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Abstract: Evidence from several fields suggests that dual phase evolution (DPE) may account for distinctive features 
associated with complex adaptive systems. Here, we review empirical and theoretical evidence for DPE in 
natural systems and examine the relationship of DPE to self-organized criticality and adaptive cycles. A 
general model for DPE in networks is outlined, with preliminary data illustrating the emergence of phase 
changes.  

1 INTRODUCTION 

Complex adaptive and evolutionary systems exhibit 
a number of interesting properties such as far-from-
equilibrium dynamics, perpetual novelty and 
sustained diversity. While many advances have been 
made in understanding specific complex adaptive 
systems (CAS), a unifying theory of their underlying 
mechanisms remains elusive. Several conceptual 
frameworks have been proposed to describe the 
properties of CAS. These include the concepts of 
self-organised criticality (SOC) (Bak, 1999; Bak et 
al., 1988) and the adaptive cycle (Gunderson and 
Holling, 2002). While these frameworks effectively 
capture some of the observable dynamics seen in 
CAS, other properties remain neglected and the 
causal processes have not been clearly defined.  

Previous research has shown that CAS can be 
described in terms of networks of interacting 
components (Green, 1993) and that structural 
properties of these underlying networks may be used 
to explain many of the processes observed in CAS. 
Based on this realisation, the notion of Dual Phase 
Evolution (DPE) was proposed (Green et al., 2006; 
Green et al., 2000). In short, DPE explains CAS 
properties such as perpetual novelty and diversity, 
modularity, and complexity on all scales in terms of 
recurring phase transitions in connectivity and 
interaction patterns of underlying networks. DPE 
processes can be observed across a wide range of 
CAS of various orders of magnitude: from species 

evolution and ecosystem development, to socio-
economic systems, to artificial adaptive and 
optimisation systems. 

In this paper we review some of the empirical 
evidence for DPE and contrast it with other 
frameworks for understanding CAS dynamics, in 
particular SOC and the adaptive cycle. We highlight 
the key differences between these frameworks and 
DPE and discuss how some processes may be 
explained in terms of these different frameworks. 
This presents a step towards providing a holistic 
understanding of CAS dynamics based on the 
underlying network properties. To support our 
arguments we outline a simulation model of energy 
flow through a network of interacting components. 
A number of real world CAS can be mapped to this 
network model. While a thorough analysis of the 
model dynamics is on-going, the results indicate that 
DPE processes emerge in the model under a wide 
range of parameters.  

2 DUAL PHASE EVOLUTION 

2.1 Examples 

Evidence from several fields suggests that phase 
changes in landscape connectivity form a powerful 
agent of evolutionary change and innovation. 
Disasters often mediate long-term changes in the 
composition of ecological communities, with 
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established species forming an impenetrable barrier 
to invasion by novel species until massive 
population destruction clears the landscape. 
Palynological data show that changes in species 
composition in North American forests are 
consistently associated with major wildfires (Green, 
1982). At larger geological timescales, many recent 
adaptive radiation events are associated with 
transitions between glacial and interglacial periods 
that lead to drastic changes in habitat connectivity 
for a wide variety of species (Willis et al., 2004). 
Climate-change mediated variations in sea level can 
cause populations living at specific depths to 
become fragmented or connected, while temperature 
and rainfall variation alters the connectivity of lakes 
and waterways and their ecological communities 
(Roshier et al., 2001). For example, diverse new 
species of cichlids emerged in African rift lakes after 
the last Ice Age isolated local fish populations. 
Genetic suture zones (areas where locally 
differentiated populations meet) in many European 
and North American species including trees, insects, 
birds and mammals can be traced to population 
expansion from refugia that were isolated during 
glacial periods (Swenson and Howard, 2005; Hewitt, 
2004). Repeatedly-isolated refugia are associated 
with speciation events; for example, a meta-analysis 
of mitochondrial DNA studies in 63 bird species, 
showed that many adaptive radiations initiated in the 
Pliocene were completed when glaciers fragmented 
populations in the Pleistocene (Avise and Walker, 
1998). On the mountainous island of Sulawesi, 
adjacent-living similar species of grasshoppers, 
macaques, pond-skaters, cicadas, bees, butterflies 
and beetles are thought to have arisen during periods 
of habitat fragmentation caused by climate change 
(Butlin et al., 1998). 

