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Abstract: Diabetes Mellitus type I is a disease that forces patients to manage their blood glucose level manually, by 
balancing their activities, food intake and insulin dosages. There is a large experience with building 
computational models for blood glucose level in diabetic patients, which are primarily used to design the 
medication regime for a specific patient. In this paper, the design of an intelligent support application is 
presented that uses a standard model for blood glucose level to give patients real-time advice about insulin 
and food intake. The advice is based on measurements of blood glucose level, the electronic agenda of a 
patient and model-based predictions of the glucose level in the near future. A simulation of the application 
is presented that illustrates the feasibility of the system. 

1 INTRODUCTION 

Diabetes mellitus is a syndrome that is characterized 
by dysfunctional metabolism, resulting in too high 
blood sugar levels. According to the World Health 
Organization, the prevalence of diabetes for all age-
groups worldwide is estimated to be 2.8% in 2000 
and 4.4% in 2030. The total number of people with 
diabetes is projected to rise from 171 million in 2000 
to 366 million in 2030 (Wild et al, 2000). 

The glucose level in humans is regulated by a 
mechanism that is composed of several interacting 
systems, in which the hormone insulin is the very 
important, as it decreases the blood glucose level. 
There are two types of diabetic patients: in type 1 
patients, the high blood glucose levels are caused by 
the loss of the insulin-producing cells in the 
pancreas, in type 2 patients the body developed a 
reduced sensitivity (or even resistance) to insulin. 

Diabetes mellitus is currently a chronic disease, 
without a cure, and is treated by a combination of 
dietary guidelines, exercises and insulin 
supplementation. The main challenge for diabetes 
patients is to manually keep their blood glucose 
level within a safe range, by balancing both their 
glucose intake, their physical activities as their 
insulin dosages (note that type II patients are not 
always treated with insulin). This management is 
complicated and a burdensome task for diabetic 
patients.  Specifically,  the  following   reasons  are  

mentioned (Wikipedia, 2009): 
1. The glucose cycle is a system which is affected 

by two factors: entry of glucose into the 
bloodstream and also blood levels of insulin to 
control its transport out of the bloodstream; 

2. As a system, it is sensitive to diet and exercise; 
3. It is affected by the need for user anticipation 

due to the complicating effects of time delays 
between any activity and the respective impact 
on the glucose system; 

4. Management is highly intrusive and 
compliance is an issue, since it relies upon user 
lifestyle change and (often) upon regular 
sampling and measuring of blood glucose 
levels, multiple times a day in many cases; 

5. It changes as people grow and develop; 
6. It is highly individual. 

In this paper, we investigate the options for an 
intelligent support system that helps diabetic patients 
controlling their blood glucose, exploiting 
measurements via sensor devices, information about 
activity from electronic agenda’s and model-based 
predictions of the blood glucose level. One of the 
features of such a system could be automated tuning 
of the model parameters to an individual patient. 
Together, such a system would ease the management 
of diabetes for patients in several aspects. The usage 
of a glucose-insulin model automates the assessment 
of the interaction of the different factors (complexity 
1 & 2 in the list above), the prediction and usage of 
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electronic agenda information automates part of the 
anticipation (number 3 in the list), while  parameter 
tuning allows for personalization and adaptation 
over time (complexity 5 & 6). 

In the next Section, we describe the main factors 
of blood glucose regulation process in the human 
body and a mathematical model that is often used for 
describing the glucose-insulin interaction. Section 3 
sketches the main elements of an intelligent support 
system using the glucose model and sensor 
measurements. In Section 4 we show a number of 
simulations of patients with different activity 
patterns and the effect of an intelligent support 
system consisting of the components described in 
the section before. Finally, Section 5 concludes the 
paper. 

2 MODELING BLOOD GLUCOSE 
LEVEL 

Mathematical or computational models of diabetes 
type I have been under development for several 
decades (see e.g. Bolie, 1961, Ackerman, 1965, 
Sorensen, 1985, Puckett, 1992, and Leaning and 
Boroujerdi, 1991). Models range from ordinary 
systems of differential equations to stochastic 
differential equations. Makroglou et al present a nice 
overview of the various types of models that exist. 
Within the ordinary systems of differential 
equations, the model used most frequently is the so-
called minimal model which has been introduced by 
Bergman. The development of the model has been 
motivated by a desire to model the intravenous 
glucose tolerance test. Such models consist of many 
parameters that are very specific towards patients. 
As a result, parameter estimation techniques have 
been proposed that allow the tailoring of the models 
towards the patients. In (De Geatano and Arino) the 
results of one of such parameter estimation 
techniques are shown, namely a quasi-Newton 
minimization algorithm.  

