ON-DEMAND HIGH-PERFORMANCE VISUALIZATION OF
SPATIAL DATA ON HIGH-RESOLUTION TILED
DISPLAY WALLS

Tor-Magne Stien Hagen, Daniel Stgdle and Otto J. Anshus

Department of Computer Science, Faculty of Science and Technology, University of Tromsg, Norway

Keywords:

Abstract:

Visualization, High-resolution tiled display walls, Live data sets, On-demand computation.

Visualization of large data sets on high-resolution display walls is useful and can lead to new discoveries

that would not have been noticeable on regular displays. However, exploring such data sets with interactive
performance is challenging. This paper presents live data sets, a scalable architecture for visualization of large
data sets on display walls. The architecture separates visualization systems from compute systems using a live
data set containing data customized for the particular visualization domain. Experiments conducted show that
the main bottleneck is the compute resources producing data for the visualization side. When all data is cached
in the live data set, the main bottleneck (decoding images to create OpenGL textures and constructing geometry
from raster data) is on the visualization side. On a 22 megapixel, 28 node display wall, the visualization system
can decode 414.2 megapixels of images (19 frames) per second. However, the decoding is multi-threaded, and
increased performance is expected using multi-core computers.

1 INTRODUCTION

This paper presents live data sets, a new architec-
ture for interactive visualization of images, maps, the
Earth and other data sets on tiled display walls. A
display wall is a high-resolution wall-sized display
typically built by tiling many projectors. Each pro-
jector is driven by a computer called a display node
(Fig. 1). Traditional approaches to computation and
visualization of spatial data on display walls use a
three-tier display-compute-data architecture (Zhang,
2008; Jeong et al., 2006; Smarr et al., 2003; Cor-
rea et al., 2007) where display nodes communicate
directly with the compute resources. Live data sets
use a data space architecture where display nodes
communicate with compute resources through a data
set. This yields several advantages. First, the display
and compute sides become simpler since the logic
for communication between compute and rendering
nodes is hidden by the data set. Second, the data set
can be close to the rendering side, which reduces la-
tency and makes higher bandwidth possible. Finally,
the data set remains accessible from the display side
also in cases where the compute resources are offline.

In the live data set architecture the data set re-

112 Stien Hagen T., Stadle D. and J. Anshus O. (2010).

Figure 1: A user navigates in a 13.3 gigapixel image on a 22
megapixel tiled display wall using hand- and arm-gestures.

quests data from compute resources on-demand. This
is in contrast to existing systems such as Google Earth
where the data set is pre-processed by the server side.
On-demand computation and revalidation of data en-
sures that the display side always has the latest version
of the original data sets used. Further, on-demand
computation and acquisition of data reduces storage
requirements since data is collected and computed
only when needed. The live data set architecture re-
quires no custom code running on the compute side to
communicate with the display resources. The data set
adapts to the protocol used by compute resources and

ON-DEMAND HIGH-PERFORMANCE VISUALIZATION OF SPATIAL DATA ON HIGH-RESOLUTION TILED DISPLAY WALLS.
In Proceedings of the International Conference on Imaging Theory and Applications and International Conference on Information Visualization Theory

and Applications, pages 112-119
DOI: 10.5220/0002849601120119
Copyright © SciTePress

ON-DEMAND HIGH-PERFORMANCE VISUALIZATION OF SPATIAL DATA ON HIGH-RESOLUTION TILED

not the other way around. Additionally, the system
can utilize remote compute and data resources like
GRIDs and supercomputers where outgoing connec-
tions are often administratively prohibited.

WallScope is an implementation of the live data
set architecture. WallScope comprises visualization
systems, live data sets and compute/data resources.
The visualization systems run a client on each com-
puter in the display wall’s display cluster. Each client
requests data from the live data set which it then uses
as part of the rendering. The data set initiates a local
or remote computation to satisfy the client’s request,
or returns a cached copy of the request if the compu-
tation has been performed recently. To manage the
visualization systems’ view, a central state server is
used which broadcasts a heartbeat message at a con-
figurable rate to update each client’s view of the visu-
alization’s state.

This paper makes three main contributions: (i)
live data sets, a new architecture for visualization of
high-resolution data sets on tiled display walls; (ii)
WallScope, a system realizing the live data set archi-
tecture; and (iii) an evaluation of the system docu-
menting its performance characteristics.

