both between work products,
and globally across the whole methodology), and
making recommendations for methodology revision
aimed at minimising weaknesses. Work product
dependencies are used as the basis upon which
weaknesses are identified where work products are
inadequate or missing, or process steps could be
improved upon. Work product group models are
used as the basis upon which management level
recommendations are made to improve the
enactment of a methodology instance.

The proposed methodology revision approach
can also be placed within the context of method
engineering and software process improvement
(SPI). It is a distinct form of method engineering
that focuses on work products rather than
method/process components in order to engineer a
better suited method. It is distinct from SPI because
refinements are not project-specific – these are
generic refinements. It is also distinct from SPI
because SPI addresses general qualities of a
methodology, such as efficiency or reusability i.e.
the contribution made to SPI is of a relatively minor
nature.

An important factor presented here is that the
revision of the methodology was based on
improving process steps for achieving work
products. Further work includes addressing revising
methodologies based on improving the work
products themselves. However, in order to do this,
an objective means of identifying the quality of
work products is necessary.

REFERENCES

Gonzalez-Perez, C & Henderson-Sellers, B 2008, ‘A
Work Product Pool Approach to Methodology
Specification and Enactment,’ Journal of Systems and
Software, vol. 31, no. 8, pp. 1288-1305.

Harmsen, F, Brinkkemper, S & Oei, JLH 1994,
‘Situational Method Engineering for Informational
System Projects Approaches,’ in Methods and
Associated Tools for the Information Systems Life
Cycle, Proceedings of the IFIP WG8.1 Working
Conference on Methods and Associated Tools for the
Information Systems Life Cycle, eds AA Verrijn-Stuart
& TW Olle, Elservier Science, New York, pp.169-194.

Henderson-Sellers, B, Serour, M K, Gonzalez-Perez, C &
Qumer, A 2007, ‘Improving Agile Software
Development by the Application of Method
Engineering Practices,’ in Proceedings of the 25th

Conference on IASTED International Multi-
Conference: Software Engineering, ed W Hasselbring,
ACTA Press, Calgary, Canada, pp. 55-60.

Ralyté, J, Brinkkemper, S & Henderson-Sellers, B (eds)
2007, Situational Method Engineering: Fundamentals
and Experiences, Proceedings of the IFIP WG 8.1
Working Conference, Springer, New York.

Saeki, M, Iguchi, K, Kuo, W Y & Shinohara, M 1993, ‘A
Meta-Model for Representing Software Specification
& Design Methods,’ in Information System
Development Process, Proceedings of the IFIP WG8.1
Working Conference on Information Development
Process, eds N Prakash, C Rolland & B Pernici,
North-Holland, pp. 149-166.

Tran, Q N N & Low, G C 2008, ‘MOBMAS: A
Methodology for Ontology-Based Multi-Agent
Systems Development,’ Information Software and
Technology, vol. 50, no.708, pp. 697-722.

Tran, Q N N, Low, G C & Beydoun, G 2006, ‘A
Methodological Framework for Ontology Centric
Oriented Software Engineering,’ International Journal
of Computer Systems Science and Engineering, vol.
21, no. 2, pp. 117-132.

WORK PRODUCT-DRIVEN SOFTWARE DEVELOPMENT METHODOLOGY IMPROVEMENT

13

