HIGH-LEVEL MODEL DEFINITION FOR MICROARRAY DATA IN A FUTURE CLINICO-GENOMIC EHR

Anca Bucur, Jasper van Leeuwen, Richard Vdovjak and Jeroen Vrijnsen
Philips Research Europe, High Tech Campus 37, Eindhoven, The Netherlands

Keywords: Clinical information systems, Genomic-enabled EHR, Data models, Microarray, HL7, MIAME, MAGE.

Abstract: With the new discoveries in cancer research, increasing amounts of genomic data are starting to be used in the context of the cancer patient management and should become part of the patient record. We propose a high level data model for incorporating microarray data in a future genomic-enabled clinical information system, based on existing and emerging standards. We argue that a genomic-enabled EHR system is becoming highly relevant for clinical practice taking into account the new validated discoveries from clinical research, but it could also have an important role to support new research by collecting and integrating large amounts of data from clinical care and enabling extensive querying.

1 INTRODUCTION

The oncology clinical research and care are currently faced with an explosion of relevant information. A genetic disease, cancer requires increasing amounts of genomic information for its diagnosis, patient stratification and treatment selection. Much of this currently expensive genomic data should become persistent and accessible in a post-genomic clinical information system, to be used for both patient treatment and future research.

As more and more data of various types is being collected for current clinical care, it becomes increasingly important to preserve and ensure proper access to that data to be used for research but also for the future benefit of the patient, in the light of new discoveries. There is a large body of genomic information that will become part of standard care in the coming years. As a medical record should provide access to all relevant patient data used in the process of delivering care, all the new genomic information used in standard care, but also in research, needs to make its way into the future patient records. Preserving the data is especially meaningful when storing and maintaining is significantly cheaper than re-acquiring, and when new insight can be obtained based on old data. Most current off-the-shelf EHR solutions do not suitably address the needs of clinical research (e.g. searching, aggregation, integration) and they do not consider the relevance of genomic data for clinical care.

In this paper we describe several scenarios supporting the need for a genomic-enabled clinical information system and propose an initial high-level data model for microarray data in a future system. As some of the standards currently have a research focus and are very complex, in our model we propose a simplified solution that is suitable to be used in the context of a healthcare organization. This work is part of the ACGT project (www.eu-acgt.org) which aims to deliver to the cancer research community an integrated clinico-genomic environment enabling the sharing of data and of biomedical research tools for clinical trials.

2 SCENARIOS SUPPORTING THE NEED FOR PRESERVING GENOMIC DATA

A typical hospital EHR does not provide a complete view on all patient data and there are many legacy systems still in use. A healthcare institution may have for example an integrated system for the inpatient environment, but not for outpatient. In general, clinical researchers have their own databases for research data. They share data on collaboration basis, or when it is necessary for the patient treatment.

Research data is maintained in different data sources than the clinical data, where it can be
properly managed and queried. This creates unnecessary duplication and inconsistencies, as patients treated in clinical trials will have data in different systems.

With respect to genomic data, we have identified several scenarios in which the preservation of collected patient data is essential:

- Genomic data is used for treating a concrete patient, for assessment of prognosis or choice of treatment.
- A new discovery enables the use of existing “old” data (accessible from the EHR) for treating a concrete patient (for treating the same disease, for treating other diseases, or for indentifying the likelihood of relapse).
- EHR-stored genomic data is used for research when increased population is necessary (e.g. research in rare diseases, detection of side effects of drugs and treatment that are only visible in large studies).
- Existing “old” data is used for new hypothesis building and testing.
- Existing “old” data is used for revalidation (refinement) of research results.
- New techniques for analyzing the data are applied (revalidation from another point of view).
- Exhaustive large-scale data mining of EHR data, including genomic data (e.g. expression) to find potentially relevant correlations.
- In clinical practice, existing data is mined for quality assurance to verify compliance with guidelines, improving the process of delivery of care and preventing errors.
- In clinical research, existing data can be mined for quality assurance to verify compliance with trial protocols (e.g. mine trial data for quality assuring matching, merge trials, retrospective studies).
- Genomic patient data is used to indicate potential predisposition to disease (and the need for testing) for other family members.

3 RELEVANT STANDARDS

In this section we discuss several standards relevant in the context of modelling genomic data that should become accessible from a post-genomic health record system. These standards will be further used in our model and in the description of the user scenarios.

3.1 HL7 Reference Information Model

The main aim of the HL7 messaging standard is to ensure that health information systems can communicate their information in a form which will be understood in exactly the same way by both sender and receiver. Whereas HL7 version 2 was a pure messaging standard for interoperability, version 3 (V3) not only specifies how to send a message, but also what a message can contain. To achieve this goal, V3 makes use of vocabularies and ontologies like SNOMED (SNOMED, 2008) and LOINC (LOINC, 2009). At the basis of all HL7 V3 messages is the Reference Information Model (RIM) (HL7 RIM, 2009), an abstract model of the concepts which underlie healthcare information.

