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Abstract: Batch jobs, such as shell scripts, programs and command lines, are used to process large amounts of data in 
large scale enterprise systems, such as supply chain management (SCM) systems. These batch jobs are 
connected and cascaded via certain signals or files so as to process various kinds of data in the proper order. 
Such connected batch jobs are called “job nets”. In many cases, it is difficult to understand the execution 
order of batch jobs in a job net because of the complexity of their relationships or because of lack of 
information. However, without understanding the behavior of batch jobs, we cannot achieve reliable system 
management. In this paper, we propose a method to derive a job net model representing the execution order 
of the job net from its logs (execution results) by using a process mining technique. Improving on the 
Heuristic Miner algorithm, we developed an analysis method which takes into account the concurrency of 
batch job executions in large scale systems. We evaluated our analysis method by a conformance check 
method using actual job net logs obtained from a large scale SCM system. The results show that our 
approach can accurately and appropriately estimate the execution order of jobs in a job net.  

1 INTRODUCTION 

There are many cases where enterprise information 
systems are constructed not by developing them 
“from scratch”, but by connecting a large number of 
smaller systems. For example, many supply chain 
management (SCM) systems have been built by 
interconnecting individual systems processing 
different data such as production, sales & marketing, 
and logistics. These individual systems have usually 
been built at different times by different vendors 
based on different policies. Therefore, integrating 
and interconnecting different types of system can 
result in a more complex system than one that has 
been purpose built from the beginning. As a result, it 
becomes very difficult to manage these integrated 
systems such that their subsystems can not only 
process their own data propery but also work 
consistently with the other subsystems. 

In this kind of integrated system, batch processes 
called “jobs”, such as batch files, shell scripts and 
commands, play important roles. These jobs are 

executed in order to handle large amounts of data, 
such as accounting or inventory checks, in contrast 
with transaction processes which handle each 
request from users as soon as it arrives. These jobs 
can be scheduled and invoked by job net 
management functions such as SystemWalker 
Operation Manager (Fujitsu, 2008) which control 
jobs and invoke them at a certain time such as 
overnight or at the end of the month. After a job 
finishes, it can invoke another job and hand over its 
processing results via files or signals output from the 
previous job. By invoking a job from another job 
runnning on a different server or subsystem, we can 
choreograph some subsystems to process their 
common data in the proper order, as described in 
Figure 1. Therefore, we can say that these batch jobs 
play important roles in bridging the gap between 
subsystems and connecting them so that the whole 
system can process data properly. We call a set of 
batch jobs concatenated and executed in a defined 
order a “job net”.  
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Figure 1: Job nets connecting different systems via files and signals. 

It is, however, extremely difficult to understand 
the behavior and the execution orders of the jobs in 
these kinds of “tangled” job nets, because the clues 
to solving the problem are scattered everywhere. For 
example, even if job scheduling information is 
stored in several job net manager systems for the 
invocation of jobs, they might be managed by the 
administrator of a subsystem or by each individual 
department. Because of this “silo” management, 
access to this kind of information  from outside the 
department might be prohibited. In addition, in many 
cases, the information regarding the triggers (files 
and signals) invoking the jobs is embedded in the 
job’s script or the program itself. Deriving the 
information regarding the triggers from program 
code analysis is practically impossible. For these 
reasons, it is difficult to understand the behavior of 
interrelated batch jobs. This problem can worsen in 
the case of the integration of larger systems such as 
M&A. However, without understanding the behavior 
of job nets, we cannot achieve reliable service 
management, such as predicting the finishing time of 
jobs or determining which job was the root cause 
when the execution of jobs are delayed. Therefore, 
there is a strong need for a technique for 
understanding the behavior of job nets.  

Against this background, we developed an 
analysis method to derive a model of job nets 
representing their execution order from the job net 
log recording their execution results by using a 
process mining technique. In this method, we 
improve the Heuristic Miner process mining 
algorithm by taking into account the concurrent 
execution of jobs. We then applied our method to 
job net logs derived from an actual SCM system and 
evaluated the accuracy of our approach by a 
conformance check method. 

The rest of this paper is organized as follows. 
First, in Section 2, we survey related work. Next, 
Section 3 explains our job net mining algorithm in 
detail. We then show how it works through a case 
study in Section 4 using an actual set of log data and 

evaluate its performance. Following this, Section 5 
concludes the paper and outlines future challenges. 

