A PRUNING BASED ANT COLONY ALGORITHM FOR MINIMUM VERTEX COVER PROBLEM

Ali D. Mehrabi §, Saeed Mehrabi † and Abbas Mehrabi ‡

§ Department of Mathematical and Computer Sciences, Yazd University, Yazd, Iran
† Department of Computer Science, Shahid Bahonar University of Kerman, Kerman, Iran
‡ Department of Computer Engineering, Islamic Azad University, South Tehran Branch, Tehran, Iran

Keywords: Minimum vertex cover problem, Meta-heuristic approaches, Ant colony optimization algorithms.

Abstract: Given an undirected, unweighted graph \(G = (V, E) \) the minimum vertex cover (MVC) problem is a subset of \(V \) whose cardinality is minimum subject to the premise that the selected vertices cover all edges in the graph. In this paper, we propose a meta-heuristic based on Ant Colony Optimization (ACO) approach to find approximate solutions to the minimum vertex cover problem. By introducing a visible set based on pruning paradigm for ants, in each step of their traversal, they are not forced to consider all of the remaining vertices to select the next one for continuing the traversal, resulting very high improvement in both time and convergence rate of the algorithm. We compare our algorithm with two existing algorithms which are based on Genetic Algorithms (GAs) as well as its testing on a variety of benchmarks. Computational experiments evince that the ACO algorithm demonstrates much effectiveness and consistency for solving the minimum vertex cover problem.

1 INTRODUCTION

1.1 Minimum Vertex Cover Problem

Given an undirected, unweighted graph \(G = (V, E) \), the minimum vertex cover problem is to find a subset of \(V \) such that for each edge in \(E \), at least one of its two end vertices is in the subset and that its cardinality is minimum. Formally, given an undirected, unweighted graph \(G = (V, E) \), the minimum vertex cover problem seeks to find a subset \(V' \subseteq V \) satisfying \(\bigcup_{v \in V'} e(v) = E \), where \(e(v) \) denotes the edges incident on vertex \(v \), such that \(|V'| \) is minimized.

In (Karp, 1972) the decision version of the minimum vertex cover problem had been shown as NP-complete. After then, the vertex cover problem is one of the core NP-complete problems that have been frequently used for delivering to NP-hardness (Gary and Johnson, 1979). In practice, the minimum vertex cover problem can be used to model many real world situations in the areas of circuit design, telecommunications, network flow and so on. For example, whenever one wants to monitor the operation of a large network by monitoring as few nodes as possible, the importance of the MVC problem comes into the rule (Papadimitriou and Steiglitz, 1982).

Due to the computational intractability of the problem, many researchers have instead focused their attention on the design of approximation algorithms for delivering quality solutions in a reasonable time. An intuitive greedy approach for solving the problem is to successively select the vertex with the largest degree until all of the edges are covered by the vertices in \(V' \). This straightforward heuristic is not a good one as demonstrated by (Papadimitriou & Steiglitz 1982, p. 407). They considered regular graphs, each of which consists of three levels. The first two levels have the same number of vertices while the third level has two vertices less than the number of vertices found on the previous two levels. The regular graph for \(k=3 \) can be found in (Papadimitriou and Steiglitz, 1982). As (Papadimitriou, 1994) shows, this greedy algorithm never produces a solution which is more than \(\ln(n) \) times the optimum, where \(n \) is the number of vertices. However, the best
approximation algorithm known for the minimum vertex cover problem has been reported in (Khuri and Back, 1994), in which at each iteration, we randomly choose an edge, say (u,v) and add its end points to current vertex cover being constructed deleting them from the graph. The algorithm reveals a performance guarantee of 2. As a part of our experimental results, we compare our proposed algorithm with two existing algorithms based on GAs on this type of graphs. Finally (Dinur and Safra, 2001) show that it is impossible to attain approximate solutions to the minimum vertex cover problem within any factor smaller than 1.36067, unless $P = NP$. After this, the meta-heuristic approaches for solving the problem come into the role.

