Keywords: XML Compression, Grammar-based Compression, XML Sub-tree Clustering.

Abstract: XML has become the de facto standard for data exchange in enterprise information systems. But whenever XML data is stored or processed, e.g. in form of a DOM tree representation, the XML markup causes a huge blow-up of the memory consumption compared to the data, i.e., text and attribute values, contained in the XML document. In this paper, we present CluX, an XML compression approach based on clustering XML sub-trees. CluX uses a grammar for sharing similar substructures within the XML tree structure and a cluster-based heuristics for greedily selecting the best compression options in the grammar. Thereby, CluX allows for storing and exchanging XML data in a space efficient and still queryable way. We evaluate different strategies for XML structure sharing, and we show that CluX often compresses better than XMill, Gzip, and Bzip2, which makes CluX a promising technique for XML data exchange whenever the exchanged data volume is a bottleneck in enterprise information systems.

1 INTRODUCTION

1.1 Motivation

XML is widely used in business applications and is the de facto standard for information exchange among different enterprise information systems. Examples include the SEPA standard for financial transactions, the OTA standard for travel data, the internal XML format being used to store MS Office documents, and the BMEcat standard for product catalogs. Whenever the amount of processed XML data is a bottleneck, applications can take advantage of XML compression techniques that offer a more efficient and compressed format for accessing the XML data. Such a compressed XML data format should be queryable, i.e., it should allow navigation operations (as e.g. the evaluation of path queries), such that applications can work directly on the compressed data format. This includes that e.g. compressed SEPA data or compressed product catalogs can be exchanged, searched and evaluated by a query processor without prior decompression.

There have been different contributions to the field of XML compressors generating queryable XML representations, that range from encoding-based (Zhang, Kacholia, and Özsu, 2004) to schema-based (Ng et al., 2006), (Werner et al., 2006) to DAG-based (Buneman, Grohe, and Koch, 2003) to grammar-based (Busatti, Lohrey, and Maneth, 2005) compressed representations. We follow the grammar-based XML compression techniques, and we propose an XML compression technique, called CluX. CluX, like BPLEX (Busatti, Lohrey, and Maneth, 2005), has the advantages of grammar-based compression, i.e.,

- it removes redundancies within the structure of the XML file by sharing similar sub-trees and therefore achieves a more space efficient in-memory representation than standard XML representations as e.g. DOM.
- it provides similar navigation operations as DOM directly on the compressed structure, i.e., without prior full decompression of the document. Therefore, applications based on DOM could be adapted with a minimal effort to work on the CluX structure instead.

In comparison to BPLEX, CluX does not necessarily compress XML trees in a bottom-up fashion, i.e., CluX is more flexible in the way, how it constructs shared patterns being used in the grammar.

As the XML structure can be compressed with a significantly higher compression ratio than text nodes and attribute values within an XML document, we follow the approach first taken by XMill
and separate the compression of the XML structure from the compression of the text nodes, the attributes and the white space contained in the XML documents. For the text nodes, attribute values and white space we use container-based string compression techniques similar to those used in XMill. However, the focus of our contribution is on compression of the XML structure as described within the remainder of the paper.

1.2 Contributions and Focus of the Paper

This paper proposes an approach to clustering-based XML compression, called CluX that provides a modifiable clustering technique for generating optimized small grammars representing the compressed XML document. We have implemented and evaluated different clustering strategies for finding the most promising sharing of similar sub-trees. Our results show that the CluX strategy ‘minimize edges’ provides best compression times and the strategy ‘Minimize succinct storage’ provide strongest compression ratio.

For simplicity of this presentation, we restrict it to XML documents containing only element nodes, i.e. attributes are regarded as special element types. Note however that our implementation can handle full XML documents including attributes, text values and white space etc., such that we can compress e.g. SEPA data, OTA data, MS Office documents, and product catalogs.

1.3 Paper Organization

The remainder of this paper is organized as follows. Section 2 describes the basic concept of grammar-based compression, i.e. how an XML tree can be stored in a more space saving way by sharing similar structures, and it explains how these shared structures can be represented by patterns being used in tree grammars. Section 3 describes how the next patterns to be shared can be determined by a cluster analysis and discusses different clustering strategies. Section 4 evaluates the presented clustering strategies. Section 5 compares CluX to related work. Finally, Section 6 summarizes our contributions.