2 RELATED WORK 

One of the most important major techniques for 
deriving the behavioral characteristics of systems is 
the process mining approach (van der Aalst, 2007). 
Process mining is a method of extracting the 
information about a process from its execution 
results (event logs) in order to construct a process 
model that can represent the behavior of systems or 
processes. The process model can be represented by 
some state transition systems such as the Markov 
model or Petri Net. Various algorithms for process 
mining have been proposed so far, such as the alpha-
algorithm (van der Aalst, 2004) and genetic 
algorithm (van der Aalst, 2005). These algorithms 
are intended for application to the analysis of 
business processes usually executed by human 
beings and consisting of less than a dozen events. 
The computational time for these algorithms 
therefore tends to increase rapidly with the number 
of events per process. While this does not matter 
when the process consists of only a small number of 
events, we can not apply these methods directly for 
job net analysis since the job nets in large scale 
systems can consist of hundreds of jobs.  

Computational time for the Heuristics Miner 
algorithm (Weijters, 2006) is relatively small 
because of its simplicity and straightforwardness. It 
is, however, possible that this simple algorithm 
cannot achieve sufficient accuracy in job net 
analysis for large systems where we have to take 
into account the possibility that many jobs are 
executed concurrently. There is therefore a strong 
need for an algorithm that is specialized for job net 
mining so as to achieve both short computational 
time and sufficient accuracy. 
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Figure 2: Input and output data for job net mining. 

3 JOB NET MINING METHOD 

In this section we explain our job net mining method 
in detail. First, we define its data structure. Next, we 
explain our mining algorithm based on the Heuristic 
Miner algorithm with some improvements for taking 
concurrency in batch job execution into account. 
Then, we explain how the accuracy of our mining 
method can be evaluated through a conformance 
check approach. 

3.1 Data Structure 

Figure 2 summarizes the input and output data for 
our approach. As explained in Section 1, in many 
cases we cannot obtain or determine the location of 
the information defining the schedules or 
relationships of the batch jobs. Therefore, we 
assume here that we can obtain only the job net 
event logs which are output as the execution results 
of these jobs. This kind of log is relatively easy to 
obtain, since it is usually created so that the 
administrators of job nets can diagnose their 
behavior after a problem has occurred. We also 
assume that the start time and end time of each job is 
recorded in the job net logs. For simplicity, we 
assume here that the granularity of the timestamp is 
1 second and each job is executed no more than once 
per day. In our analysis, we define the time window 
(e.g. overnight, from 0:00 am to 6:00 am) on which 
we focus attention. Then we extract the data within 
the time window to be used for our analysis. We 
refer to the sequence of log data for a job net 
executed in the time window on a particular day as 
an instance of the day. 

The output from our method is a job net model 
representing the common patterns of orders of 
events emerging in many instances. Here we assume 

that each event is either the beginning or the 
finishing of a job recorded in the logs. The model 
contains order relations between each preceding 
event and a set of (likely) following events. It can be 
represented by tables or directed graphs as shown in 
the right hand part of Figure 2. If a preceding event 
has more than two possible following events, we 
should determine those branches as either an AND-
fork or an XOR-fork. The AND-fork means that all 
of the following events will occur after the 
preceding event, while the XOR-fork means that 
only one of the following events will occur after the 
preceding event. 

3.2 Mining Algorithm 

Since a large number of batch jobs may be executed 
simultaneously in large scale systems consisting of 
many servers, our analysis has to take the 
concurrency in job net mining into account in order 
that sufficient accuracy is achieved. We therefore 
developed an algorithm consisting of the following 
three steps. First, we determine the set of jobs which 
are likely to start at the same time from timestamps 
recorded in the log. Next, we derive the order of 
events using the Heuristic Miner algorithm. Finally, 
we modify the Heuristic Miner results using the 
information regarding concurrent jobs derived in the 
first step. The details of these steps are as follows. 

Step 1: Concurrent Job Detection from 
Timestamp 
In the first step, we determine the set of jobs which 
start at almost the same time for reasons such as the 
preceding job triggering several following jobs, or 
jobs happening to be scheduled to start at the same 
time by different administrators. We use the 
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following evaluation functions to determine whether 
jobs Ji and Jk are likely to start at the same time. 

)(
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)( iJN  represents the number of instances 
including execution of job Ji. 