In solving the minimum vertex cover problem, we also have a solution for another graph problem: The maximum independent set (MIS) problem (exact definition of this problem can be found in (West, 2001), for example). The close relationship between these problems is shown by the following Lemma (see e.g. (Papadimitriou and Steiglitz, 1972)):

Lemma 1. For any graph $G = (V, E)$ and $V' \leq V$, the following statements are equivalent:
- V' is the minimum vertex cover in G.
- $V - V'$ is the maximum independent set of G.

Consequently, one can obtain a solution of the maximum independent set problem by taking the complement of solution to the minimum vertex cover problem (Hifi, 1997). However, many meta-heuristic approaches for solving the MIS have been used, so far. Specifically, we have used a hybrid GA for its solving which results in very near to optimum solutions for a variety of large scale MIS problem benchmarks (Mehrabi and et al., 2009).

1.2 Ant Colony Optimization

In the optimization literature, meta-heuristic also foster a viable alternative for delivering quality approximate solutions (Mehrabi and Mehrabi, 2009). Like genetic algorithms, simulated annealing and tabu search, the Ant Colony Optimization (ACO) is a meta-heuristic using natural metaphor to solve complex combinatorial optimization problems such as the traveling salesman problem, graph coloring problem (Costa and Hertz, 1997) and so on. The general framework of the ACO algorithms is presented in Fig. 1. Basically, the problem under study is transformed into a weighted graph. Then, the ACO algorithm iteratively distributes a set of artificial ants onto the graph to construct the paths corresponding to potential optimal solutions.

The optimization mechanism of the ACO is based on two important features: The state transition rule and the pheromone updating rule. The first one, which is a probabilistic operation, is applied when an ant is choosing the next vertex to visit. The second one dynamically changes the preference degree for the edges that have been traversed through. As the literature shows, apply these two simple parts of an ACO can solve many complex optimization problems. This paper also explains their role in algorithm by next section.

2 THE ACO ALGORITHM

As we mentioned, the structure of MVC problem is different from those of problems which have been solved by ACO in literature. In fact, the solution to MVC is an unordered subset of vertices obtained by each ant, while the most ACO-based solvers so far get the solution as an ordered or unordered subset of edges (Dorigo and Gambardella, 1997). So it becomes more challenging and desirable to transform the MVC problem characteristics into an appropriate graph representation. Also, the implementation of a standard ACO phases, providing an efficient local heuristic for the state transition rule and the design of pheromone updating rule becomes an important issue. We devoted this section for presenting our implementations in detail.

![Figure 1: The outline of an ACO algorithm.](image-url)
instance is an unordered vertex subset $V' \subseteq V$. Each ant should traverse some path across the edges of graph to cover exactly and only the vertices in V', however this path may really do not exist. For overcoming this problem, we constitute a complete graph $G_c = (V, E_c)$ including the vertex set V of G such that every pair of vertices are connected by an edge in E_c. To aware some ant, say ant k, of distinguishing between original and added edges in E_c, we define a binary connectivity function $C : E_c \rightarrow \{0, 1\}$ for each edge (i, j) as:

$$C(i, j) = \begin{cases} 1 & (i, j) \in E \\ 0 & (i, j) \in E_c - E \end{cases} \quad (1)$$

For a better understanding aims, we explained our implementations on a graph with 5 vertices which have shown in Fig. 2(a). Also, applying Eq. (1) to it is given in Fig. 2(b). We know that this special instance has more than one solution such as $\{A, C, E\}$, $\{B, C, E\}$ and so on, and so for most of the solutions we can not find a corresponding path in graph that covers exactly and only the solution vertices. However, by our graph transformation the solution paths, which can obtained in any order of vertices, can be reached.