2 SHARING SIMILAR TREES

2.1 The Paper’s Example Document

XML compressors computing directed acyclic graphs, DAGs, (Buneman, Grohe, and Koch, 2003) are based on sharing identical sub-tree structures. Whenever a sub-tree occurs repeatedly within an XML document, a pointer to the first occurrence is stored instead of storing the repeated sub-tree another time. Instead of only sharing identical substructures, our approach follows the grammar-based compression introduced in BPLEX (Busatti, Lohrey, and Maneth, 2005) which is capable to share similar sub-trees which differ in small parts.

The following example is being used not only for explaining the difference between these sharing approaches, but also as a motivation why different sharing techniques for similar sub-trees may lead to different compression ratios.

Figure 1: Document tree of an XML document with repeated matches of patterns.

Figure 1 shows an example XML document represented as a binary tree. This XML document tree can be generated by the following grammar using the non-terminal S as the start symbol, i.e. the right hand side of the grammar rule is a term representing the pre-order notation of the binary tree in Figure 1:

Grammar 1: Grammar corresponding to the binary tree of Figure 1:

S → r(k1(b(c(d(e,f),e(f,e),e)),e), k2(b(c(d(e,f),g(e,f),e)),
 k3(b(c(f(e,f),e(f,e),e)), k4(b(c(f(e,f),g(e,f),e)),
 k5(b(c(i(e,f),e(f,e),e)), k6(b(c(i(e,f),g(e,f),e)),e))))),e)

2.2 Used Notations

A term is either a null pointer (denoted by the symbol ‘\(\varepsilon\)’) a terminal expression, a nonterminal expression, or a parameter (denoted by the symbol ‘\(_\)’).

A terminal expression is of the form \(t(c, n)\), where \(t \in T\) is a terminal of the set \(T\) of terminal symbols, and \(c\) and \(n\) are terms representing the first child and the next sibling of \(t\). A nonterminal expression is of the form \(nt(t(e_1, \ldots, e_{\text{ten}}))\), where \(nt \in NT\) is a nonterminal of the set \(NT\) of nonterminal symbols, and \(e_1, \ldots, \text{ten}\) are terms. The sets \(T\) and \(NT\) are disjoint, i.e., \(T \cap NT = \{\}\).
A production rule of arity \(n \geq 0 \) is of the form \(\text{lhs} \rightarrow \text{pattern} \), where \(\text{lhs} \), called the left hand side, consists of a nonterminal and a list of \(n \) parameters, and the pattern is a term \(\text{te} \) different from \(`c` \) and `_`, and \(\text{te} \) including all the terms nested in \(\text{te} \) contain the same \(n \) parameters.

A match of a pattern \(\text{p} \) is a term, where each of the \(n \) parameters of \(\text{p} \) is substituted by a term.

In Grammar 1, \(b(c(\ldots), e) \) is a terminal-expression that represents a node with label `b`, which has a first-child with label `c` and which does not have a next-sibling (denoted by the term \(e \) representing the null-pointer).

2.3 The Idea behind Sharing Similar Trees

In general, when storing an XML document in a navigable form (e.g. as DOM tree), the edges are expensive to store. Using sub-tree sharing should lead to less memory consumption compared to the storage of the original XML tree. Furthermore, reducing the number of edges allows bottom-up query processing which relies on the number of edges to process queries faster. That is why we attempt to reduce the number of edges in the compressed XML format.

Approaches like binary DAG compression, that share identical sub-trees \(\text{T} \) in an XML document \(\text{D} \) replace repeated occurrences of \(\text{T} \) in \(\text{D} \) by e.g. replacing each occurrence of \(\text{T} \) in \(\text{D} \) with \(\text{N} \) and adding a rule that defines \(\text{N} \) to be a nonterminal that represents \(\text{T} \).

In Grammar 1, there are two matches for each of the five patterns \(\text{d}(c,e), \text{e}(c,e), \text{f}(c,e), \text{g}(e,c), \text{i}(e,c) \). Therefore, these matches can be replaced by the nonterminals \(\text{D}, \text{E}, \text{F}, \text{G}, \) and \(\text{I} \) respectively, such that we get the following grammar:

\[
\begin{align*}
\text{S} & \rightarrow \text{k1(b(c(D,E),e),k2(h(c(D,G),e)),} \\
& \quad \text{k3(b(c(F,E),e),k4(h(c(F,G),e),} \\
& \quad \text{k5(b(c(I,E),e),k6(h(c(I,G),e),e))))(e),} \\
\text{D} & \rightarrow \text{d}(e,c) \\
\text{E} & \rightarrow \text{e}(c,e) \\
\text{F} & \rightarrow \text{f}(c,e) \\
\text{G} & \rightarrow \text{g}(e,c) \\
\text{I} & \rightarrow \text{i}(e,c)
\end{align*}
\]

Grammar 2: Grammar corresponding to the binary DAG of the XML tree of Figure 1 (b).