2 RELATED WORK

Spatial data, and in particular geographic informa-
tion, can be accessed and visualized using numerous
software applications. Table 1 summarizes the differ-
ences between WallScope and related work.

Google Earth (Chang et al., 2006) is a popular ge-
ographic information system. It is implemented using
the BigTable system on the server side. BigTable is
a distributed storage system for managing structured
data. It uses the Google File System (GFS) (Ghe-
mawat et al., 2003) to store its data. For Google Earth,
BigTable uses one table to pre-process data, and a
different set of tables for serving client data. The
pre-processing pipeline uses MapReduce (Dean and
Ghemawat, 2008) to transform data. Google Earth
has been shown running on a display wall (Williams,
2007). The system uses Chromium (Humphreys et al.,
2002) to distribute rendering primitives from one cen-
tral computer running Google Earth, to software run-
ning on each display cluster node. Chromium has
scalability issues as the network often becomes a bot-
tleneck (Kunz et al., 2003). Google Earth can also run
on the HIPerWall (Calit2, 2008), using one or more
instances per display cluster node. The instances are
controlled using Google Earth’s API. A controller re-
ceives input from a user and forwards the resulting
view state to the instances. This solution does not sup-

DISPLAY WALLS

port on-demand computation of domain specific data,
and the system’s performance is not documented.

ArcGIS Engine (ESRI, 1997) is a collection of
components that are used to create custom GIS ap-
plications. One such system (Liang et al., 2007) uses
ArcGIS Engine to do parallel map rendering on a tiled
display wall. This system uses a master node and
six rendering nodes, all running ArcGIS Engine and
connected to a back-end GIS database. The master
shows the full scene of the data set and takes con-
trol input from a user. The rendering nodes retrieve
layer data from the back-end and view information
from the master. However, in contrast to WallScope
this system has no separate compute resources. Ad-
ditionally, the ArcGIS components are only available
for Windows.

Tellurion (Kooima, 2008) is a planetary visualizer
with real-time capabilities for data-manipulation. Us-
ing a GPU centric approach the system is able to com-
bine disparate planetary-scale data sets to produce a
uniform composite visualization of them. The visu-
alizer has been ported to several display walls. Al-
though the visualizer has real-time capabilities for
blending data sets with different projections, the
data sets have to be downloaded to disk in advance.
WallScope uses on-demand fetching and revalidation
of data to ensure that the system is using the latest
version of real-time data sets.

Several other visualization systems can transform
and visualize spatial data, including Active Data
Repository (Kurc et al., 2001), DataCutter (Beynon
et al,, 2001), Active Semantic Caching (Andrade
et al,, 2007), Scalable Parallel Visual Networking
(Correa et al., 2007), ParVox (Li, 2002), OptiStore
(Zhang, 2008), OptiPuter (Taesombut et al., 2006),
The Digital Light Table (Katz et al., 2004), Multi-
Surface Light Table, The Remote Interactive Visu-
alization and Analysis System (Li et al., 1996) and
The Scalable Adaptive Graphics Environment (Jeong
et al., 2006), based on TeraVision (Singh et al., 2004)
and TeraScope (Zhang et al., 2003). However, these
systems have tightly integrated the compute resources
with the display resources, and require both the dis-
play side and the compute side to run custom code.
This limits the compute capabilities to local compute
resources. Additionally most systems require the data
to be located on the compute nodes’ disks. WallScope
extends this by utilizing a live data set to provide the
rendering applications with domain specific data from
local and remote data and compute resources, trans-
parent to the display side of the system.

113

IVAPP 2010 - International Conference on Information Visualization Theory and Applications

Table 1: WallScope compared to visualization and compute systems presented in the litterature.