3.2 HL7 Clinical Genomics

The Clinical Genomics working group develops HL7 V3 standards that enable the exchange of interrelated clinical and personalized genomic data between interested parties (HL7 CG, 2008). Currently, the domain consists of three topics: Genotype, Genetic Variation, and Pedigree. The latter topic aims at describing a patient’s heredity based on genomic data. It utilizes the models from the Genotype topic to contain the genomic data for the patient’s relatives.

The Genotype topic consists of two (HL7 RIM-based) models: the Genetic Locus and the Genetic Loci. The latter model groups several genetic locus instances, e.g. in case of a genetic test of several genes. The first model describes data related to a genetic locus: the position of a particular given sequence in a genome or linkage map. The model includes sequencing and expression data, and can be linked to clinical information or phenotypes. Existing bioinformatics mark-up languages such as MAGE-ML (MAGE, 2006) and BSML (BSML, 2001) are used to represent the raw genomic data.

The Genetic Variation topic defines a model that is a constraint over the Genotype topic models. The focus of this model is on variations in the DNA of individuals, derived using methods such as SNP probes, sequencing and genotype arrays that focus on small scale genetic changes. However, gene expression analysis, e.g. based on microarray data, is not suitable for the Genetic Variation model and will be addressed (in the near future) by different models within the HL7 Clinical Genomics working group.
3.3 Minimum Information about a Microarray Experiment (MIAME)

Although increasingly used for gene expression data analysis at a genome-wide level, microarray technology still has the limitation of insufficient standardization for presentation and exchange of such data. The MIAME standard (Brazma, 2006) aims at establishing a common way for recording and reporting microarray-based gene expression data, and proposes the minimum information required to ensure that microarray data can be interpreted and that the results that yield from the analysis of the data can be independently verified. The standard only defines the content and the structure of the information and does not address the actual technical format of storing and communicating the data.

MIAME has also identified the need for controlled vocabularies and ontologies for data representation in order to enable interoperability. As there is a very limited availability of suitable controlled vocabularies, MIAME proposes a representation in lists of ‘qualifier, value, source’ triplets, which authors can use to define their own attributes (i.e. qualifiers) and provide the appropriate values and the source from which the terms were extracted.

A significant amount of context data is necessary to describe a microarray experiment because the results of such an experiment (gene expression) are only meaningful in the context of the conditions in which the experiment was run. Most microarray experiments only report relative changes in gene expression relative to a non-standardized reference, the data is normalized in different ways and is represented in non-standardized formats, and the annotation describing the data is often insufficient. All these factors make comparing data from distinct experiments very difficult. MIAME attempts to alleviate these issues by specifying the annotation necessary to properly interpret the data and the detailed description of the experiment, including the way in which the gene expression level measurements were obtained.

Next to the gene expression matrix, which contains for each gene and sample in the array the measured expression, MIAME advises to provide information about the genes whose expression was measured and about the experimental conditions under which the samples were taken. The information required can be divided at a conceptual level into three logical parts: gene annotation, sample annotation and a gene expression matrix.

3.4 MAGE

While MIAME focuses on the conceptual content of the data, specifying what information is needed in order to be able to interpret and reproduce a microarray experiment, MAGE (MAGE, 2006) delivers data exchange standards to facilitate the exchange of gene expression data. The core of MAGE is MAGE-OM, which provides an object model for the exchange of gene expression data. MAGE also proposes two data exchange formats, MAGE-ML – which provides a mark-up language-and MAGE-TAB – which provides a tabular format (which is the current recommendation). MAGE-OM (OMG, 2003) defines the object model for gene expression data and it is modelled using UML.

The model can express microarray designs, microarray manufacturing information, microarray experiment setup and execution information, gene expression data, and data analysis results, satisfying the MIAMI requirements. MAGE-OM tries to be generic and as complete as possible. Users typically use a subset of the provided classes and relations, which would fulfill their needs.

MAGE-ML captures MAGE-OM in an xml notation, explicit mapping rules map the MAGE-OM model to xml. Although MAGE-ML is supported in various tools as import and export format, it is a cumbersome format to use in a laboratory when no appropriate tooling or software development expertise is available.

MAGE-TAB (Rayner, 2006) fills this gap by providing a simple format, still capturing the requirements of the MIAMI standard. MAGE-TAB is a tabular format and can be easily manipulated with various tools (even spreadsheet programs).

4 HIGH-LEVEL DATA MODEL FOR MICROARRAY DATA

Although there are several existing HL7 standards addressing the issues of communication of clinico-genomic data, we consider them not applicable for the actual storage of the data. On the other hand, the MIAME and MAGE standards provide models for the storage and exchange of microarray-based gene expression data, but are mainly tailored towards research purposes: The underlying data models are too complex and too elaborate to be directly used in an EHR. For that reason, we define an initial simplified model for the storage of genomic information in a medical record, which combines
elements from existing standards with the requirements captured in our scenarios. The aim of this model is to provide a higher abstraction to genomic data and microarray data in particular such that it shields the user from the underlying complexity of the involved standards, while clearly identifying their use and application. The resulting high-level model is depicted in Figure 1.