If we were only able to share identical sub-trees, we would only find sub-trees of size 1 (consisting of nodes \(\text{d}, \text{e}, \text{f}, \text{g}, \text{or} \text{i} \) respectively). So replacing the repeated occurrence by a pointer would lead to no decrease in the number of edges (we get 30 edges for the original tree and for the DAG of the tree).

But if we look for structures, that are not identical but similar besides small differences, we find in the document tree of Figure 1 two different patterns shown in Figure 2(b), one pattern consisting of the nodes with labels \(\text{b}, \text{c}, \) and \(\text{e} \) and the other pattern consisting of the nodes with labels \(\text{h}, \text{c}, \) and \(\text{g} \) respectively. For each of the two patterns, there exist three matches which are highlighted in Figure 2(a).

Although the matches of the patterns have identical inner nodes, they cannot be shared in a DAG because they differ in the child nodes of the node with label \(\text{c} \).

Figure 2 (a) shows a pattern consisting of the nodes with the labels \(\text{b}, \text{c}, \) and \(\text{e} \), where the node with the label \(\text{c} \) is the first-child of the node with the label \(\text{b} \), the node with the label \(\text{e} \) is the next-sibling of the node with the label \(\text{c} \), and the node with the label \(\text{c} \) has a first-child that may be different for each use of the pattern. \(\text{BC_E} \) is the name of the nonterminal being used as a shortcut for this pattern in the graph of Figure 2 (a). Furthermore, Figure 2 (b) shows a similar pattern, consisting of nodes with the labels \(\text{h}, \text{c}, \) and \(\text{g} \). \(\text{HC_G} \) is the name for the nonterminal being used for this pattern in Figure 2 (a). Figure 2(a) shows a compressed version of the same document as in Figure 1 where each occurrence of a pattern in Figure 1 is replaced with the nonterminal corresponding to the pattern.

The compression achieved by replacing the repeated patterns with a nonterminal is that each edge inside a pattern is stored only once, i.e. in the patterns shown in Figure 2 (b), instead of three times (in Figure 1). In this example, the compressed version of the XML document sharing repeated patterns shown in Figure 2 (a,b) contains only 22 edges whereas the document in Figure 1 contains 30 edges.

Therefore, we expect a high benefit from sharing similar sub-trees whenever the number of edges determines XML query processing time or memory limitations are the bottleneck of XML processing.

\footnote{We assume that null pointers are represented by a special symbol, \(\varepsilon \), and therefore, do not generate an edge.}
The idea behind grammar-based compression approaches like CluX is to not only share identical sub-trees, but to share patterns, i.e. similar sub-trees that differ in small details. For example, the sub-trees having a root element with label ‘b’ in Figure 1 differ in one detail: the first-child of the element with label ‘c’. The same difference occurs in the DAG represented by Grammar 2.

Within Grammar 3 below, we express the pattern BC_E of Figure 2(b) by one grammar rule with the left hand side BC_E(_), where the parameter ‘_’ is being used for referencing the different child node names of the nodes with label ‘c’. This grammar rule is being used e.g. when the term b(c(D,E),ε) in the start rule of Grammar 2 is replaced with the term BC_E(D) in the start rule of Grammar 3. Here, b(c(D,E),ε) is called a match, and BC_E(D) is called a corresponding instantiation of the pattern BC_E(_). Similarly, Grammar 3 contains a rule that introduces the nonterminal HC_G for the pattern consisting of the nodes with the labels ‘h’, ‘c’, and ‘g’, and replaces each occurrence of this pattern in Grammar 2 with the nonterminal HC_G. By applying these steps of grammar-based compression, Grammar 3 is more compact than Grammar 2 representing the DAG:

S → r(k1(BC_E(D), k2(HC_G(D), k3(BC_E(F), k4(HC_G(F), k5(BC_E(F), k6(HC_G(I), ε))))), ε)
BC_E(ε) → b(c(_, c(ε, ε)), ε)
HC_G(ε) → h(c(_, g(ε, ε)), ε)
D → d(ε, ε)
F → f(ε, ε)
I → i(ε, ε)

Grammar 3: A grammar sharing patterns b(c(ε, ε)), ε) and h(c(ε, g(ε, ε)), ε)) contained in similar sub-trees of the XML tree of Figure 1.