In this paper, the minimal model as introduced 
by Bergman et al (1979; Tololo et al 1980) is 
adopted. The model consists of the following three 
formulas: 

 
dG(t)/dt = – [p1 + X(t)]G(t) + p1Gb             (1a) 

    = – X(t)G(t) + p1[Gb – G(t)]      (1b) 
 

dX(t)/dt = – p2X(t) + p3[I(t) – Ib]                       (2) 
 

dI(t)/dt = p4[G(t) – p5]+ t – p6[I(t) – Ib]      (3) 
 

In this formula, G(t) is the blood glucose 
concentration, I(t) is the blood insulin concentration, 
and X(t) is  related to the interstitial insulin level, i.e. 
the insulin that is at a location where it can actually 
effect the glucose uptake by cells. Furthermore,  
• Gb is the subject's baseline glucose level; 
• Ib is the subject's baseline insulin level; 
• p1 is the glucose “mass action” rate constant, i.e. 

the insulin-independent rate constant of tissue 
glucose uptake; 

• p2 is the rate constant expressing the spontaneous 
decrease of tissue glucose uptake ability; 

• p3 is the insulin-dependent increase in tissue 
glucose uptake ability; 

• p4 is the rate of pancreatic release of insulin after 
glucose intake; 

• p5 is the pancreatic “target” blood sugar level; 
• p6 is the decay rate constant for insulin in plasma; 

 
For patients with diabetes type 1, we assume that the 
pancreas does not produce any insulin anymore. In 
the model, the effect is that parameters p4 and Ib are 
zero. Consequently, the insulin level is determined 
only by the artificial intake of insulin and the decay, 
with Is(t)denoting the artificial insulin supply at 
certain time points: 

dI(t)/dt = – p6[I(t)] + Is(t)               (4) 
The minimal model does not take the effect of 

physical effort into account. The effect of physical 
effort on the insulin and the blood glucose balance is 
twofold:  
• it increases the insulin use by cells; 
• it lowers the glucose concentration during and 

after the exercise (Goodyear and Kahn, 1998). 
Especially the fact that the glucose concentration is 
also lowered after the exercise (up to 24 hours) is an 
important factor to take into account. According to 
(Derouich and Boutayeb, 2002), the minimal model 
extended with the effect of exercises can be 
described by the following formulas: 

 
dG(t)/dt = – [1 + q2] X(t)G(t) + [p1 + q1][Gb – G(t)]   (5) 

   dX(t)/dt = – p2X(t) + [p3 + q3][I(t) – Ib]               (6) 
In these formulae, the q-parameters define the effect 
of physical activity. They are defined as follows: 
• q1: the effect of the physical exercise in 

accelerating the utilization of glucose by muscles 
and the liver. 

• q2: the effect of the physical exercise in 
increasing the muscular and liver sensibility to 
the action of the insulin. 
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• q3: the effect of the physical exercise in 
increasing the utilization of the insulin. 

The q2 variable is also larger then 0 for some time 
after the exercise. 

3 INTELLIGENT SUPPORT 

Currently, diabetes patients design a schema for 
insulin intake in consultation with their medical 
practitioner.  This schema is based on a registration 
of regular blood glucose measurements. Patients will 
also use their common sense knowledge about the 
effect of their activities on their blood glucose level: 
for example, if a large meal is consumed, the person 
will take a somewhat higher dose of insulin, or if 
sporting activities are planned, some additional food 
(especially) carbohydrates will be taken. In addition 
to this, patients will do regular blood glucose 
measurements to verify whether it is still within safe 
bounds, and possibly to correct it. 

The envisaged intelligent support system will 
give advice to a patient on when to take which 
amount of insulin or a meal. This advice is based on 
a prediction of the blood glucose level using the 
most recent measurement and the activities listed in 
the electronic agenda. The listed activities influence 
the blood glucose level, but also determine the time 
points when insulin or a meal can be taken. For 
example, in the middle of a sporting activity of 
while working, it is not easily possible to take a meal 
or insulin. The system could be implemented as an 
advanced mobile phone or PDA application. Blood 
glucose measurements will ideally be transferred 
form the electronic device (see Figure 1) via a 
wireless technology such as Bluetooth, but could 
also be manually typed in into the application. 

 
Figure 1: Electronic blood glucose meter. 

For the prediction of the glucose level, the model as 
explained in the previous section is used. The 
parameters in the model should be fitted to the 
personal characteristics of the patient. For this 

fitting, there are quite a number of approaches (De 
Geatano and Arino, 2000). In this paper, we assume 
that the parameter fitting has been implemented 
using one of the described techniques. Our 
intelligent support system will use the model with 
the fitted parameters and dynamically determine the 
amount of insulin to be taken. 