At even larger scales, state transitions may be 
seen in evolutionary dynamics after environmental 
change. Eldredge and Gould (1972) documented 
evidence for punctuated equilibria in the fossil 
record, arguing that biological history is dominated 
by long periods of stasis with occasional bursts of 
innovation after mass extinction. These bursts of 
innovation, according to Gould (2002), are triggered 
by the removal of ecological specialists, opening up 
niches for exploitation by the widespread generalists 
which preferentially survive mass extinction. These 
generalists then undergo adaptive radiation. In this 
sense, evolution alternates between long, slow 
periods of general stability dominated by species 
selection (stability phase) and brief periods of rapid 
microevolution where novel adaptations arise 
(variation phase). There are several possible 

explanations for punctuated equilibrium (Gould and 
Eldredge, 2000). However, the strong geological 
association between disasters (such as asteroid 
strikes, vulcanism and climate change), mass 
extinction and subsequent radiation events suggest 
that these external drivers are crucial in that they 
force the switch from stability to variation phases by 
altering the connectivity of food webs and 
landscapes. 

Simulation experiments confirm this argument. 
For instance, Paperin et al. present a model (2007) in 
which organisms normally exist within a connected 
landscape in which selection maintains them in a 
stable state. Intermittent disturbances (such as fires, 
commentary impacts) flip the system into a 
disconnected phase, in which populations become 
fragmented, freeing up areas of empty space in 
which selection pressure lessens and genetic 
variation predominates. The simulation results show 
that DPE-like connectivity phase changes can 
facilitate the appearance of complex diversity in a 
landscape ecosystem. 

Dual phase processes also occur in non-living 
natural complex systems. For instance, Perkins 
(Perkins, 2003) describes in an overview article how 
various kinds of landscape patterns may have been 
formed by repeated phase changes in several 
interacting geomorphic processes. A well studied 
example of such landscapes – the geometric shapes 
of stones occurring in many polar and high alpine 
environments – has been investigated by Kesser and 
Werner (2003) who demonstrated that such patterns 
may emerge through freeze-thaw cycles that drive an 
interaction between two feedback processes. In the 
first process, ice forms in freezing soil, segregating 
stones and soil by shifting soil toward soil-rich areas 
and stones toward stone-rich areas. In the second 
process, stones are transported along the borders of 
stone-rich domains, which are squeezed and shaped 
under the pressure of expanding freezing soil. The 
authors provide a numerical simulation model 
(Kessler and Werner, 2003) that can reproduce the 
patterns found in natural landscapes of this kind 
(Perkins, 2003). 

Connectivity phase changes are also the driving 
force in many artificial CAS. Phase transitions of 
interaction networks have been implicitly present in 
many traditional optimisation algorithms in the form 
of mediation between local and global search. For 
instance, in simulated annealing (Kirkpatrick et al., 
1983; Cerný, 1985) the temperature schedule is used 
to arbitrate between local and global search steps. 
Similar ideas have been employed to improve 
performance in a variety of optimisation techniques 

IJCCI 2009 - International Joint Conference on Computational Intelligence

136



that are prone to being caught in undesirable local 
optima when applied to non-smooth search spaces. 
This includes, for instance, the back propagation 
learning algorithm for artificial neural networks. 
(e.g. Ramamoorthy and Shekhar, 1989), the Particle 
Swarm Optimisation algorithm (e.g. Wang and Li, 
2004; Liua et al., 2005), Genetic Programming (e.g. 
Cordon et al., 2002) and Support Vector Machines 
(e.g. Lin et al., 2008; Sun and Sun, 2005). In the 
above algorithms the connectivity of the 
transportation network along which the search 
proceeds is changed from well connected (global 
search, exploration) to poorly connected or 
disconnected (local search, exploitation). 

In these artificial optimisation systems, phase 
transitions occur only once or a few times in one 
direction. However, natural DPE processes are 
typified by repeated connectivity phase transitions in 
both directions. Arguably, optimisation algorithms 
supplemented with simulated annealing style 
techniques may be improved by incorporating 
repeated connectivity phase transitions in both 
directions. An instance of this approach is a 
modification of the Cellular Genetic Algorithm 
(Alba and Dorronsoro, 2008; Whitley, 1993). Kirley 
et al. (2002; 1998) modified this algorithm to 
supplement it with insights from population 
dynamics and landscape ecology. The evolving 
population was placed in a 2-dimensional cellular 
automation grid that is subjected to intermittent 
“disasters” that eliminate all solutions in one part of 
the grid. As a result, the population becomes 
fragmented and the gene flow between the sub-
populations is diminished or interrupted. This allows 
the sub-populations to diverge and slows down 
convergence. Recombination of diverged sub-
populations while re-populating areas freed by 
disasters often leads to discovery of new and fitter 
solutions. The Cellular Genetic Algorithm modified 
in this way outperforms the standard Cellular 
Genetic Algorithm on a number of hard test 
problems (Kirley, 2002; Kirley et al., 1998). 

