MULTIVARIATE LINEAR REGRESSION BASED SYNTHESIS
OF 12-LEAD ECG FROM THREE BIPOLAR LEADS

Ivan Tomasic, Roman Trobec and Viktor Avbelj
Department of Communication Systems, Jozef Stefan Institute, Ljubljana, Slovenia

Keywords: ECG, MECG, Multivariate Linear Regression, Synthesis, Derivation, Bipolar leads, Wireless electrodes.

Abstract: The development of new technologies for electrocardiographic (ECG) monitoring enables the optimization of ECG recording strategy, in terms of a number and a position of body electrodes. Emerging wireless technology, together with requirements for improved wearing comfort, dictates a special design of a wireless bipolar ECG lead, which is composed of two closely placed electrodes. The measurements from a set of wireless electrodes, can serve for the reconstruction of the standard 12-lead ECG, which is directly applicable for the current medical knowledge. We present a method for synthesizing 12-lead ECG from only three bipolar leads. The result of the proposed method, based on multivariate linear regression, is a coefficients vector that transforms the data from three bipolar leads to a synthesized 12-leads ECG with minimum loss of diagnostic information. Two presented test cases show that a linear combination of only three bipolar leads, each obtained from two electrodes on a distance of 5 cm, suffices for a reliable synthesis of a standard 12-lead ECG. Wireless ECG leads can constitute a body sensor network that eliminates the need for additional wires and therefore improves the applicability of ECG device technology.

1 INTRODUCTION

Initial breakthrough in recording electrical activity of the heart came from Willem Einthoven, at the beginning of 20th century. He was first to assign the letters to the various deflections in the electrocardiogram (ECG), and described the electrocardiographic features of a number of cardiovascular disorders. Since Einthoven's time there have been many advances in electrocardiography. Over the years, 12-lead ECG became the golden standard with its diagnostic foundation recognized by most cardiologists. The measurement of ECG is simple and non-invasive, and therefore widely used for diagnostic purposes in cardiology.

The conventional 12-lead ECG is obtained from ten electrodes placed strategically on a patient's body. The emergence of new hardware technologies however, made possible the development of personal and wireless ECG devices. These new technologies impose the optimization of electrocardiographic devices in terms of a number and a position of body electrodes. Minimization of the required wire lengths between electrodes and improved wearing comfort of investigated person also became important issues. These requirements are in partial contradiction with the 12-lead ECG, which is the golden standard; even that it contains an amount of redundant information.

Several research and experimental projects have shown (Finlay, Nugent, Kellett, Donnelly, McCullagh, & Black, 2007) that the number of electrodes can be reduced and their optimal placing, that differs from the standard 12-lead ECG placing, can be found. The measurements from reduced electrode sets, can serve for the reconstruction (i.e. synthesis) of the standard 12-lead ECG, which is directly applicable for the current medical knowledge.

There are several approaches to the introduction of wireless technology in ECG measurements. One of the most promising is the wireless electrode (Valchinov & Pallikarakis, 2007) which enables the minimal usage of wires on the body, and consequently the maximal wearing comfort.

Since wireless electrode is bipolar (it enables the measurements and transmission of only local potential differences), we investigated in more details the reconstruction of the standard 12-lead ECG, from a set of bipolar leads with closely placed electrodes. The distance between electrodes should be small in order to minimize the wire length;
however, electrodes cannot be too close because of increased noise-to-signal ratio (Puurtinen, Viik, & Hyttinen, 2009). Our investigation showed that a set of only three bipolar leads, each obtained from two electrodes on a distance of 5 cm, is sufficient for a reliable synthesis of 12-lead ECG.

As a data source for the construction of bipolar measurements, we used multichannel ECG (MECG) measurements (Trobec, 2003), offering 31 unipolar measurements. Potential differences between two unipolar measurements were regarded as bipolar leads. We used multivariate linear regression (MLR) to calculate coefficients vector that transforms three bipolar leads to the standard 12-lead ECG. For the purpose of having minimum loss of diagnostic information, the process is personalized in terms of obtaining a transformation vector for each investigated person.

2 METHODS

The 12-lead ECG is synthesized from only three bipolar leads. Since the development of the bipolar leads is still in an experimental phase, we emulated them from the available MECG measurements. The target 12-lead ECG can be reliably obtained from MECG. Together with the emulated bipolar leads they are used as the input data to MLR algorithm, which computes a personalized coefficients vector that transforms bipolar leads to a synthesized 12-lead ECG. The target and synthesized 12-lead ECGs can be now compared in order to evaluate the proposed method.