Visualization system Separate Compute | Remote Compute | On-Demand
Resources Resources Computation
WallScope Yes Yes Yes
Google Earth / Maps (BigTable) Yes No No
ArcGIS (Display Wall Version) No No No
Active Data Repository Yes No Yes
DataCutter Yes No Yes
Scalable Parallel Visual Networking Yes No Yes
ParVox Yes No Yes
Tellurion No No No
OptiStore Yes No Yes
OptiPuter Yes No Yes
Digital Light Table Yes No Yes
Remote Interactive Visualization and ... Yes No Yes
Multi-Surface Light Table Yes No Yes
Scalable Adaptive Graphics Environment Yes No Yes

3 ARCHITECTURE

Fig. 2 shows the WallScope architecture. A visual-
ization client runs on each display cluster node. The
view state of the clients is provided by a state server.
Each client requests data from the live data set which
it then uses for the rendering. The live data set re-
turns the data immediately if it is available. Other-
wise, a processing message is sent to local or remote
compute resources that generate domain specific data
for the visualization system. The compute resources
generate customized data according to the client re-
quest. For local compute resources, the request is sat-
isfied using two caches, the first containing original
data and the second containing pre-processed data.
The WallScope architecture enables load-balancing
by separating compute intensive tasks from the vi-
sualization clients and executing them on the back-
end compute resources. This makes it possible to add
compute resources as needed, and not limit the sys-
tem’s compute power to the number of display clus-
ter nodes. Data with realtime properties may pass
through the system without modification, reducing la-
tency for this kind of data.

4 DESIGN

The WallScope visualization systems execute as a set
of clients, one client per display node. Each client is
responsible for requesting and displaying its part of
the output image calculated from its position in the
display wall grid. A state server maintains the state

114

and updates all clients at a configurable rate using
a heartbeat state message. The clients combine the
state received in the heartbeat message with their lo-
cal view frustum to calculate the data they need for
rendering. The state server accepts user input which
is merged into the state and propagated to the clients.

The live data set stores all data processed by
WallScope. WallScope uses a single centralized live
data set to hide data fetching and computing to the
visualization systems. However, the live data set can
become a bottleneck if the load from the clients ex-
ceeds the processing speed of the computer running
the live data set, or if the network between the data
set and the clients is saturated. For this reason each
display node also comprises a local cache. The lo-
cal caches support different configurations: (i) local
caching; (ii) peer-to-peer exchange of cached data;
and (iii) no caching at all. The latter approach is pre-
ferred if neither the network nor the computer running
the live data set is a bottleneck, because it limits the
amount of duplicate entries caused by having objects
cached in both the local cache clients and the visual-
ization system’s clients.

The local compute resources execute as a set of
clients on one or several compute clusters. Each com-
pute node comprises an on-demand cache of original
data and a cache of pre-processed data. The compute
nodes receive processing messages from the live data
set. From the processing message the compute en-
gine requests original and pre-computed data from its
local caches and generates data according to the re-
quest. The local compute system uses a single on-
demand centralized cache of original data between the
Internet and the local compute resources. This de-

ON-DEMAND HIGH-PERFORMANCE VISUALIZATION OF SPATIAL DATA ON HIGH-RESOLUTION TILED

] Request For
G 8 Original Data

Cache of On-Demand T—},-”V' “—» Original Data
Pre-processed Cache of «—LAN / WAN <
Data Original Data oo @
’ Response
Request Response Response| | Request With Original Original Data
For Pre- With Pre- With For Data
processed | | processed Original Original Remote Datasets
Data Data Data Data N /
VTN
(\(LAN 1 WAN 5 (
o
Response With Request For s
Original / Pre- Original / Pre- - A
processed Data Processed Data Original Data Original Data

Compute Clusters with Local
Caches of Original and Pre-
Processed Data

GRID Supercomputer

Local Compute and Remote Compute and
Data Resources Data Resources

Reply with Processing Processing Read-back
processed Message ~_—~~—__ Message result
data LAN / WAN 3

N
lT Tl o of
\ Requests and
Responses
o — - Management of
Live Data Set) Data

Request for f,&\ Reply with| ~ Script parsing

processed LAN/WAN < processed

data Sy data
i

- Visualization
Clients Running
on each Computer ‘

- An (optional) Local
Cache on each
|| Computer Stores
Processed Data

- A State Server
Keeps All
Visualization Clients
Synchronized

Visualization Systems

Figure 2: The WallScope architecture. The live data set
provides visualization clients with customized data from lo-
cal and remote data and compute resources.

sign choice was made to: (i) make the system appear
as a single entity to the outside world; (ii) limit the
number of outgoing connections to prevent external
servers from being overloaded or banning WallScope
due to excessive resource usage; and (iii) authenti-
cate and keep track of external session state required
by external servers. The cache of pre-processed data
contains pre-downloaded and pre-computed data that
is pre-processed for the local compute resources. For
example to reduce latency, reduce number of passes
over the data, or for converting data to a more effi-
cient memory layout.