It should be noted that in this case, the DPE 
phase transition occurs repeatedly in both directions. 
Two important interaction networks can be 
identified within the cellular grid. Firstly, there is the 
connectivity network between the populated grid 
cells. The connectivity of this network plays a role 
in determining the amount of gene (information) 
flow between different cells. Thus, connectivity in 
this network influences whether the population 
evolves as a whole or as divergent sub-populations. 
The second network is the connectivity network of 
free grid cells. These cells can be populated by 

newcomers without substantial competition. During 
phases where this network is well connected the 
algorithm has the opportunity to experiment with 
candidate solutions that may be less fit than some 
other part of the grid population, but that have 
potential to evolve towards a different, possibly 
better local optimum. 

2.2 The DPE Framework 

A common thread in all of the above examples is 
that complex properties of systems are mediated by 
qualitative changes in the connectivity structure of 
the underlying networks. The connectivity structure 
can be classified into two main states or phases: 
“connected” and “disconnected”. The “connected” 
phase is typified by high edge density and short 
paths lengths. In this phase interactions can therefore 
occur between most of the network components. In 
the “disconnected” phase edge density is low, paths 
lengths are long, and the network typically consists 
of several disconnected components. Interactions in 
the disconnected phase typically occur locally or 
only within strongly connected components. 

Since networks are inherent in the structure and 
behaviour of all complex systems (Green, 1993), a 
connectivity avalanche (Erdös and Rényi, 1960) 
underlies many kinds of critical phase changes 
(Green, 2000). Therefore all such systems can 
switch between the two above phases. Systems in 
the disconnected phase tend to be balanced. They 
may exhibit strong local variability, but typically 
little large-scale variation. Global responses to 
external stimuli are constrained, as perturbations 
cannot propagate far. Systems in the connected 
phase, in contrast, exhibit less local variability, but 
significant variation on all scales in the sense that 
responses to external stimuli are generally hard to 
predict. The rich connectivity allows perturbations to 
propagate far, affecting many system parts (Paperin 
et al., 2007). 

DPE occurs when an evolving system repeatedly 
switches between these two phases (figure 1). 
Crucial for understanding many DPE systems is the 
mechanism responsible for these repeated phase 
transitions. There is much evidence that CAS 
generally self-organise towards a stable, balanced 
state. Stabilising forces include lower order 
dynamics, such as feedback loops, and higher order 
dynamics, such as selection (in a general sense) 
(Lenton and Van Oijen, 2002). Analytical (Watson 
and Lovelock, 1983; Weber, 2001) and 
computational (Lenton and Van Oijen, 2002) models 
show that lower-order local dynamics can stabilise 
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systems over a large range of external forcing, and 
that higher order local dynamics (evolutionary 
dynamics) can greatly increase the stabilising effect. 
The adaptive forces that underlie global stability of 
CAS also inhibit novelty and change. In particular, 
selection acting on system components at various 
scales, as well as on topology and interactions, may 
drive a system as a whole to a local optimum state, 
halting innovation (Holland, 1995). Two 
mechanisms work against such long-term stasis. 

 
Figure 1: The mechanism of Dual Phase Evolution. 
Systems flip between loosely connected balance and well 
connected variation phases. Perturbations and external 
stimuli unbalance stable systems, variation facilitates 
evolutionary exploration, and internal pressures drive the 
system into a new stable state. 

One mechanism is co-evolution. Local 
adaptation of system components by selection may 
affect the selection criteria for other components, 
which will adapt as a result. This in turn affects the 
fitness landscapes of the components that initiated 
the changes. Such feedback loops may form sources 
of perpetual novelty. However, it is not clear that co-
evolution fully accounts for the innovation observed 
in many natural CAS. For instance, analytical 
models (Gavrilets, 2004) suggest that selection, not 
variation, drives speciation. Co-evolutionary 
feedback loops are likely to rapidly lead to stable 
system states. Once such a local optimum is reached, 
selection makes successful variations highly unlikely 
(Gavrilets, 2004). 