2.2 Connectivity Updating Rule

The value of an edge, connectivity value, in E is updated when one of its edge vertices was visited by some ant, say ant k, in the following way:

$$C(i, j) = \frac{1}{n} \text{, if edge (i, j) } \in E \text{ and either vertex } i \text{ or } j \text{ is visited by ant } k. \quad (2)$$

in which n is the number of graph vertices, $|V|$. Fig. 3 shows the graph of previous example in which the connectivity values of edges (A, B), (A, C) and (A, E) have been updated to $1/5$ when vertex A is visited. The update settings according to Eq. (2) have a twofold benefit. First, the desirability of each vertex, as the next one to visit, can be evaluated dynamically. To be exact, we define:

$$D^k_j = \sum_{(r, j) \in E_c} C(r, j) \quad (3)$$

as the preference number for vertex j. So, the larger preference values the higher desirability of vertex j for ant k. Second, since a solution to MVC is a subset of vertices the ants may need to pass some steps in order to complete their own tours. However, if $D^k_j < 1$ for all j, the ant k has completed its own tour, a good stopping criteria. Note that, before starting the next cycle, the connectivity values should be reset using Eq. (1) to restore the original graph information.

2.3 State Transition Rule

One of the main parts of an ACO-based solver, which results the improvement in both optimality and efficiency of the algorithm, is the state transition rule. So we have devised an efficient pruning-based heuristic for this phase of our ACO for MVC problem.

Figure 2: An example. (a) The original graph instance. (b) Illustration of our graph transformation.

Unlike the most of ACO-based solvers, that the preference information is deposited on edges, we deposited the preference information on vertices. Our state transition rule which describes the probability of selecting vertex j, as next vertex, for ant k by:

$$P^k_j = \frac{\tau^\alpha_j \eta^\beta_{jk}}{\sum_{r \in \Lambda_k} \tau^\alpha_r \eta^\beta_{rk}} \quad (4)$$
where A_k is the set of accessible vertices for ant k. Also, τ^a_j and η^a_j represent the global pheromone updating factor and local desirability scale for vertex j, respectively. As the pruning part of Eq. (4), the ant k is not forced to consider all of the vertices to select the best one, vertex j. Instead, we define V_k as the visible set for ant k. In fact, we provide:

\[
V_k = \left\{ j \mid j \in A_k, \sum_{r \in A_k} C(r, j) \geq 1 \right\}
\]

(5)

as the checklist for ant k and prune the other vertices. We will show soon that this simple heuristic of Eq. (5) results very high efficiency in both time and solution optimality for MVC problem.

2.4 Pheromone Updating Rule

The ACO relies on the synergy among a population of ant agents. Here, we use the global and local pheromone updating rules as follows. First, at the end of each cycle, the pheromone left on the vertices of the currently best solution is reinforced. Suppose that V_c' is the currently best solution. For each vertex $i \in V_c'$, we will update its pheromone according to global updating by:

\[
\tau_i = (1 - \rho')\tau_i + \rho'\tau_0
\]

(6)

where $\rho' \in (0,1)$ is a parameter adjusting the pheromone previously laid on vertex i and τ_0 is the same as the initial value of pheromone laid on each vertex before starting the algorithm. Reduction in the pheromone intensity of the vertex i is obvious from Eq. (8), as expected.

2.5 Stopping Criterion

The stopping criterion of an ACO could be a maximum number of iterations, a constant CPU time limit, or any other fixed criteria which leads to best improvement of the algorithm. In this paper, we use an alternative, a given number of iterations in which no improvement on the solution is obtained.

3 EXPERIMENTAL RESULTS

In this section, we present the experimental results obtained by MVC-AC for solving the problem. The algorithm has been implemented by Java programming language on windows platform and Intel Pentium(R) 4 CPU 2.40 GHz processor. The parameters used in our implementation are $\alpha = 0.7$ and $\beta = 0.3$. The parameter setting for ρ has an important role in the ACO algorithms. For some fixed values of α and β, we run our algorithm with different values of ρ. According to experiences, MVC-AC with $\rho = 0.03$ exhibits the best performance for getting the optimum solution.

After that, we first, run our algorithm on regular graphs of (Papadimitriou and Steiglitz, 1972), with $k = 32$ and $k = 66$, namely "ps100" and "ps202", respectively. We got the optimum solutions in 100 runs of MVC-AC, consistently. Our comparisons with GENEsYs, a genetic algorithm software package, from (Khuri and Back, 1994) and HGA of Kotecha and Gambhava, 2003) on these graphs are reported in Tables 1 and 2.
Then, we tested algorithm on more challenging instances of random graphs which described in (Khuri and Back, 1994). We got very surprising results in comparison with Khuri and Back's results and vercov heuristic's reported there. The results of 100 runs of MVC-AC on "mvcp100-02", "mvcp100-03", "mvcp200-01" and "mvcp200-02", which are more challenging, summarized in Tables 3 and 4. According to comparisons, MVC-AC treats very consistent and effective for solving the minimum vertex cover problem.