)|)()((| pki JSJSN τ<−  represents the number of 
instances in which the difference between the start 
times of Ji and Jk is smaller than the threshold pτ  
sec. We can say that Ji and Jk tend to start at the 
same time if ),( ki JJp  is close to 1.  

Using equation (1), we define the set )( iJc of 
jobs which are likely to start at the same time as job 
Ji. 

}),(|{)( ckiki JJpJJc τ>≡  (2)

This means that if ),( ki JJp  is larger than cτ , Jk 
is included in )( iJc . 

Step 2: Event order Analysis by Heuristics Miner 
Heuristics Miner (Weijters, 2006) is a process 
mining algorithm which derives patterns in the order 
of events from event logs independent of the events’ 
timestamps. This method determines the existence of 
consecutive order relations between events using the 
following function kWi ee ⇒ . 
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Function || kWi ee >  represents a count of the 
instances in which event ei’s next event was ek. Here, 
we take into account only the order of events, 
independent of timestamps. We consider that there is 
an order relation between event ei and ek when the 
function kWi ee ⇒  is over a given threshold. In our 
analysis, we adopt an all-activities-connected-
heuristic that derives at least one preceding event for 
each event. Here, we define two thresholds: (1) 
Dependency threshold Dτ  and (2) Relative to best 
threshold Rτ . If DkWi ee τ>⇒ )( , we conclude that 
there is an order relation between event ei and ek. If 
event ek does not have any preceding event ei such 
that Dki ee τ>⇒ )( , we select an event ex such that 

)()( kWykWx eeee ⇒≥⇒  for any other event ey. 
We then consider that there is an order relation 

between event ei and ek if 
RkWxkWi eeee τ−⇒≥⇒ )()( . 

Next, we use the following function 
kjWi eee ∧⇒  to determine whether the order 

relations kWi ee ⇒  and jWi ee ⇒  from the same 

event ie represent an AND-branch or XOR-branch. 

⎟
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If the value of this function is larger than 
threshold Aτ , we assume that the two relations are 
AND-branches, meaning that both  following events 
will eventually occur after the preceding event ie . 
Otherwise, we conclude that they are XOR-branches, 
i.e. that only one of the following events will occur 
after the preceding event. 

In our analysis, we assume each event to be 
either the start event or end event of a job. In the 
remainder of this paper, we denote the job Ji’s start 
event and end event by S

ie  and E
ie  respectively. 

Step 3: Adjustment for Concurrency 
After determining the sets of concurrent jobs in Step 
1 and the jobs’ order relations in Step 2, we adjust 
the results of the latter by those of the former’s in 
Step 3. 

ie

S
ke 1

Jobs start at 
the same time

Result from Step 1 and 2

ie

Jobs start at 
the same time

AND-branch

Adjustment in Step 3

S
ke 2

S
ke 3

S
ke 4

S
ke 1

S
ke 2

S
ke 3

S
ke 4

 
Figure 3: Adjustment in Step 3. 

Figure 3 shows the general concept of the 
adjustment. Here we suppose that Step 1 determined 
that the set of jobs 1kJ , 2kJ , 3kJ  and 4kJ  start at 
the same time. The corresponding start events of 
these jobs are represented in the dotted rectangle by 

S
ke 1 , S

ke 2 , S
ke 3 ,and S

ke 4  respectively. We also 
suppose that the order relation from a preceding 
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event ie  to the start event of some of these jobs (e.g. 

1kJ ) is determined by Step 2, as shown by the arrow  
in the left hand part of Figure 3. In such cases, 

while any jobs in the set of following jobs ( 1kJ , 2kJ , 

3kJ  and 4kJ ) can start after the preceding event ie , 
the relations between event ie and the following 
events other than 1je  are not correctly detected by 
the Heuristics Miner algorithm. It is difficult for 
Heuristics Miner to correctly determine such 
concurrencies because the occurrence of several 
events at almost the same time can be recorded in 
their logs in random order. 

In order to solve this problem, we adjusted the 
model derived in Step 2 using the results of Step 1 as 
follows. 

 
(1) Select a relation S

kWi ee ⇒  and a set of 
jobs )( kJc  which start at the same time as 

the start event S
ke  of job kJ . 

(2) Establish the order relations from the 
preceding event ie  to the start event of the 
jobs in )( kJc . 

(3) Designate the relations thus established as 
AND-branches 

 
The result of this adjustment can be seen on the 

right hand side of Figure 3. By performing this 
adjustment in our model construction, we can take 
into account the concurrent job information which 
may be overlooked by the Heuristic Miner algorithm. 