A second mechanism that may underlie continual 
novelty in CAS is disturbance. As discussed in 
section 2.1, evolutionary innovations often coincide 
with external perturbations. External disturbances 
may affect both system components and interaction 
networks, thus moving systems away from local 
optima. Densely connected interaction networks, 

while providing many stabilising interactions, also 
facilitate disturbance propagation. The complexity 
of dense interaction networks makes large-scale 
responses to disturbances essentially unpredictable. 

Once away from a local optimum, systems enter 
a variation phase. Chance variation of local 
components may provide better adaptation to local 
constraints; selection facilitates proliferation of such 
changes within networks. Selection then amplifies 
variations and eliminates destabilising interactions, 
reducing connectivity, and components and their 
interactions self-organise towards new local optima.  

Over time, surviving system components develop 
new interactions, increasing the connectivity of 
interaction networks that survived previous 
disturbances. Eventually, the system enters a new 
balance phase.  

While some parts of a system may be completely 
or partly reorganised during a variation phase 
following a particular disturbance, others remain 
stable. These stable parts may form new interactions 
and assume new roles, acting as functional 
components during a variation phase. A simulation 
by Paperin et al. (Paperin et al., 2008) demonstrated 
that DPE can result in modular networks. We 
conjecture that this mechanism may also contribute 
to emergence of hierarchical organisation in CAS. 

2.3 DPE and Self-organised Criticality 

DPE can be linked to several other key concepts in 
CAS theory. One such concept is Self-Organised 
Criticality (SOC) (Bak, 1999; Bak et al., 1988). 
Under SOC, CAS self-organise to a critical state 
where system behaviour emerges from propagation 
of stimuli via local component interactions. SOC 
suggests that CAS evolve towards the “edge-of-
chaos” (Langton 1990; Langton 1991), a transition 
state between the stasis of equilibrium systems and 
the unpredictability of chaotic systems. 

Sizes of stimuli propagation avalanches in SOC 
systems follow a power distribution, leading some 
researchers to argue that power-distributed data 
imply SOC. Models (Bak, 1999) suggest ways in 
which certain natural systems may exhibit SOC 
dynamics. However, the general applicability of 
SOC remains doubtful. Other processes also lead to 
power-law distributed data. For example, it has been 
proposed (Bak and Sneppen, 1993) that the 
biosphere self-organises to a critical state, 
potentially explaining punctuated equilibria 
(Eldredge and Gould, 1972). However, (Newman, 
1997) demonstrates a non-critical extinction model 
that yields a power-law with an exponent closer 
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(Lenton and Van Oijen, 2002) to the empirical 
punctuated equilibria data. SOC also appears to 
require fine-tuning of an order parameter  (de 
Carvalho and Prado, 2000; Sornette et al., 1995), 
and the applicability of SOC to non-conservative 
systems (de Carvalho and Prado, 2000; Kinouchi 
and Prado, 1999) remains unclear.  

To describe DPE using the SOC-vocabulary: 
CAS develop to a balance-state, where they are 
stabilised by internal forces (e.g. selection, negative 
feedback mechanisms). External disturbances 
repeatedly push a system across the critical region, 
to a chaotic state (in the sense that systems responses 
to stimuli are unpredictable), from which the system 
returns to a new balance-state, accumulating order 
and complexity on the way (figure 2).  

 
Figure 2: Dual Phase Evolution vs. Self-Organised 
Criticality. SOC-theory suggests that CAS self-organise to 
a transition state between the general stasis of equilibrium 
systems and the random behaviour of chaotic systems 
(left). According to DPE, CAS are repeatedly pushed from 
a balance-phase to a variation-phase by external 
disturbances (right). The X-axis on this metaphoric 
illustration represents the degree of predictability of 
system’s responses to stimuli. 

Often, SOC is used to express that a system has 
self-organised to a specific state, without describing 
the underlying processes. The DPE framework 
attempts to define the internal forces responsible for 
system states. In this sense some systems may self-
organise to a critical state through DPE. For 
instance, scale-free networks (Albert and Barabási, 
2000) are traditionally associated with SOC because 
their node degrees follow a power distribution. 
Traditionally, scale-free topologies were thought to 
arise through preferential node attachment during 
network growth (Albert and Barabási, 2000). 
However, scale-free topologies can arise through 
DPE in networks of constant size (Paperin et al., 
2008). Networks developed this way may underlie 
some systems with apparent SOC dynamics. 