2.4 Different Sub-tree Sharing Strategies

In contrast to the minimal binary DAG that is unique and that can be computed bottom-up efficiently by hashing all sub-trees that have been read, in general, there exist several different patterns that can be shared and sharing one pattern may exclude sharing another pattern. For example, an alternative sharing applied to the XML tree of Figure 1 is sharing three patterns, i.e., (c,d), (c,f), and (c,i) which yields the following compressed document (c.f. Figure 3) represented by the grammar Grammar 4 below:

S → r(k1(b(CD_(E), ε), k2(b(CD_(G), ε), k3(b(CF_(E), ε), k4(b(CF_(G), ε), k5(b(CL_(E), ε), k6(b(CL_(G), ε))))), ε)
CD(ε) → c(d(ε, ε))
CF(ε) → c(f(ε, ε))
CL(ε) → c(i(ε, ε))
E → e(ε)
G → g(ε)

Grammar 4: A grammar sharing patterns c(d(ε, ε)), ε) and c(f(ε, ε)), ε) and c(i(ε, ε)), ε) contained in similar sub-trees of the XML tree of Figure 1.

2.4 Different Sub-tree Sharing Strategies

In contrast to the minimal binary DAG that is unique and that can be computed bottom-up efficiently by hashing all sub-trees that have been read, in general, there exist several different patterns that can be shared and sharing one pattern may exclude sharing another pattern. For example, an alternative sharing applied to the XML tree of Figure 1 is sharing three patterns, i.e., (c,d), (c,f), and (c,i) which yields the following compressed document (c.f. Figure 3) represented by the grammar Grammar 4 below:
we compute a production rule of the form $A_1(_),_\rightarrow l(_,_)$ that produces an element with label l and two parameters representing the first-child and the next-sibling of e. The start production rule S contains the whole structure of the binary XML tree, but each label of a non-leaf node in the binary XML tree is replaced with the nonterminal of the production rule introduced for this non-leaf element. For example, the start production rule S generated for the DAG of the XML tree of Figure 1 given in Grammar 2 is transformed into the start production rule S of the following grammar Grammar 5:

$$S \rightarrow \text{Ar}(\text{Ak}_1(\text{Ab}(\text{Ac}(D,E),e),\text{Ac}(D,G),e)),\text{Ak}_2(\text{Ab}(\text{Ac}(F,E),e),\text{Ac}(F,G),e),\text{Ak}_3(\text{Ab}(\text{Ac}(I,E),e),\text{Ac}(I,G),e))))(e)$$

$$\text{Ar}(_,_) \rightarrow r(_,_)$$

$$\text{Ak}_1(_,_) \rightarrow k_1(_,_)$$

...

$$\text{Ac}(_,_) \rightarrow c(_,_)$$

$$D \rightarrow d(e,e)$$

$$E \rightarrow e(e,e)$$

$$F \rightarrow f(e,e)$$

$$G \rightarrow g(e,e)$$

$$I \rightarrow i(e,e)$$

Grammar 5: After initialization, each non-leaf DAG node of Grammar 2 is substituted with a production rule.

Our approach to sharing similar substructures within an XML document was inspired by clustering. Clustering groups similar objects, where similarity of objects is measured by using a distance function d. Depending on the distance function d, this process results in different clustering techniques and different clustering results.

Similarly, in each sharing step, we search within the start rule S and all other rules for matching patterns p_1, \ldots, p_n that can be shared by introducing a new production rule. In order to find the patterns, the sharing of which achieves the highest benefit, we examine all matches of a possible pattern within the production rules as follows. For example, look at the nesting of nonterminals in the start rule of Grammar 5. Each of the patterns $\text{Ac}(_,_)$ and $\text{Ac}(_,_)$, where the parameter ‘’ matches anything, occurs three times, i.e. has three matches in the start rule, whereas e.g. the pattern $\text{Ac}(D,_)$ occurs only twice, i.e. has two matches in the start rule. Each clustering distance function d calculates the benefit of applying each of these different possible patterns based on substituting their matches with their corresponding instantiations (as defined in Section 2.3.) and finally use that pattern that achieves the highest benefit.