S IMPLEMENTATION

Two visualization systems have been implemented for
the WallScope system. WallGlobe is a visualization

DISPLAY WALLS

system for planetary scale data sets. It is implemented
in Java, using Java OpenGL (JOGL) for rendering.
WallView is a visualization system for gigapixel im-
ages, similar to Seadragon'. It is implemented in C++
and uses OpenGL for rendering. Both visualization
systems use a sort-first rendering approach and run on
Linux, Windows and Mac OS X. Users can pre-fetch
data to the live data set by running these visualization
systems on their laptops.

The main components of the visualization clients
are the rendering engine, the request queue and the
request threads. Although OpenGL is a thread-safe
API, most implementations are not. Therefore the
rendering engines have a single thread of execution.

The rendering thread draws at a configurable num-
ber of iterations per second. The thread performs view
frustum clipping and back-face culling before it re-
quests data for all the objects that are visible using
the request queue. Request threads fetch data from
this queue and notifies the rendering thread as soon as
the data is downloaded and decoded.

Every computer driving the display wall executes
a local copy of the visualization clients. A state server
accepts input from external controllers and broadcasts
this state to the other clients using UDP multicast.

The live data set and the Internet cache of orig-
inal data are implemented using Squid. Squid is a
high-performance web caching proxy (Wessels et al.,
1995). Squid was chosen because it is a open source,
highly configurable, cross-platform and several Squid
servers can be configured to co-operate in various
cache hierarchies.

The local compute resources execute a custom
map system implemented in Common Lisp. Each
node uses two different caches. A web cache of orig-
inal data realized using Squid, and a cache of pre-
processed data realized using the network file sys-
tem (NFS) and memory mapping. The pre-computed
cache is indexed and memory mapped when the com-
pute application is initially started. Files in this cache
are not updated when WallScope executes, as opposed
to the on-demand cache of original data which might
invalidate and download new content during execu-
tion.

6 EXPERIMENTS

To measure the performance of WallScope three ex-
periments were conducted. The first experiment mea-
sured the time used to request 900 512x512 image
tiles from one display node, with the purpose of iden-

Uhttp://www.seadragon.com/

115

IVAPP 2010 - International Conference on Information Visualization Theory and Applications

tifying performance characteristics when data is ac-
cessed from different locations in the architecture.
The second experiment measured the speedup when
going from 1 to 26 compute nodes, to understand the
scalability of the live data set and the local compute
resources. The third experiment used a WallGlobe
camera trace to isolate bottlenecks in the WallScope
architecture, and measure the system’s performance
under different configurations and loads.

6.1 Methodology

The hardware used in the experiments was: (i) a 28
node display cluster (Intel P4 EM64T 3.2 GHz, 2GB
RAM, Hyper-Threading, NVidia Quadro FX 3400
w/256 MB VRAM) interconnected using switched
Gigabit Ethernet and running the 32-bit version of the
Rocks Linux cluster distribution 4.0; (ii) a computer
running the state server; (iii) a computer running the
live data set; and (iv) a 26 node compute cluster. Each
display node was connected to a projector with a reso-
lution of 1024x768 pixels, arranged in a 7x4 grid for a
total of 7168x3072 pixels (22 megapixels). The state
and live data set computers had the same specifica-
tions as the display cluster nodes. The compute nodes
also had the same specifications, but were running the
64-bit version of Rocks.

To conduct the first experiment, a custom Java ap-
plication was written to perform 900 image requests.
The following statistics were measured: (i) the time
used to compute images on one compute node; (ii) the
time used to read the processed data from the live data
set to one display node; and (iii) the time used to read
the processed data from the display node’s local cache
with and without the time used to decode the images
at the display node. The 900 image tiles requested
during the experiment correspond to 236 megapixels,
in total 31.84 megabytes of JPEG image data. Each
image tile used the Landsat data set as the base layer
with the ocean masked with data from the Blue Mar-
ble data set. The original data sets that comprised
the processed images were pre-fetched to the origi-
nal data cache. The vector data used in the masking
of the ocean was replicated from the centralized cache
of pre-processed data to every compute node.