2.4 DPE and the Adaptive Cycle 

An influential concept in CAS theory is the adaptive 
cycle (AC) (see Gunderson and Holling (2002)). The 
AC extends the idea of ecological succession 

(Gleason, 1927), and is predominantly applied to 
ecological and socio-ecological systems, especially 
with reference to ecosystem management and 
resilience. The AC identifies 4 phases in ecological 
succession: 

▪ a growth and exploitation phase (designated r), in 
which new or freed-up areas and niches are 
rapidly populated by opportunistic organisms; 

▪ a conservation phase (K) signified by 
competition, selection and resource accumulation; 

▪ a collapse or release phase (Ω), in which 
accumulated resources are catastrophically 
released, often mediated by disturbances; 

▪ a reorganisation phase (α) in which the remains 
of an Ω-collapse are reorganised and restructured. 

The AC concept attributes typical CAS 
properties to each phase. Resilience against external 
forcing is expected to be high during r and α phases 
but low during K, while resource availability is high 
during α and K phases, but low during r and Ω. 
Connectedness of control variables is maximal near 
the end of a K-phase. The AC provides a descriptive 
formalism for self-organisation in ecosystems. DPE 
theory distils concepts of the AC that are applicable 
to a wider range of CAS and provides a causal 
model based in network theory. 

The balance phase in DPE loosely corresponds to 
the r-K transition in AC. This phase is signified by 
stabilising selection, increasing connectivity, and 
growing potential for disturbance propagation. The 
variation phase in DPE loosely corresponds to the 
Ω-α-r transition in AC. This is a phase of innovation 
and re-organisation of underlying networks. 

Notably, connectedness in AC refers to the 
richness of interactions of control variables. In fact, 
there may be several interaction networks with 
different connectivity regimes within a system at any 
one time. For example, species in food webs and 
populations in landscapes form interaction networks 
that act simultaneously on the same groups but may 
have very different topologies. The structural 
properties of the interaction network of control 
variables may thus be different from the interaction 
network of components where disturbances 
propagate; a comprehensive CAS theory must 
account for this fact. 

3 A DPE SIMULATION MODEL 

To further investigate the DPE process and the role 
of disturbances and connectivity in CAS we created 
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an abstract model of resource flow through a 
network. We briefly discuss the model and some 
preliminary results here. The main objective of this 
paper is to review the empirical evidence for DPE 
and to discuss its relationship to other CAS theories. 
The space limit does not permit us to examine the 
model in greater detail and more detailed results will 
be published elsewhere (paper in preparation). 

The model consists of a number of nodes 
connected via directed edges. Energy flows along 
edges and nodes require energy to sustain 
themselves. All nodes in the system are designated 
“component nodes”, except for one, designated the 
“source”. The source node does not require energy, 
instead it produces a constant amount of energy at 
each iteration. Energy flows along downstream 
connections attached to a node. Each model iteration 
consists of three stages: energy propagation, node 
maintenance and structural modification. 

Energy Propagation. At the start of each iteration 
each component node c passes a proportion of its 
stored energy fc along its downstream connections. 
Total energy propagated downstream by c is dc = fc 
× (1 - rc), where the retention factor 
0 ≤ rc < 0 is a random number drawn when c is 
created. The remaining energy (fc – dc) is retained 
by the node. If c has no outgoing links, all of fc is 
retained. Nodes at the end of downstream edges of c 
compete for the energy propagated by c. 
Competition for resources in real systems requires 
energy. This is modelled by a competition cost 
factor kc = 1 / (1 + e2 × (lc - ic)), where lc is the 
number of downstream edges from c, and ic > 0 is a 
random number drawn when c is created, it is the 
maximum value of lc such that most energy is not 
wasted by competition expenses. Each of the lc 
downstream edges receives an equal amount of 
(dc × kc / lc) units of energy from c. Any energy 
conversion in nature comes with a loss. To model 
this, every edge g has a flow efficiency value wg 
associated with it, such that the amount of energy 
actually arriving at node cq from node cp is 
uq,p = (dc × kc / lc) – wg(p,q), where g(p, q) is the 
edge from cp to cq and wg(p,q) is a random number 
drawn when g is created. 