2.1 Input Data

Input data sets were segments from 31-channel MECG measurements, 10 seconds long (1000 samples/second/channel), and obtained from different volunteers.

Currently, MECGs are mostly experimental research devices with no common accepted standard about the number of electrodes and their placing. The number of MECG electrodes differs from 10 to 300 electrodes (Lux, Smith, Wyatt, & Abildskov, 1978). Their placing is mostly based on the equidistant four neighbours mesh. We have developed a custom MECG with 31 electrodes placed as shown in Figure 1, and all referenced to the Wilson’s central terminal potential (see (Trobec, 2003) for details).

Note, that a MECG measurement has enough leads, placed on appropriate positions, to exactly reproduce the standard 12-lead ECG.

Figure 1: MECG’s placement of 31 electrodes.

We will denote each MECG measurement in the following way:

\[X = \{X(1), \ldots, X(i), \ldots, X(j), \ldots, X(m)\}, \quad (1) \]

where \(X(i) \), and \(X(j) \) are the \(i^{th} \) and \(j^{th} \) leads respectively, referenced to the Wilson’s central terminal potential, and \(m \) is the total number of leads. The Wilson’s central terminal potential is an average of limb electrodes (Okamoto & Mashima, 1998).

For an evaluation of the proposed method we will present two test 31-channel MECG measurements, first in a normal sinus rhythm and second with a single supraventricular extrasystole. Such a measurement is particularly useful because the synthesis of the 12-lead ECG can be additionally evaluated with the extrasystole reconstruction ability.

2.2 Bipolar Leads

A bipolar ECG lead is composed of two connected electrodes with appropriate electronics for digitalization and transmission of the measured results (Valchinov & Pallikarakis, 2007). Wireless bipolar leads can constitute a body sensor network that eliminates the need for additional wires and therefore improves the applicability of mobile ECG devices. Moreover, there is increased safety due to the complete isolation from the power-line network and consequently less noise. Additionally, the influence of body movement on wireless bipolar electrodes is much smaller than by conventional electrodes.

A bipolar lead is a potential difference between two unipolar electrodes \(i \) and \(j \):

\[B = \varphi_i - \varphi_j. \quad (2) \]
If we denote the Wilson’s central terminal potential as \(\varphi_{WCT} \) and subtract it from both unipolar potentials in equation (2), we get:

\[
B = (\varphi_i - \varphi_{WCT}) - (\varphi_j - \varphi_{WCT}),
\]

and finally:

\[
B = X(i) - X(j).
\]

Equation (4) is used to calculate a bipolar lead from two MECG unipolar leads.

For 31-electrode MECG from Figure 1, 465 bipolar leads can be obtained. However, bipolar lead’s wireless hardware implementation tends to become smaller and smaller. Hence, such devices could benefit from a small inter-electrode distance, which restricts the set of all useful bipolar leads from MECG, to the set of bipolar leads formed only from nearest neighbouring electrodes. In the case of 31-electrode MECG the useful set contains just 81 bipolar leads with 85320 possible combinations of three bipolar leads.

Since the reduction in inter-electrode distance inevitably reduces signal strength, three bipolar leads for synthesis of 12-lead ECG may be selected by means of evaluating signal strength from various bipolar leads (Puurtilnin et al., 2009).

2.3 Multivariate Linear Regression

To model the relationship between a 12-lead ECG and a set of three approximation leads we used MLR.

First, a MECG dataset is divided into two approximately equal intervals. Chronologically first interval is used by MLR algorithm to calculate transformation coefficients, and the second interval, not known to the MLR algorithm, is used for the estimation of algorithm’s efficiency.

Let a set of three arbitrary bipolar leads from the first interval of the MECG be denoted by:

\[
B = \{B(1), B(2), B(3)\}.
\]

The 12-lead ECG from the first interval of the MECG is represented as a set of 12-leads:

\[
ECG_{12} = \{I, II, III, aVR, aVL, aVF, V1, V2, V3, V4, V5, V6\}.
\]

As it was already mentioned, every MECG measurement contains enough leads to exactly reproduce the standard 12-lead ECG, so ECG12 is produced from X (see equation (1)) and will represent a target ECG for our approximation.