The system internally uses a list of activities and 
associated values for the q parameters. Each type of 
activity can have different parameters. For example, 
walking could have different parameters for the 
utilization of glucose and insulin than intense 
sporting. The activities are read from the agenda, 
and from the latest time point of measurement, the 
current glucose level is calculated based on the 
activities that are undertaken since the last 
measurement. In addition, the upcoming activities 
are used to predict the blood glucose level at the end 
of the next activity that still has to be started. For 
example, when a person is currently working and the 
next activity will be cycling, the glucose level at the 
end of the cycling activity is measured. In case this 
measurement is too high, advice is given to take 
insulin at the end of the current activity. In case this 
measurement is too low, advice is given to take 
some food at the end of the current activity. The 
amount of insulin or food is dynamically determined 
by simulation within the support system. At the end 
of the current activity, the patient will get a message, 
for example via his mobile phone application, to 
take a specific amount of insulin or food before the 
next activity. 

4 SIMULATION EXPERIMENTS 

The model and prediction rules that are used by the 
system have been implemented in Matlab. A number 
of simulation experiments have been run in this 
environment. In these experiments, the activities of a 
person during two consecutive days are simulated. 
Table 1 gives an overview of the activities and the 
time points. Note that the simulation time uses units 
of 15 minutes.  

For the parameters, values were used that are 
found in the literature as realistic values for a 
specific person. Specifically, we used the parameters 
of subject 2 in (Gaetano and Arino, 2000): p0 = 100, 
p1 = 0.1, p2 = 0.2196, p3 = 0.0064, p4 = 0, p5 = 23, p6 
= 0.096, p7 = 0.5, Ib = 0, Gb = 120. Note that p4 and 
Ib are 0 because we consider a diabetic patient. For 
the desired minimum and maximum glucose levels, 
we use 80 and 120 mg/dL (Erzen et al, 2000). 
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Figure 2: Blood glucose level of a diabetic patient without insulin intake. 

Table 1: List of activities during two days. 

Activity Clock 
time 

Time points in 
simulation 

 Sleeping till 7am 0:00 0 96 
 Breakfast 7:00 28 124 
 Cycling / driving 7:30 30 126 
 Office work 8:15 33 129 
 Coffee 10:15 41 137 
 Office work 10:30 42 138 
 Lunch  12:30 50 146 
 Office work 13:00 52 148 
 Tea 16:00 64 160 
 Office work 16:15 65 161 
 Cycling / driving 17:00 68 164 
 Diner 17:45 71 167 
 Relaxing 18:30 74 170 
 Intense sporting / no sporting 19:30 78 174 
 Relaxing 20:30 82 178 
 Sleeping till 0:00 22:30 90 186 
 Sleeping till 7am 0:00 96 192 

4.1 Blood Glucose Level without 
Insulin Intake 

The first simulation shows the blood glucose level 
for a person that does not produce any insulin 
anymore. At the start of the simulation, there is still 
a small amount of insulin available (0.5 μU/ml), 
however, this dissolve in a few hours. It can be seen 
that the blood glucose level will be almost always 
too high (see Figure 2). 

4.2 Regular Insulin Intake with and 
without Physical Activities 

In the second set of simulations the glucose  level  of 

a patient that is treated with a schema of regular 
insulin intake doses. We assume in the simulation 
that insulin is taken just before every meal, 
effectively three times per day. The second 
assumption is that a patient takes a lower dose of 
insulin if physical activities are undertaken during 
the day. We did this simulation for two different 
scenarios: one with physical activities, in which the 
person uses a bicycle to commute and does sporting 
in the evening, and one in which the person drives to 
his work by car and does no sporting. For the effect 
of physical activities on the blood glucose balance, 
we used a q2 value of 0.25 for cycling and 0.5 for 
intense sporting. The effect of the duration of the q2 
effect was set to 24 hours. The parameters q1 and q3 
were both set to 0.25; no empirical values were 
available. The effect on the blood glucose level and 
the insulin is depicted in Figure 3 and 4. 

It can be seen in Figure 4 that the patient takes a 
smaller amount of insulin on a regular basis using 
his common sense to keep the blood glucose within 
safe boundaries in the scenario in which physical 
activities are undertaken. 

4.3 Prediction of Maximum and 
Minimum Glucose Levels 

To give a person intelligent support about his insulin 
intake, we have to predict the effect of the activities 
on the future blood glucose level. We do this by 
running a simulation of the future values of the 
blood glucose level during the current and next 
activity at every time point within the simulation of 
the scenarios. For this, we determine the end of the 
next activity, take the planned activities into account, 
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Figure 3: Simulation of a diabetic patient that takes regular insulin dose with physical activities. 