Node Maintenance. After all nodes have 
propagated energy downstream, the total available 
energy fc at each component node c is equal to the 
amount of energy retained by c during the 
propagation stage plus the sum of the incoming 
energy from all upstream edges. Every c has an 
associated maintenance cost mc > 0 selected 

randomly when c is created. To maintain its 
existence, every c expends mc energy units per 
iteration. If mc > fc, then c dies and is removed from 
the system along with all connected up- and down-
stream edges. The source node never dies. If c 
accumulates a large amount of energy, it reproduces. 
This happens by creating a duplicate copy h of c. 
The offspring h receives the same number of edges 
as c. Each of these edges may be connected either to 
the respective partner of c, or to any other random 
node with equal probability, thus modelling random 
mutation. The reproduction process consumes an 
amount of energy significantly larger than mc and 
remaining energy is divided evenly between c and h.  

Structural Modification. Every iteration, a new 
component or a new edge is introduced into the 
network with a small probability. When a new 
component cn is introduced, for every existing node 
p, an edge g(p, n) is added with a small probability. 
New edges connect two randomly selected existing 
nodes. Similarly, nodes and edges are removed from 
the network with a small probability at each iteration 
simulating external disturbances. 

The presented model captures major features of 
resource flow dynamics in several real-world CAS. 
For instance, the energy flow through food webs in 
ecosystems follows patterns very similar to those 
described here. Resource flow between primary and 
intermediate producers, and end-consumers in 
economies follows a similar pattern. Thus, the 
results obtained form our abstract model allow 
conclusions about a variety of CAS. 

3.1 Results 

Model dynamics explored under a range of 
parameter values coincide with the behaviour 
expected under the DPE framework. A detailed 
discussion is beyond the scope of this paper, but we 
briefly overview some of the results here. Some 
indicators of network dynamics are the number C of 
component nodes, the total amount E of energy 
stored by all component nodes in the system, and the 
network edge density D. The maximum node age A 
is an indicator on internal stability of the system. 

In the absence of external disturbances 
(probability of random node and edge removal is 
zero), C and E are lower on average compared to 
cases with disturbances. This initially surprising 
result can be explained by the DPE process. In the 
absence of disturbances unfavourable configurations 
can only be removed through node starvation. In the 
presence of disasters that propagate through the 
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system by cutting off nodes and reducing 
connectivity, the remaining network sub-structures 
exhibit more efficient and robust connectivity 
patterns. Additionally, newly created nodes can 
better compete with established nodes that stored 
significant amounts of energy when all nodes can 
equally be affected by disturbances. This increases 
potential for innovation and for discovery of even 
more stable configurations. 

Another consistently emerging pattern is that low 
values of D strongly correlate with high values of C 
and E: a small number of connections is enough to 
efficiently distribute the energy across the 
components and additional edges lead to excessive 
energy expenditure due to unnecessary competition 
and flow friction along the edges (figure 3).  

 
Figure 3: A typical simulation run. Shown are (from top to 
bottom): edge density D, total stored energy E, number of 
component nodes C, oldest node age A. Mean node age 
(not shown) strongly correlates with A. The x-axes 
represent iterations. The vertical dashed lines are a visual 
aid to stress apparent phase changes. 

In a typical run A is normally low (< 1000), 
indicating internal instability. Over time, robust 
network configurations are discovered, signified by 
a growing value of A (>> 1000). Edge density in 
these stable configurations grows, making them less 
efficient and more susceptible to catastrophic change 
caused by structural modifications. Eventually, E 
reaches a very low value and the stable 
configurations collapse leading to the next variation 
phase (figure 3). This behaviour is in line with the 
predictions of  DPE. However, in most of our 
experiments the variation phase was significantly 
longer than the DPE framework predicts. This 
observation may be explained by the absence of 
higher order stabilising control mechanisms such as 
selection between network configurations. Further 
experiments will test this conjecture. 

4 CONCLUSIONS 

Previous work shows that complex adaptive and 
evolutionary systems can be represented as networks 
of interacting components and that many interesting 
properties of CAS may be explained in terms of a 
network theoretical framework termed Dual Phase 
Evolution. According to DPE, networks underlying 
complex systems adapt and self-organise by 
alternately switching between two phases: a phase of 
high connectivity dominated by global component 
interactions and a phase of low connectivity 
dominated by local interactions.  

Here we demonstrated that DPE may provide a 
causal explanation for known CAS properties 
typically expressed through other established 
descriptive formalisms. Simulation results indicate 
that DPE-like phase changes arise in an abstract 
model of resource flow in a network that is 
representative of a variety of systems. This work 
provides a step towards an integral understanding of 
CAS and suggests that more advances can be made 
by further empirical and theoretical studies of Dual 
Phase Evolution. 
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