Generally, linear regression model represents the relationship between a response (i.e. criterion variable) ECG12 and a predictor B (Tabachnik & Fidell, 2001, chap. 5):

\[
ECG_{12} = \alpha_1 f_1(B) + \cdots + \alpha_j f_j(B) + \cdots + \alpha_p f_p(B) + \varepsilon.
\]

The response is modelled as a linear combination of functions (not necessarily linear) of the predictor, plus a random error \(\varepsilon \). The expressions \(f_j(B) \) (\(j=1, \ldots, p \)) are the terms of the model while the \(\alpha_j \) (\(j=1, \ldots, p \)) are the coefficients. Errors \(\varepsilon \) are assumed to be uncorrelated and distributed with mean 0 and constant, but unknown, variance. Our problem can be solved by the multivariate regression due to the fact that the response variable ECG12 is multidimensional, i.e. it is composed of 12 leads (variables).

Given \(n \) independent observations (samples): \((B_i, ECG_{12,i}) \) for \(i=1, \ldots, n \) of the predictor B and the response ECG12, the linear regression model becomes an \(n \)-by-\(p \) system of equations:

\[
\begin{bmatrix}
ECG_{12,1} \\
\vdots \\
ECG_{12,n}
\end{bmatrix}
= \begin{bmatrix}
f_1(B_1) & \cdots & f_p(B_1) \\
\vdots & \ddots & \vdots \\
f_1(B_n) & \cdots & f_p(B_n)
\end{bmatrix}
\begin{bmatrix}
\alpha_1 \\
\vdots \\
\alpha_p
\end{bmatrix}
+ \begin{bmatrix}
\varepsilon_1 \\
\vdots \\
\varepsilon_n
\end{bmatrix},
\]

where \(M \) is the design matrix of the system. The columns of \(M \) are the terms of the model evaluated at the predictors. To fit the model to the input data, the system must be solved for the \(p \) coefficient values: \([\alpha_1 \ldots \alpha_p] \), by applying the least-squares solution, i.e. by minimizing the norm of the residual vector: \(ECG_{12}-M\cdot\alpha \). We used MATLAB "regress" function (The MathWorks, 2009) to solve the system from equation (9).

The predictor B is multidimensional because it is composed of three variables, so are the functions \(f_j \) that form the terms of the model. For three dimensional predictor \(B=\{B_1, B_2, B_3\} \), terms for the model might include \(f_1(B)=B_1 \) (or for example \(f_1(B)=B_2 \)), which are linear terms, \(f_2(B)=B_1^2 \) (quadratic terms), and \(f_3(B)=B_1B_2 \) (a pairwise interaction term). Typically, the function \(f(B)=1 \) is included among \(f_j \), so that the design matrix \(M \) contains a column of ones and the model contains a constant term.

We have explored the usage of linear additive (straight-line) models with terms \(f(B)=1 \) and \(f(B)=\ldots \)
Figure 2: The target (blue) and the synthesized (red) 12-leads ECG for the first test case.

B(i). In the case of three bipolar leads, linear additive straight-line design matrix \(M \) becomes:

\[
M = \begin{bmatrix}
1 & B(1)_1 & B(2)_1 & B(3)_1 \\
1 & B(1)_n & B(2)_n & B(3)_n
\end{bmatrix},
\]

(10)

with four coefficients in the vector \(\alpha = [\alpha_1, \alpha_2, \alpha_3, \alpha_4] \) that are obtained after the system solution. If we denote the solution coefficients by \(\alpha_R \), then the result of \(M \cdot \alpha_R \) is the best approximation of ECG12 in the sense of the least-square solution.

Calculated transformation coefficients \(\alpha_R \) can be used to synthesize 12-leads ECG from a new data, measured on the bipolar leads for which the \(\alpha_R \) was calculated.

To verify the quality of the synthesized 12-lead ECG the second interval (not known to the algorithm) of the input MECG is used as:

\[
ECG_{12}^S = M_{NK} \cdot \alpha_R,
\]

(11)

where \(M_{NK} \) is the design matrix with bipolar leads data from the second interval of the MECG, and \(ECG_{12}^S \) is the synthesized 12-lead ECG. To verify the quality of \(ECG_{12}^S \) it can be compared with the target 12-lead ECG.

2.4 Personalization

The transformation vector for the synthesized 12-leads ECG is personalized in a sense of being calculated for every patient. By studying a sufficiently large number of cases for different patients it would be possible to calculate a global transformation, which gives, on average, for each individual case the best possible fit (Horacek, Warren, Field, & Feldman, 2002). Although possible, such an approach is not necessary due to the fact that MECG measurement can be easily obtained for every patient.