For the second experiment, the speedup was mea-
sured when going from 1 to 26 compute nodes. The
experiment used the same 900 image requests. All
requests were divided between the computers round-
robin.

The third experiment used a camera trace played
back at varying speeds. The trace consisted of a set
of waypoints. Each waypoint described the position
and rotation of the camera at the waypoint. The cam-

116

era’s position and rotation was then interpolated over
a spline curve calculated between the waypoints. The
trace started with the entire Earth visible in the view
frustum, and then zoomed into a specific part of the
Earth. All waypoints were picked in such a way that
the camera only visited new tiles. The time spent in-
terpolating between each waypoint was 30, 25, 20,
15, and 10 to 1 seconds. The WallGlobe state server
was configured to multicast the global state derived
from the camera trace to each of the WallGlobe clients
50 times per second (matching the refresh rate of the
projectors). The total number of requests generated
by the trace was 8585. 5111 (59.53%) of these re-
quests were requests for images and 3474 (40.47%)
were requests for elevation data. All the image tiles
were 512x512 pixels. This corresponds to approxi-
mately 1340 megapixels of image updates. All way-
point times were repeated over different WallScope
cache- and compute-configurations. The configura-
tions were: (i) full local caches; (ii) a live data set
containing all requested data; and (iii) computing on
1,2, 4,8, 16 and 26 nodes.

6.2 Results

Table 2 shows the measured times for experiment 1.
The first column shows the location of the requested
data. The second column shows the time used to com-
plete all the 900 requests. The third column shows the
mean time per request.

Table 2: Time used to request 900 512x512 pixel (236
megapixels) image tiles.

Data Location Time Used Mean
Compute Node 296.238 sec | 329.2 ms
Live data set 1.411 sec 1.6 ms
Local Cache 0.716 sec 0.8 ms
Local Cache (w/dec.) 13.850 sec 15.4 ms

Fig. 3 shows the result of experiment 2. In the
figure the actual speedup is plotted against a linear
speedup.

Fig. 4, 5, 6 and 7 show the result of experiment 3.
Fig. 4 shows the displayed requests from each of the
experiment configurations. The y-axis is the number
of requests that were displayed during the experiment.
A “displayed request” is a request that was loaded in
memory and displayed at least one frame during the
experiment. The x-axis is the seconds used between
waypoints. The upper bold line is the total number of
requests generated by the trace.

Fig. 5 shows the number of completed requests
during the experiment. This is the sum of the dis-
played requests and the requests that were down-

ON-DEMAND HIGH-PERFORMANCE VISUALIZATION OF SPATIAL DATA ON HIGH-RESOLUTION TILED

30

25

20

x/
15 o

10 /
5

0 2 4 6 8 10 12 14 16 18 20 22 24 26
Number of Compute Nodes

Speedup
\

Figure 3: Speedup when going from 1 to 26 compute nodes.

Live Data Set__Local Cache Fig, 5

9000 1ot R\e‘quests
P s gt . SR S 28 e
8000 B e -
8 Compute Nodes 2 . e
7000 > s .
> 16 Compute Nodes o
@ 6000
B .
§_ 25 26 Compute Nodes o
5000 S
@
B S a
\
® 4000 - 3
)
& 4 Compute Nodes ..
a -
0O 3000 .
‘\
. . o =
2000 . i
An \\ s
2 Compute Nodes & .
1000 Fo=s=m Ve e i
,,,,,,,,,,,,,,,,
1Compute Node e :
0 L . i 3
30 25 20 15 o

Seconds between Waypoints

Figure 4: The number requests that were loaded into mem-
ory and contributed to at least one frame.