3.3 Conformance Check 

In order to evaluate the accuracy of our mining 
algorithm, described in Section 3.2, we use a 
conformance check (Rozinat 2005, 2008) which 
evaluates how well process models derived by a 
process mining algorithm express the patterns 
emerging in event logs by “replaying” the instances 
of the logs on the obtained models and detecting 
inconsistencies between the model and the logs. 

The general concept of the conformance check is 
shown in Figure 4. First, we prepare a process model 
derived from a process mining algorithm. We also 
prepare instances of logs for evaluation of their 
conformance with the model. Next, we replay on the 
model, one by one, the events recorded in the 
instances. In this replay, we predict the candidates 
for the next events following each preceding event 
by referring the process model. For example, in the  

Process model

No. Event Expected next events

1

2

3

4

… … …

1e
2e

3e

4e

5e

6e

7e
AND

XOR

XOR

Instance A

00:00
00:05
00:08
00:10
…

1e
2e
4e
6e

1e
2e
4e
6e

2e 3e
3e 4e 7e
3e
3e

8e

8e

Replay Predict next events

Wrong !  
Figure 4: Conformance Check. 

case shown in Figure 4, after the first event 1e  
occurs in instance A, we predict that the next event 
will be either 2e  or 3e , because these events are the 
following events for 1e  in the process model. 
Likewise, after the second event 2e  occurs, we 
predict one of the events 3e , 4e , or 7e will be the 
third event. Here event 3e  still remains as one of the 
expected next events since the links 21 ee →  and 

31 ee →  are AND-branches meaning that both 2e  
and 3e  can occur after the preceding event 1e .  

Next, we check whether or not each prediction is 
correct. We conclude that the model conforms to the 
instance if the i-th event recorded in the instance is 
included in the (i-1)-th expected next events 
predicted by the model. In Figure 4, while the first 
three events ( 1e , 2e  and 4e ) are predicted correctly, 
the occurrence of the fourth event 6e  is not 
predicted by the model, because it is not included in 
the third set of expected next events. If the number 
of such events, those not expected by model, is small, 
we can conclude that the model fits well with the 
given instance. This fitness can be evaluated by the 
following “fitness” function which is simplified 
from the original functions (Rozinat 2005, 2008) so 
that it suits the conditions in our job net analysis. 

∑
∑

=

=−= k

i i

k

i i

n

m
f

1

11  (5)

In this fitness function, k represents the number 
of instances used for the evaluation, ni is the number 
of events recorded in the i-th instance and mi is the 
number of events which are not predicted correctly 
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by the given process model. A value of the function 
close to 1 indicates that the model fits well with the 
given instances. 

All the same, if we include all the events of the 
instance in the set of expected next events, we can 
always achieve a high value for the fitness function. 
This, however, would be meaningless because it 
does not narrow down the set of possible next events. 
Therefore, the smaller number of expected next 
events derived from a model, the closer that model 
appropriately represents the structure of the process, 
and the more valuable it is. To evaluate this 
characteristic, we use the following 
“appropriateness” function, which has also been 
tailored to our purpose. 

∑
∑
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−
=
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i i
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i ii

nM

xMn
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1
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M is the number of events emerging in the model 
and xi represents the average number of expected 
next events in the replay of the i-th instance. If the 
model can always narrow down the expected next 
events to just one event, the value of the 
appropriateness function is 1. 

When checking the conformance of the model 
with the instances, we evaluate both the fitness and 
appropriateness functions. 

4 EXPERIMENT 

4.1 Setup 

We evaluated our approach using the following 
setup. First, we collected job net log data from an 
actual SCM system. This system was created by 
interconnecting 18 servers fulfilling different roles 
such as marketing, production management, and 
logistics. Of these 18 servers, we picked out the data 
recorded in the five main servers, on which many of 
the job nets are executed. For evaluation, we 
prepared the two sets of data specified in Table 1: 
Log A is data obtained overnight on weekdays in 
June and Log B is data obtained for the same days 

Table 1: Log data used for experiments. 

D uration
N um ber of

days
Tim e w indow

N um ber of
jobs (avg.)