We follow a greedy approximation, as in each step, we implement that pattern that ‘locally’ achieves the highest benefit, which will in general not necessarily lead to the highest ‘global’ benefit.

The benefit is negative, if storing a rule $L \rightarrow P$ for a pattern P needs more space than the replacement of the matches of P by their instantiations saves within all production rules.

However, when the benefit is positive, we store a rule $L \rightarrow P$ and we replace all matches of P within all production rules with their corresponding instantiations. We repeat this optimization step until no more patterns with positive benefit can be found.

For example, starting with Grammar 2, we will first find the matches $C(D,E)$, $C(F,E)$, and $C(I,E)$ that all have an edge connecting nodes with labels C and E and match the pattern $C(_,_)$. As no other possible pattern achieves a higher benefit, we add the production rule $C(_,_) \rightarrow C(_,_)$ to the set of productions and, within the start rule, replace the match $C(D,E)$ by the instantiation $C(E(D),e)$, the match $C(F,E)$ by the instantiation $C(E(F),e)$, and the match $C(I,E)$ by the instantiation $C(E(I),e)$. Within the next iteration, we find the matches $B(C_E(D),e)$, the match $B(C_E(F),e)$, and $B(C_E(I),e)$ which all have an edge connecting nodes with label B to nodes with label C_E. The production rule $B(_,_) \rightarrow B(_,_)$ is added and the above given matches are replaced by $B(_,_)$, $B(_,_)$, and $B(_,_)$ as can be seen in Grammar 3.

Finally, for those production rules for which storing the rule has a negative benefit, we delete the rule and replace each occurrence of a rule instantiation with a corresponding instantiation of the right-hand side of the production rule.

3.2 Clustering Strategies

Similarly, as clustering strategies depend on a concrete distance function d, the ‘quality’ of our CluX clustering strategies depends on what we count. We have implemented 4 different clustering strategies that influence the choice of patterns to be shared and have evaluated them, in order to find out, which strategy achieves the highest compression ratio and which strategy achieves the smallest runtime. These strategies are called ‘minimize edges’, ‘minimize rule size’, ‘minimize succinct storage’ and ‘random’ and are described in the following subsections.

3.2.1 Minimize Edges

For each possible pattern PP, we count the number of matches within all rules. That pattern PP that has the most matches is chosen for the next optimization step, i.e., a new rule is $L \rightarrow PP$ is added to the rule.
system and each match of PP is substituted with a corresponding instantiation of L. By applying the substitution steps, the number of occurrences of patterns may have to be adjusted, in order to determine the frequencies of patterns for the next substitution step. This is the strategy that locally minimizes the number of edges in each step.

3.2.2 Minimize Rule Size

For each possible pattern PP, we calculate the storage savings achieved by adding a rule $L \rightarrow PP$ and substituting each match of PP with a corresponding instantiation of L. For this purpose, we compute the memory required for storing a rule $L \rightarrow PP$ by summing up

- the number of nonterminals within PP
- the number of terminals within PP
- the number of parameters, i.e. the arity, of L
- 1 (for the nonterminal defining the left-hand side of the rule)

and we subtract the space needed to store the rule from the space savings gained by substituting each match of the pattern PP with a corresponding instantiation of L. That new rule $L \rightarrow PP$ that leads to the largest savings is chosen in each step. This strategy does not consider that the storage costs may be less when using a succinct storage format for grammar rules.

3.2.3 Minimize Succinct Storage

As with the previous strategy, for each possible pattern PP, we calculate the storage savings achieved by adding a rule $L \rightarrow PP$ and substituting each match of PP with a corresponding instantiation of L. But in contrast to the strategy ‘minimize rule size’, we do not count the number of symbols and parameters used in each rule, but we calculate the costs based on the used succinct storage format of the compressed grammar. In the following evaluation, we used the same succinct format that has been used for BPLEX (Fisher and Maneth, 2007).

3.2.4 Random

From the set of all possible patterns PP, we randomly choose one. Only those possible patterns PP are considered that decrease the total grammar size. This strategy is being used as a benchmark for measuring the quality of the other strategies.

4 Evaluation

In a series of measurements, we compared the different clustering strategies ‘minimize edges’, ‘minimize rule size’, ‘minimize succinct storage’ and ‘random’ and the bottom-up clustering strategy of BPLEX, concerning the compression ratio in terms of edges and concerning the compression time. In this series of measurements, we considered only the structure of the datasets, i.e., we ignore all text data (text nodes and attribute values) as text compression is independent of the compared approaches to XML structure compression.