Live Data Set _ Local Cache Fig. 5 and 6

9000 (--Totl R\e‘quests
— ——
8000 < %
8 Compiite Nodes* B
~_ 16 Compute Nodes &
7000 - =
" 26 Comptite Nodes
ﬁ 6000 =
g ; :
& so0 4
B = "
B 4000 |4 Compute Node: .
3 - "
“u
8 3000 ~ 5
Tw
2000 § . g _—
2 Compute Nodes g Bk R 2%
S A i S n
1000 7 T g g 0
1ComputeNode TTTETmeeeeeo N e, 0
e le g
o =
30 25 20 15 10 5 0

Seconds between Waypoints

Figure 5: The total number of completed requests. (The
displayed and non-displayed requests).

loaded and decoded but not displayed because the
planet’s source tile of the request was outside the
view-frustum at the time the data was available.

Fig. 6 shows the requested, completed and dis-
played requests for the full local cache configuration
using one second between waypoints (marked by an

DISPLAY WALLS

9000

Images + Elevation Data

Requested
,,,,,,, Completed
8000 [l -~ Displayed

7000

6000

5000

4000

Requests Accumulated

3000

2000

1000

0 ! i L)
[2000 4000 6000 8000 10000 12000 14000 16000

Milliseconds
Figure 6: The cumulative number of requested, completed
and displayed requests with full local caches. The time be-
tween each waypoint is 1 second.

140
e Images + Elevation Data
130 Images

120

110

100

ﬁ 90
§ = |
33 70 m
Jg 60
£ 1]
40 m 1
% e (
. oL J’k W
10 [ﬂ M Hm‘ ”h L ﬂ w
° 0 2000 4000 6000 8000 10000 12000 14000 16&00
Milliseconds

Figure 7: The number of completed requests for the full
local cache configuration using one second between each
waypoint. Each of the requests are stacked in 50 millisec-
onds intervals.

arrow in the upper right corner of both Fig. 4 and Fig.
5). The y-axis is the number of requests accumulated
and the x-axis is the time in milliseconds.

Fig. 7 shows the completed requests of the same
trace stacked in intervals of 50 milliseconds, also
marked in Fig. 5.

6.3 Discussion

The time to request data from the local cache is twice
as fast as requesting data from the live data set. How-
ever, the time used to request and decode images on
one node is 13.85 seconds. This is over 9 times slower
than just requesting the images from the live data set,
and therefore contributes to a much larger part of the
overall time, compared to local versus central storage.
Requesting data stored in the live data set is two or-
ders of magnitude faster than computing the data on
one compute node. For each processed image tile the

117

IVAPP 2010 - International Conference on Information Visualization Theory and Applications

compute node must request the original image tiles
that comprise the processed image tile. This requires
data from at least one image tile from the Landsat data
set and one image tile from the Blue Marble data set.
Further, the compute node must create a raster sur-
face matching the specification from the client request
(512x512 pixels) and fill the raster surface with data
from both data sets based on the meta information
from the vector shape data. During decoding of JPEG
images the display node had a CPU load of 100%.

From 1 to 6 compute nodes the system has a near
linear speedup, as shown in Fig. 3. However, when
the number of nodes increases beyond 6, the speedup
is slightly reduced. This is caused by the round-
robin work distribution. Because each data request
has varying amounts of ocean to mask, the workload
for each work request varies. Work is handed out in
a round-robin fashion without any feedback mecha-
nism. Therefore some of the nodes will get more work
than others, which is why the performance does not
increase linearly with the number of compute nodes
added.

During experiment 3 all WallGlobe clients kept
the same framerate as the refresh rate between the
computer and the display. This shows that the sort-
first approach used by WallGlobe is sufficient for driv-
ing the 22 megapixel display wall. Fig. 4 shows that
the main bottleneck of the system is the computation
of customized data, illustrated by the difference be-
tween the graphs when everything is computed and
the graphs when everything is stored in the live data
set or the local cache. As the graphs illustrate the
system benefits from increased number of compute
nodes. Documenting performance characteristics of
different cache replacement policies is outside the
scope of this paper. However, the shaded area on the
graph is where the expected performance of the sys-
tem would be using all compute nodes with caching
enabled. Different cache replacement policies will re-
sult in a system performance that will fall within this
area.