3 RESULTS

We will illustrate the quality of the synthesized 12-lead ECG on two MECG datasets. For each case we will plot the target 12-lead ECG together with the synthesized ECG for the purpose of visually illustrating the quality of the synthesized 12-lead ECG. Plots shown in Figures 2 and 3 are all referred to the second intervals of MECGs that are not known to the MLR algorithm.

The first test case, shown in Figure 2, is a healthy person with a normal sinus rhythm. Bipolar leads used for the synthesis are electrode pairs: (17,15), (11,8), (28,31). For the position of each electrode please refer to Figure 1. The synthesized 12-lead ECG is shown in red and the measured target ECG in blue.

The second test case, shown in Figure 3, is a measurement that contains, beside a normal sinus rhythm, also a single supraventricular extrasystole. Bipolar leads used for the synthesis are: (13,10), (10,15), (15,12). All other notations are the same as
in Figure 2. In this case the synthesis of the 12-lead ECG can be additionally evaluated by the means of the extrasystole reconstruction ability.

4 DISCUSSION

For a similarity measure between a synthesized and a target ECG we used Pearson's linear correlation coefficients (Kachigan, 1991, p. 130-133), which are listed in Table 1, for all leads and for both test cases. To investigate the differences between the two test cases we calculated the mean (\bar{r}) and standard deviation (σ) of correlation coefficients of both test cases, which are $\bar{r}_1=0.98$, $\sigma_1=0.009$ and $\bar{r}_2=0.947$, $\sigma_2=0.045$ for the first and second test case, respectively. The second test case is somewhat more complex because of the extrasystole present; therefore lower correlation coefficients have been expected. However, visual examination of the synthesized 12-lead ECGs reveals adequate approximation in both test cases.

When synthesizing 12-leds ECG from measurements obtained from electrodes placed exclusively on patient's torso it is obviously easier to synthesize the precordial leads than the limb leads. To analyze the algorithm performance separately for the limb and precordial leads we can calculate the mean and standard deviations of correlation coefficients separately as shown in Table 2.

The correlation results are somewhat better for the precordial leads in both test cases as it was expected. Nevertheless, the algorithm produces synthesized 12-lead ECG with significant correlations on limb and precordial leads in both test cases. The definite diagnostic value of the synthesized 12-lead ECG is left to be confirmed by further experiments and their interpretation by cardiologists.

Table 2: Mean and standard deviation of Pearson's linear correlation coefficients for the limb and precordial leads.

<table>
<thead>
<tr>
<th></th>
<th>Limb leads</th>
<th>Precordial leads</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mean</td>
<td>st. dev.</td>
</tr>
<tr>
<td>First case</td>
<td>0.977</td>
<td>0.012</td>
</tr>
<tr>
<td>Second case</td>
<td>0.921</td>
<td>0.046</td>
</tr>
</tbody>
</table>

5 CONCLUSIONS

The ECG monitoring is routinely useful in the early
detection of life threatening events. Currently available medical instrumentation however, shows limited abilities for continues, long-term ECG monitoring. One of the key limitations of mobile ECG devices (like Holter monitors) is a limited number of lead measurements that they produce.

We have proposed a way to synthesize 12-lead ECG from a small set of bipolar leads composed of two electrodes with a distance of 5 cm. We emulated bipolar measurements from 31 unipolar MECG’s leads. From the same MECG measurement the target 12-lead ECG is calculated and used, together with three bipolar leads, as the inputs for MLR algorithm. The MLR algorithm generates a coefficients vector that transforms three bipolar leads to a synthesized 12-lead ECG.

We evaluated the quality of synthesized ECGs on two test cases by visual comparison and by analysing Pearson’s linear correlation coefficient calculated between the target and synthesized 12-lead ECGs.

In the further work, we plan to evaluate and verify the proposed approach on more test cases in order to confirm its diagnostic value. The wireless bipolar electrodes will be applied for the direct bipolar measurement on patient’s body. The proposed methodology is widely applicable to the emerging wireless body sensors technology because it increases patient’s mobility and comfort.

ACKNOWLEDGEMENTS

This research was funded under Grant No. P2-0095 by the Ministry of Higher Education, Science and Technology of Slovenia.

REFERENCES