 
Figure 4: Simulation of a diabetic patient that takes regular insulin dose without physical activities 

 
Figure 5: The predicted maximum and minimum blood glucose level during the current and next activity. 

and simulate the blood glucose level till the end of 
the next activity, assuming that no insulin will be 
taken. Then, the maximum and minimum levels of 
the blood glucose during that period are determined. 
Figure 5 illustrates how this would look for the 
scenario in which no insulin is taken (i.e. the 
scenario depicted in Figure 2; the jigsaw pattern is a 
side effect of using a small time step in the 
simulation.) 

When it is predicted that the maximum glucose 
level will become too high (in this case > 120) till 

the end of the next activity, the system will run 
another simulation to predict the effect of taking a 
standard insulin dose at the end of the current 
activity. When it is predicted that the minimum 
glucose level will become too low (in this case < 
80) before the end of the next activity, the system 
will run another simulation to predict the effect of 
taking a standard meal(e.g. a cup of coffee, a 
chocolate bar) at the end of the current activity. 
Based on the size of the effect, the optimal dose is 
determined. This is done by comparing the required 
effect and the achieved effect with the standard dose.  
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Figure 6: Simulation of a patient using the intelligent support system without physical activities. 

For example, if a standard dose of insulin reduces 
the excess of the predicted level over the maximum 
level by 30%, the advised dose is 100/30 = 3.33 
times the standard dose. 

4.4 Using the Intelligent Support 
System for Insulin and Food Intake 

We also ran a number of simulations of scenarios in 
which patients actually follow the advice of the 
intelligent support system. In these scenarios, the 
advised dose of insulin is actually taken, and the 
effect of this insulin is taken into account in the next 
predictions. We show two scenarios: the first one is 
the one without physical activities (Figure 6), the 
second one with physical activities (Figure 7). 

The figures show that the system is able to adapt 
automatically to the activities of the person as 
registered in his electronic agenda. In the scenario 
without physical activities (Figure 6) the person gets 
advice to take insulin three times per day with a dose 
that corresponds to an insulin level increase of 
around 3 μU/ml in the blood. No advice about 
additional meals is given: it can be seen in Figure 6 
that the glucose intake is standard and corresponds 

to 5 time regular meals during the day, such as 
breakfast, coffee , lunch, tea and dinner. 

In the second scenario (see Figure 7), the advice 
is to take insulin three times per day and five 
additional meals during the first day and three 
times per day insulin and one time an additional meal 
during the second day. During the first day of the 
second scenario the glucose intake occurs ten 
times a day instead of standard five and six times 
during the second day. 

In both scenarios, the blood glucose level is most 
of the time below the advised maximum level and 
above the advised minimum level. Moreover, the 
advice is always given at appropriate times, i.e. 
never in the middle of an activity or during the night. 

5 DISCUSSION 

In this paper, the working of an intelligent support 
system for diabetic patients is presented. The system 
is based on the existing technologies like mobile 
phones with electronic agenda’s, electronic blood 
glucose meters, and mathematical models of the 
blood/insulin balance. Keeping the blood glucose  
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Figure 7: Simulation of a patient using the ambient support system with physical activities. 

level within the safe boundaries by balancing insulin 
dosages, glucose intake and physical activities is a 
complicated task for diabetes patients. The 
advantage of this system is that it adapts 
automatically to the personal schedule of a patient 
and gives concrete advice about insulin and food 
intake at appropriate time points if it predicts that the 
blood glucose level of the patient will rise above the 
higher boundary or drop below the lower boundary at 
the end of the next activity. The simulation results 
demonstrated that in the scenario with the patient’s 
physical activities the intelligent support system 
helps better to maintain an appropriate blood glucose 
level in comparison with the regular insulin 
prescription. 

 Thus, the system could possible release a bit of 
the burden of diabetic patients as it can predict the 
effect of the upcoming activities more precisely than 
humans. Moreover, the effective blood glucose level 
management may minimize the progression of the 
disease and reduce the risk of later complications 
that accompany this chronic disease (Deutsch, 
1994).  

There are a number of extensions of this system 
imaginable. First of all, one could think of using 
continuous, non-invasive blood glucose measuring 
techniques. At the moment, those are not yet 
available, but it is expected that these become 
available in the near future. Second, more specific 
rules for restrictions on the advice can be 
implemented, for example the minimum of 
maximum dose, the minimal time between insulin 
doses, the maximum doses per day, etc. These 
extensions could make the system even more 
realistic and more effective for patients.  
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