Fig. 4 and Fig. 5 show that the difference be-
tween local caching on each node and central storage
using the live data set on one node is small. Thus nei-
ther the network nor the live data set is a bottleneck
of the system. From 8 to 1 seconds the system does
not display all requests, despite the fact that they are
stored in the local cache (Fig. 4). This is explained
by the time used to decode JPEG images to create
OpenGL textures, and the time used to parse eleva-
tion data to create geometry in the WallGlobe clients
(Fig. 6). At 8000 milliseconds the trace generates
more requests than the WallGlobe clients are able to
display, illustrated by the graphs showing displayed

118

requests for both image and elevation data. When the
request threads can’t keep up with the frequency of
the updates, the amount of displayed data decreases.
At 8000 milliseconds the completed requests peeks
at 132 requests (Fig. 7). This corresponds to 2640
requests per second (132 x (1000 ms / 50 ms)). Of
these 132 requests 79 are requests for images corre-
sponding to a peak rate of 1580 images per seconds
(414.2 megapixels/s) the equivalent of 18.83 updates
per second on the 22 megapixel display wall. As de-
coding of JPEG images and parsing of elevation data
is performed in separate request threads, the system
will benefit from multi-core CPUs.

7 CONCLUSIONS

This paper presented live data sets, a new architec-
ture for interactive visualization of images, maps, the
Earth and other data sets on high resolution tiled dis-
play walls. To demonstrate live data sets WallScope
was built. By separating data processing from dis-
play rendering and using local and remote data-
and compute-resources to provide on-demand cus-
tomized data for the particular visualization domain,
WallScope’s visualization capabilities are not limited
to the processing power of the display resources. The
experiments conducted show that the sort-first render-
ing approach used by the visualization systems com-
bined with a simple state server enables each visual-
ization client to keep the same framerate as the refresh
rate between the computer and the display. When vi-
sualizing the Earth by combining data from the Land-
sat data set with data from the Blue Marble data set,
the bottleneck of the system is the merging process
of the data sets on the compute nodes. However, the
time used to combine data sets decreases by a factor
of 23 when increasing the number of compute nodes
from 1 to 26. When all data is stored, the bottle-
neck of the system is decoding JPEG images to create
OpenGL textures and processing geometry from el-
evation data. The visualization system can produce
414.2 megapixels per second, resulting in 19 decoded
frames per second. However, the decoding is multi-
threaded, and higher framerates are expected using
multi-core computers. This tracks the current trend
towards more CPU cores.

ACKNOWLEDGEMENTS

The authors wish to thank Espen Skjelnes Johnsen,
Lars Ailo Bongo and Joseph Ricci for discussions, as
well as the technical staff at the CS department at the

ON-DEMAND HIGH-PERFORMANCE VISUALIZATION OF SPATIAL DATA ON HIGH-RESOLUTION TILED

University of Tromsg. The authors also wish to thank
Eirik Helland Urke for providing the 13.3 gigapixel
image. This work has been supported by the Nor-
wegian Research Council, projects No. 159936/V30,
SHARE - A Distributed Shared Virtual Desktop for
Simple, Scalable and Robust Resource Sharing across
Computer, Storage and Display Devices, and No.
155550/420 - Display Wall with Compute Cluster.

REFERENCES

Andrade, H., Kurc, T., Sussman, A., and Saltz, J. (2007).
Active semantic caching to optimize multidimen-
sional data analysis in parallel and distributed envi-
ronments. Parallel Comput., 33(7-8):497-520.

Beynon, M. D., Kurc, T., Catalyiirek, U., Chang, C., Suss-
man, A., and Saltz, J. (2001). Distributed process-
ing of very large datasets with datacutter. Clus-
ters and computational grids for scientific computing,
27(11):1457-1478.

Calit2 (2008). http://hiperwall.calit2.uci.edu/?q=node/1.

Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach,
D. A., Burrows, M., Ch, T., Fikes, A., and Gruber,
R. E. (2006). Bigtable: A distributed storage system
for structured data. In In Proceedings of the 7th Con-
ference on USENIX Symposium on Operating Systems
Design and Implementation - Volume 7, pages 205—
218.

Correa, W. T., Klosowski, J. T., Morris, C. J., and Jack-
mann, T. M. (2007). SPVN: a new application frame-
work for interactive visualization of large datasets.
In SIGGRAPH °07: ACM SIGGRAPH 2007 courses,
page 6.

Dean, J. and Ghemawat, S. (2008). Mapreduce: simpli-
fied data processing on large clusters. Commun. ACM,
51(1):107-113.