We have evaluated CluX on the following datasets:

- catalog-01 (C1 – 10.4 MB), dictionary-01 (D1 – 10.4 MB) – XML documents that were generated by the XBench benchmark
- hamlet (H – 273 KB) – an XML version of the famous Shakespeare play
- JST_snp.chr (JST – 35.5 MB) – XML data on the tumor suppressor gene JST
- NCBI_gene.chr (NCBI – 23.0 MB) – XML data from the National Center for Biotechnical Information
- Treebank (TB – 51.9 MB) – an XML document representing a parsed text corpus
- XMark (XM – 111.1 MB) – an XML document that models auctions

Figure 4: The different strategies compared by (a) compression ratio of edges and (b) compression time.
Figure 4 shows the evaluation results of the different clustering strategies compared by (a) the compression ratio achieved for the number of edges occurring in the compressed XML document and by (b) the compression time respectively. BPLEX and ‘minimize succinct storage’ have shown to reach the best compression ratio reaching a decrease of edges to 8-9% of the number of edges occurring in the original XML file on average, whereas ‘minimize edges’ has shown to reach the fastest compression time, reaching a throughput rate of 12.6 MBit/s on average.

In a second series of measurements, we compared the two strategies ‘minimize succinct storage’ and ‘minimize edges’ in combination with BZip2 to compress the text data (i.e., text nodes and attribute values) with three other approaches: first, gzip – a generic compressor based on Huffman encoding and LZ77, second, BZip2 - a generic compressor based on Burrows-Wheeler-Transformation, third, XMill (Liefke and Suciu, 2000) – an XML compressor using BZip2 for the compression of constant values.

On average, both CluX strategies ‘minimize succinct storage’ and ‘minimize edges’ compress best (c.f. Figure 5), followed by XMill followed by BZip2 and finally followed by GZip.

When looking at the evaluation times, GZip reaches the fastest compression with a compression throughput of more than 200 MBit/s on average, followed by BZip2 and XMill reaching a throughput of more than 35 MBit/s on average, finally followed by the two CluX strategies reaching a throughput of around 3 MBit/s on average. A similar trend can be seen for the decompression, where GZip reaches a decompression throughput of more than 1750 MBit/s on average, followed by BZip2 and XMill reaching a throughput of 430 and 270 MBit/s on average, finally followed by the two CluX strategies reaching a throughput of 19.5 MBit/s on average.

5 RELATED WORK

Besides generic compressors like gzip, bzip2 or 7zip (based on LZMA) that all do not allow for query evaluation on the compressed data directly, there exist several approaches to XML structure compression. XML structure compression can be mainly divided into three categories: encoding-based compressors, schema-based compressors and grammar-based compressors. All these approaches differ in their features, particularly in whether the compressed data structures can be decompressed partially, whether the compressed data structures are queryable, and whether they support unbounded XML data streams.

Encoding-based compressors allow for a much faster compression than the other compressors, as only local data has to be considered in the compression instead of considering different sub-trees as in grammar-based compressors.

The XMill algorithm (Liefke and Suciu, 2000) is an example of the first category. The structure is compressed, by assigning each tag name a unique and short ID. Each end-tag is encoded by the symbol ‘/’. This approach does not allow querying the compressed data.

XGrind (Tolani and Hartisa, 2002), XPRESS (Min, Park, and Chung, 2003) and XQueC (Arion et al., n.d.) are extensions of the XMill-approach. Each of these approaches compresses the tag information using dictionaries and Huffman-encoding (Huffman, 1952) and replaces the end-tags by either a ‘/’ symbol or by parentheses. All three approaches allow querying the compressed data, and, although not explicitly mentioned, they all seem to be applicable to data streams.

Approaches (Bayardo et al., 2004), (Cheney, 2001), and (Girardot and Sunderesan, 2000) are based on tokenization. (Cheney, 2001) replaces each attribute and element name by a token, where each token is defined when it is used the first time. (Bayardo et al., 2004) and (Girardot and Sunderesan, 2000) use tokenization as well, but they enrich the data by additional information that allows for a fast navigation (e.g., number of children, pointer to next-sibling, existence of content and attributes). All three of them use a reserved byte to encode the end-tag of an element. They are all applicable to data streams and allow querying the compressed data.