Log A
2009 June 1st - 30th

(W eekday only)
21 00:00am  - 06:00am 1018

Log B
2009 July 1st - 31st

(W eekday only)
23 00:00am  - 06:00am 1027  

 

 and times in July. Each job’s start/end timestamp is 
recorded in the data. In order to evaluate whether 
our approach is able to predict the order of job 
executions correctly, we constructed the job net 
model from Log A and separately checked its 
conformance with Log A and with Log B. In 
addition, in order to evaluate the effectiveness of our 
mining algorithm, we compared the results of our 
approach (using all of the steps 1, 2 and 3 in Section 
3.2) with the Heuristic Miner Algorithm (using Step 
2 only). For the thresholds, we used 1=pτ (sec), 

5.0=cτ , 8.0=Dτ , 1.0=Rτ , and 1.0=Aτ . 

4.2 Results 

We implemented our algorithm in Java and executed 
the experiments described in the previous subsection 
by using a PC with Windows XP Professional 
Edition, 4.3GHz CPU, and 1GB memory. The job 
net mining task in each experiment finished within 
10 minutes. Since 3,356 individual jobs were 
recorded in Log A, the number of events (job start 
and end events) in the job net models constructed in 
each experiment was 6712. Figure 5 shows a part of 
the derived model drawn by Graphviz (Gansner, 
2000) with the arrow attributes (AND or XOR) 
omitted for simplicity. 
Table 2 summarizes the results of the experiments. 
Comparing the numbers of unexpected events in 
Heuristic Miner (Case 1 and 2) with the numbers in 
our approach (Case 3 and 4), it can  be  seen  that the 

 
Figure 5: Job net model (part). 
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Table 2: Experimental results. 

Case Algorithm
Data

for m odel
Data for
check

Num ber of
events (avg.)

Num ber of
unexpected
events (avg.)

Num ber of
expected next
events (avg.)

Fitness
Appropriat

eness

1 Heuristic M iner Log A (June) Log A (June) 2035.2 246.4 64.3 0.879 0.991

2 Heuristic M iner Log A (June) Log B (July) 2054.7 273.5 64.8 0.867 0.991

3 Proposed algorithm Log A (June) Log A (June) 2035.2 93.7 75.2 0.954 0.989

4 Proposed algorithm Log A (June) Log B (July) 2054.7 122.1 76.4 0.941 0.989  
 

latter are much smaller than the former. This results 
in a higher value of fitness parameter for our 
approach than for Heuristic Miner. Furthermore, the 
numbers of expected next events and the 
appropriateness values in both algorithms are almost 
the same. Therefore, we can conclude that a more 
precise model can be constructed through our 
approach than through the Heuristic Miner algorithm 
alone, without having much impact on the 
appropriateness parameters. 

In addition, the difference between the results 
produced by the same algorithm (Case 3 and 4) is 
quite small. Therefore, we can conclude that our 
algorithm is able to predict the behavior of the job 
nets in July using the model constructed from the 
logs recorded in June with the same precision as in 
the case where the log data used for model 
construction and for conformance checking are the 
same. 

5 CONCLUSIONS 

We proposed a job net mining method to derive the 
execution order of job nets from their logs. In this 
method, we identify the set of jobs executed at the 
same time. Using this information, we then modify 
the job net model derived by the Heuristic Miner 
algorithm. Through conformance checking using the 
log data of job nets executed in an actual SCM 
system, we confirmed that our method enables 
construction of a job net model that represents the 
order relations between jobs more accurately and 
appropriately than that obtained through Heuristics 
Miner alone. 

We are now considering the following work for 
the future. First, we plan to develop methods for the 
concise visualization of the structure and 
characteristics of job nets. Since it is difficult for 
system administrators (humans) to understand the 
relationships between over 1000 events in a single 
directed graph, we need a method of extracting the 
important part of the model or abstracting its 
structure in order to make it understandable.  

Next, using the proposed approach, we plan to 
develop a method of predicting the finishing times 
of job nets. Since one of the biggest concerns many 
administrators of job nets have is whether or not the 
job nets will finish within the deadline, this function 
will be able to help them manage their job nets more 
efficiently. 

Finally, we plan to develop a method for 
analyzing the model derived by our approach. For 
example, when failures or delays occur in job net 
execution, the job representing the root cause can be 
detected by backtracking through the order relations 
in the derived model. In addition, by measuring the 
execution durations of jobs, the critical path, taking 
a large amount of time to finish, can be detected. 
This information is useful for reorganizing job nets 
so as to reduce their execution times. By these 
analysis techniques, we will be able to improve 
reliability in the management of large scale 
integrated complex computer systems.  
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