ESRI (1997). http://www.esri.com/software/arcgis/.

Ghemawat, S., Gobioff, H., and Leung, S. T. (2003).
The google file system. SIGOPS Oper. Syst. Rev.,
37(5):29-43.

Humphreys, G., Houston, M., Ng, R., Frank, R., Ah-
ern, S., Kirchner, P. D., and Klosowski, J. T. (2002).
Chromium: a stream-processing framework for inter-
active rendering on clusters. In SIGGRAPH ’02: Pro-
ceedings of the 29th annual conference on Computer
graphics and interactive techniques, pages 693—-702.

Jeong, B., Renambot, L., Jagodic, R., Singh, R., Aguil-
era, J., Johnson, A., and Leigh, J. (2006). High-
performance dynamic graphics streaming for scalable
adaptive graphics environment. In SC '06: Proceed-
ings of the 2006 ACM/IEEE conference on Supercom-
puting, page 108.

Katz, D., Bergou, A., Berriman, G., Block, G., Collier,
J., Curkendall, D., Good, J., Husman, L., Jacob, J.,
Laity, A., Li, P, Miller, C., Prince, T., Siegel, H., and
Williams, R. (2004). Accessing and visualizing scien-
tific spatiotemporal data. In Scientific and Statistical

DISPLAY WALLS

Database Management, 2004. Proceedings. 16th In-
ternational Conference on, pages 107-110.

Kooima, R. (2008). Planetary-scale Terrain Composition.
PhD thesis, Computer Science, Graduate College of
the University of Illinois, Chicago.

Kunz, A., (editors), J. D., Staadt, O., Walker, J., Nuber, C.,
and Hamann, B. (2003). A survey and performance
analysis of software platforms for interactive cluster-
based multi-screen rendering.

Kure, T., Catalyiirek, U., Chang, C., Sussman, A., and Saltz,
J. (2001). Visualization of large data sets with the
active data repository. IEEE Comput. Graph. Appl.,
21(4):24-33.

Li, P. (2002). Supercomputing visualization for earth sci-
ence datasets. In Proceedings of 2002 NASA Earth
Science Technology Conference.

Li, P,, Duquette, W. H., and Curkendall, D. W. (1996). Riva:
A versatile parallel rendering system for interactive
scientific visualization. IEEE Transactions on Visu-
alization and Computer Graphics, 2(3):186-201.

Liang, H., Arangarasan, R., and Theller, L. (2007). Dy-
namic visualization of high resolution gis dataset on
multi-panel display using arcgis engine. Computers
and Electronics in Agriculture, 58(2):174 — 188.

Singh, R., Jeong, B., Renambot, L., Johnson, A., and Leigh,
J. (2004). Teravision: a distributed, scalable, high res-
olution graphics streaming system. In CLUSTER ’04:
Proceedings of the 2004 IEEE International Confer-
ence on Cluster Computing, pages 391-400.

Smarr, L. L., Chien, A. A., DeFanti, T., Leigh, J., and Pa-
padopoulos, P. M. (2003). The optiputer. Commun.
ACM, 46(11):58-67.

Taesombut, N., Wu, X. R., Chien, A. A, Nayak, A., Smith,
B., Kilb, D., Im, T., Samilo, D., Kent, G., and Orcutt,
J. (2006). Collaborative data visualization for earth
sciences with the optiputer, future generation com-
puter systems. Future Gener. Comput. Syst, 22:955—
963.

Wessels, D., Claffy, K., and Braun, H.-W. (1995).
NLANR prototype = Web caching system,
http://ircache.nlaur.net/.

Williams, C. (2007). http://blog.irisink.com/2007/06/14/
display-wall-with-google-earth-on-mac-os-x/.

Zhang, C. (2008). OptiStore: An On-Demand Data pro-
cessing Middleware for Very Large Scale Interactive
Visualization. PhD thesis, Computer Science, Gradu-
ate College of the University of Illinois, Chicago.

Zhang, C., Leigh, J., DeFanti, T. A., Mazzucco, M., and
Grossman, R. (2003). Terascope: distributed visual
data mining of terascale data sets over photonic net-
works. Future Gener. Comput. Syst., 19(6):935-943.

119