The approach in (Zhang, Kacholia, and Özsu, 2004) defines a succinct representation of XML that stores the start-tags in form of tokens and the end-tag in form of a special token (e.g. ‘/’). They enrich their compressed XML representation by some addi-
tional index data that allows a more efficient query evaluation. This approach is applicable to data streams and allows querying of compressed data. Similarly, the approach presented in (Arroyuelo et al., 2010) defines a succinct representation that stores parentheses representing start and end tags together with a stream of symbols representing the tag names. It is combined with a BWT-based compression technique for the constant data that allows random access to the compressed data. This approach is applicable to data streams and allows querying of compressed data.

Similarly, the approach presented in (Arroyuelo et al., 2010) defines a succinct representation that stores parentheses representing start and end tags together with a stream of symbols representing the tag names. It is combined with a BWT-based compression technique for the constant data that allows random access to the compressed data. This approach is applicable to data streams and allows querying of compressed data.

Schema-based compression comprises such approaches as XCQ (Ng et al., 2006), XAUST (Subramanian, and Shankar, 2005), Xenia (Werner et al., 2006) and DTD subtraction (Böttcher, Steinmetz, and Klein, 2007). They subtract the given schema information from the structural information. Instead of a complete XML structure stream or tree, they only generate and output information not already contained in the schema information (e.g., the chosen alternative for a choice-operator or the number of repetitions for a '*'-operator within the DTD). These approaches are queryable and applicable to XML streams, but they can only be used if schema information is available.

XQzip (Cheng and Ng, 2004) and the approaches presented in (Adiego, Navarro, and de la Fuente) and (Buneman, Grohe, and Koch, 2003) belong to grammar-based compression. They compress the data structure of an XML document by combining identical sub-trees. Afterwards, the data nodes are attached to the leaf nodes, i.e., one leaf node may reference several data nodes. The data is compressed by an arbitrary compression approach. These approaches allow querying compressed data, but they are not directly applicable to infinite data streams.

The approach presented in (Böttcher, Hartel, and Messinger, 2009) and BSBC (Böttcher, Hartel, and Heinemann, 2009) combine encoding-based and grammar-based compression (BSBC) or schema-based and grammar-based compression (Böttcher, Hartel, and Messinger, 2009) respectively. Instead of an XML document, a DAG that summarizes the structure of the XML document is taken as input and is compressed further either by encoding a succinct representation of the tree structure of the DAG (BSBC), or by subtracting schema information from the tree structure of the DAG. These approaches allow querying of compressed data and are directly applicable to infinite data streams, as the backward edges within the DAG are only generated within a given window size.

An extension of (Buneman, Grohe, and Koch, 2003) and (Cheng and Ng, 2004) is the BPLEX algorithm (Busatti, Lohrey, and Maneth, 2005). This approach does not only combine identical sub-trees, but recognizes similar patterns within the XML tree, and therefore allows a higher degree of compression. The approach presented in this paper follows the same idea. But instead of combining similar structures bottom-up, our approach searches within a given window the most promising pair to be combined while following one of three possible clustering strategies. Both approaches allow querying of compressed data and can be applied to infinite XML data streams if the search for similar substructures is restricted to a given window size.

The approach in (Ferragina et al., 2006) does not belong to any of the three categories. It is based on BurrowsWheeler BlockSorting (Burrows and Wheeler, 1994), i.e., the XML data is rearranged in such a way that compression techniques such as gzip achieve higher compression ratios. This approach is not applicable to data streams, but allows querying the compressed data if it is enriched with additional index information.

Different from all other approaches, CluX uses clustering for grammar-based XML compression. In contrast to the RePAIR algorithm presented in (Larsson and Moffat, 2000) for strings and used in (Claude and Navarro, 2007) to compress the adjacency lists of graphs, we do not only compress lists of symbols (i.e., one-dimensional structures) with the help of parameter-less grammars, but instead compress binary trees (i.e., two-dimensional structures) with the help of a parameterized grammar.

6 SUMMARY AND CONCLUSIONS

We have shown how CluX, a clustering-based compression approach for XML trees, uses clustering for determining the most promising similar sub-trees and shares them by using a single pattern. As an XML file compressor, CluX compresses better than the XML compressor XMill or than generic compressors like gzip or BZip2. CluX compression can be applied to infinite data streams – and in contrast to XMill and gzip or BZip2, path queries can be evaluated directly on the compressed representation, i.e., without prior decompression. By sharing, CluX decreases the number of edges down to less than 10% of an original XML document tree. This allows not only a more space saving in-memory representa-
tion of an XML document tree than standard tree represen-
tations or DOM, but also is promising for faster bottom-up query evaluation. Therefore, we re-
gard CluX to be a useful compressor for SEPA or MS Office documents, product catalogs and other XML data, whenever the data volume is a bottleneck in enterprise information systems.