In this model, we assume a patient-centric medical record, where all clinical data as well as the demographic data is encapsulated by the Patient class. The scope of the high-level model is limited to microarray data; all other relevant medical as well as administrative data, such as the purpose of ordering a microarray test or an overview of the patient’s medical history, is reachable from the abstract Patient class. Similar to other clinical tests, a doctor can order multiple microarray-based tests for a patient. The Test class stores all metadata on the performed test, such as the type and the purpose of the test, the date of testing, and other experimental factors.

The actual microarray used for the test is described in the ArrayDesign class. As more and more standardized microarray tests become available in the future, ArrayDesign can simply be an external reference to the design as published by the manufacturer, or it can be the complete array’s blueprint, including information on each of the sequences (BioSequence class) placed on the spots of the array.

Because the microarray test only has a meaning in the context of a particular extract that was hybridized onto the array, we describe this extract, i.e., the biological material for which the genetic profile is determined, in the Extract class. In this class, it is possible to describe how the extract was derived from the physical extracted specimen, the sample (Sample class). The source from which the sample originates (e.g., from the lung, left breast, etc.) is described in the Source class.

The outcome of the test is described in the Finding class. This can be a single finding, for example whether there is a good or bad prognosis, but also multiple findings are possible, depending on the type of array used. For example, the progesterone, oestrogen and HER2 expression levels could be measured along the lines of the research described in (Roepman, 2008), generating several findings in a single test. In this initial model we define the findings simply as key-value pairs, as each finding is test-specific and no standardization of microarray test results exists yet.

Each of the clinical findings is derived from a particular dataset of the test, by applying a specific (algorithmic) transformation(s) on that data. This can be a simple transformation, e.g., a threshold function, or a complex transformation consisting of a sequence of smaller transformations. The Transformation class is used to encapsulate each of these data processing steps.

For research purposes, it is necessary to also
store the actual (raw) data of the test, possibly with some additional description or annotation. The Data class is specified here as an abstract class, as there are multiple types of data that can be stored. Examples of the data to store are the intensity values and the scanned images. The MAGE standard defines how to store the data in its BioAssayData package. As this package actually defines more than what we intend with the abstract Data class, Figure 2 shows the mapping from this package to our model.

5 MODEL WALKTHROUGH

In Section 4 we have identified several clinically relevant scenarios which pose their own requirements on the data model. In this section we revisit one of these scenarios: New discovery enables the use of existing “old” data for treating a patient, and map it onto our initial data model, identifying the relevant classes and their role. The classes that are used are highlighted by rounded rectangles. In this scenario, a new discovery is made which refers to the same genomic data that has been collected for a previously ordered test.

In Figure 3 we adopt the following color convention: Dark color indicates previously created class instances (e.g. previously stored data); light color indicates newly created instances (e.g. a new test or transformation).

The relevant patient clinical data is accessed via the Patient class. Classes Source, Sample and Extract are only accessed to verify the metadata about the physical entities they represent – if the metadata conforms to the newly designed test, there is no need to redo the sample extraction/biopsy.

The new test represented by the Test class can access the previously stored data via the Data class. The new test introduces a sequence of new transformations represented by the Transformation class, which ultimately produces a new finding captured by the Finding class. In order to be able to understand and process the stored data, in some cases the microarray design of the previous test needs to be consulted.
6 CONCLUSIONS

With new discoveries in cancer research, increasing amounts of genomic data are starting to be used in the context of the cancer patient management and should become part of the patient record. For clinical research the data collected in the clinical practice is a valuable resource allowing for new hypotheses generation and testing, research in rare diseases, selection of patients for trials, etc. In this context, storing all genomic information available and not only the processed test results, even when that information is not immediately used in the care-providing process, is meaningful.

As the costs of generating genomic data, such as microarray-based gene expression, and extracting information from that data is still quite high it does not make economic sense to discard all the collected data and to preserve only the test result instead of storing and re-using it, especially that it is increasingly clear that genomic data can generate much more knowledge than what can be extracted in a single test or experiment and that the understanding of the expression data evolves. Additionally, it may also be the case that it is not possible to re-run a relevant test (e.g., at recurrence of disease data from previous occurrence may be relevant).

New standards for storing and exchanging genomic data such as MIAME and MAGE also require that all data should be preserved and annotated, including the raw microarray image. Of course, MIAME’s and MAGE’s main focus is research, but the reasoning behind the storage and full annotation of all genomic data is precisely based on the fact that the data encapsulates information far beyond the scope of a single experiment and should be preserved and shared.

In this paper we have proposed a high-level data model for microarray data in a future clinical information system, based on established standards. As the available standards for microarray data currently have a research focus and are very complex, in our model we propose a simplified solution that is suitable to be used in the context of a healthcare organization.

REFERENCES