4 CONCLUSIONS

One of the most challenging problems of the graph theory is the NP-complete minimum vertex cover problem. In this paper, we introduced a simple but efficient Ant Colony Optimization algorithm, called MVC-AC, for solving this problem. Most of our ACO components incorporate with the standard ACO algorithms. According to ACO literature, we speed up the ants traversal by considering a heuristic into the state transition rule of our ACO. Also, by introducing a new pruning based approach, the visible set for each ant, we restricted the ant search space only to vertices in its visible set, resulting substantial improvement for both time and convergence rate of the algorithm.

For experience, we compared our algorithm with some efficient existing algorithms based on evolutionary algorithms, such as GENEsYs and HGA. Also a variety of benchmarks is used to test MVC-AC. As the experimental results show, MVC-AC not only outperforms the algorithms above, but it also treats very efficient and consistent with for solving the minimum vertex cover problem.

REFERENCES

I. Dinur and S. Safra, (2001), "The Importance of Being Biased", Technical Report, Department of Computer Science, Tel Aviv University, Israel.
Table 3: The comparison of vercov heuristic and Back's results with MVC-AC results on "mvcp100-02" and "mvcp100-03" random graph instances.

<table>
<thead>
<tr>
<th>vercov heuristic</th>
<th>Back's results</th>
<th>MVC-AC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mvcp100-02</td>
<td>mvcp100-03</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>N</td>
</tr>
<tr>
<td>80</td>
<td>55</td>
<td>34</td>
</tr>
<tr>
<td>82</td>
<td>57</td>
<td>3</td>
</tr>
<tr>
<td>84</td>
<td>61</td>
<td>10</td>
</tr>
<tr>
<td>90</td>
<td>63</td>
<td>1</td>
</tr>
<tr>
<td>92</td>
<td>61</td>
<td>2</td>
</tr>
<tr>
<td>100</td>
<td>≥67</td>
<td>31</td>
</tr>
</tbody>
</table>

\[f^* = 89.22 \]

\[f^* = 92.22 \]

\[f^* = 62.75 \]

\[f^* = 57.62 \]

\[f^* = 55.10 \]

\[f^* = 55.36 \]

Table 4: The comparison of vercov heuristic and Back's results with MVC-AC results on "mvcp200-01" and "mvcp200-02" random graph instances.

<table>
<thead>
<tr>
<th>vercov heuristic</th>
<th>Back's results</th>
<th>MVC-AC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mvcp200-01</td>
<td>mvcp200-02</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>N</td>
</tr>
<tr>
<td>172</td>
<td>110</td>
<td>2</td>
</tr>
<tr>
<td>174</td>
<td>113</td>
<td>1</td>
</tr>
<tr>
<td>176</td>
<td>116</td>
<td>4</td>
</tr>
<tr>
<td>179</td>
<td>117</td>
<td>2</td>
</tr>
<tr>
<td>189</td>
<td>119</td>
<td>3</td>
</tr>
<tr>
<td>182</td>
<td>120</td>
<td>1</td>
</tr>
<tr>
<td>184</td>
<td>121</td>
<td>2</td>
</tr>
<tr>
<td>186</td>
<td>122</td>
<td>3</td>
</tr>
<tr>
<td>188</td>
<td>124</td>
<td>3</td>
</tr>
<tr>
<td>190</td>
<td>125</td>
<td>6</td>
</tr>
<tr>
<td>192</td>
<td>≥192</td>
<td>9</td>
</tr>
</tbody>
</table>

\[f^* = 180.98 \]

\[f^* = 186.46 \]

\[f^* = 132.50 \]

\[f^* = 119.07 \]

\[f^* = 111.25 \]

\[f^* = 110.46 \]