REFERENCES

J. Adiego, G. Navarro, P. de la Fuente: Lempel-Ziv Com-
pression of Structured Text. Data Compression Con-
ference 2004
A. Arion, A. Bonifati, I. Manolescu, A. Pugliese. XQueC:
A Query-Conscious Compressed XML Database, to
appear in ACM Transactions on Internet Technology.
D. Arroyuelo, F. Claude, S. Maneth, V. Mäkinen, G. Na-
varro, K. Nguyen, J. Siren, N. Välimäki, 2010: Fast
In-Memory XPath Search over Compressed Text and
Tree Indexes. ICDE 2010
R. J. Bayardo, D. Gruhl, V. Josifovski, and J. Myllymäki,
2004. An evaluation of binary xml encoding optimizations
of the 13th international conference on World Wide
Web.
S. Böttcher, R. Hartel, Ch. Heinzemann: BSBC: Com-
pressing XML streams with DAG + BSBC. In: WEBSIT
S. Böttcher, R. Hartel, Ch. Messinger: XML Stream Data
Reduction by Shared KST Signatures. HICSS 2009
S. Böttcher, R. Steinmetz, N. Klein, 2007. XML Index
Compression by DTD Subtraction. International Con-
ference on Enterprise Information Systems (ICEIS).
P. Buneman, M. Grohe, Ch. Koch, 2003. Path Queries on
Compressed XML. VLDB.
M. Burrows and D. Wheeler, 1994. A block sorting loss-
less data compression algorithm. Technical Report
124, Digital Equipment Corporation.
Memory Representation of XML Documents, DBPL.
J. Cheney, 2001. Compressing XML with multiplexed hier-
Data Compression Conference (DCC 2001).
XML Using Structural Indexing. EDBT.
F. Claude and G. Navarro, 2007: A Fast and Compact
Web Graph Representation. Proc. 14th International
Symposium on String Processing and Information Re-
trieval (SPIRE).
P. Ferragina, F. Luccio, G. Manzini, and S. Muthukrish-
nan, 2006. Compressing and Searching XML Data Via
Two Zips. In Proceedings of the Fifteenth Interna-
tional World Wide Web Conference.
Estimation for XML Documents. In Proc of the ICDE.
M. Girardot and N. Sundaresan, Millau, 2000. An Encod-
ing Format for Efficient Representation and Exchange
of XML over the Web. Proceedings of the 9th Interna-
tional WWW Conference.
D. A. Huffman, 1952. A method for the construction of
J. Larsson and A. Moffat, 2000: Off-Line Dictionary-
Based Compression. Proceedings of the IEEE.
H. Liefke and D. Suciu, 2000. XMll: An Efficient Com-
pressor for XML Data, Proc. of ACM SIGMOD.
Queryable Compression for XML Data. In Proceedings
of SIGMOD.
W. Ng, W. Y. Lam, P. T. Wood, M. Levene, 2006: XCQ:
A queryable XML compression system. Knowledge
and Information Systems.
D. Olteanu, H. Meuss, T. Furche, F. Bry, 2002: XPath:
Looking Forward. EDBT Workshops.
A. Schmidt, F. Waas, M. Kersten, M. Carey, I. Manolescu,
and R. Busse, 2002. XMark: A benchmark for XML
data management. Hong Kong, China.
H. Subramanian, P. Shankar: Compressing XML Docu-
ments Using Recursive Finite State Automata. CIAA
2005
P. M. Tolani and J. R. Hartsia, 2002, XGRID: A query-
friendly XML compressor. In Proc. ICDE.
Ch. Werner, C. Buschmann, Y. Brandt, S. Fischer: Com-
pressing SOAP Messages by using Pushdown Auto-
matas. ICWS 2006
N. Zhang, V. Kacholia, M. T. Özsu, 2004. A Succinct
Physical Storage Scheme for Efficient Evaluation of
Path Queries in XML. ICDE.
J. Ziv and A. Lempel: A Universal Algorithm for Sequential
Data Compression, 1977. In IEEE Transactions on
Information Theory, No. 3, Volume 23, 337-343