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Abstract: The paper presents the closed curve mapping method using several Fourier series neural networks having 
one input and one output only. The proposed method is also excellently fitted for a lossy compression of 
closed curves. The method does not require a large number of operations and may be used for multi-
dimensional curves. Fourier series neural networks are especially well fitted for described purposes. 

1 INTRODUCTION 

Fourier Series Neural Networks (FSNNs) belong to 
the class of orthogonal neural networks which have 
been outlined, among other publications, in (Zhu, 
2002), (Sher, 2001), (Tseng, 2004), (Rafajlowicz, 
1994), (Halawa, 2008). These are feedforward 
networks. The output value of SISO FSNNs (Single-
Inputs Single-Output FSNNs) is given by the 
following formula 

,)sin()cos()(ˆ

10
∑∑
=

+
=

+=
M

m
mmN

N

n
nn ubwuawuf  (1) 

where u is the network input, N and M are 
sufficiently large numbers, w1,w2,…,wN+M are the 
network weights, which values subject to changes 
during training process, a0,a1,…,aN, b1,b2,…,bM are 
some natural numbers which meet the conditions 
a0≠a1≠…≠aN and b1≠b2≠…≠bM. If N=M and 
a0=0,a1=1,…,aN=N and also b1=1,b2=2,…,bN=N, 
then (1) is the Fourier series.  

FSNNs have numerous essential advantages of 
which the following are worth mentioning:  

• the output is in linear relation to the weights, 
• large speed of training caused by the lack of 

local minima of some popular cost functions 
(such situation is present, for instance, for the 
sum of error squares),  

• the relationship between the number of neurons 
and the number of inputs and outputs is known, 

•  values of weights may be easily interpreted,  

• there are no problems with arrangement of 
centres which exist in networks with radial 
basic functions (RBFs). 

The functions cos(a1u),...,cos(aNu) and 
sin(b1u),...,sin(bMu) are orthogonal on the interval 
[0,2π) and [-π,π). The scale of u shall be selected so 
as the value of SISO FSNN input falls within one of 
these intervals. 

FSNN have the property of periodicity, i.e.  
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where γ is integer. Because of this property, FSNNs 
are especially well fitted for mapping closed curves. 

Further in the text, the closed curve mapping 
method is illustrated for several SISO FSNNs. The 
outcomes presented refer to networks of various 
sizes. In Section 3, there is the procedure to be used 
when images has not all black pixels belonging to 
the closed curve. Section 4 is dedicated to the 
procedure applicable to disturbed images. Section 5 
includes short comparison with some other methods 
for closed curves mapping. 

2 METHOD OF TRAINING 
FSNNS TO MAP CLOSED 
CURVES 

Figure 1 illustrates an example of monochromatic 
free-of-distortion image, resolution of 174x94 
pixels, with a two-dimensional closed curve of a 
tank-like shape. 
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Figure 1: The closed curve of a tank-like shape. 

We are denoting the number of black pixels in 
Figure 1 as P. Let’s assume an arbitrary black pixel 
as the starting point (in the paper, the extreme left-
hand upper end of the barrel was used). Moving 
along the closed curve in selected direction, let’s 
number all successive black pixels from 0 to P-1. It 
is recommended to make the numbering in such a 
way that the neighbouring pixels have assigned 
numbers differing by no more than 2. 

Let x1(k) and x2(k) denote the coordinates x1 and 
x2 of k-th pixel, respectively, where k=1,2,...,P-1. 
Let’s create two SISO FSNNs. One of them shall be 
trained using the training set composed of the pairs 
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value, when the network input equals to uk=2πk/P. 
The other network is trained using the training set 
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0≤uk<2π is met. As the cost function, we may select, 
for example, the mean square function  
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where r(uk) is the desired output value of the trained 
network (for the first FSNN, r(uk)=x1(k), while for 
the second one, r(uk)=x2(k) ). If the minimization is 
made for the function (3), the least squares method 
is the most convenient to determine the values of 
weights (Groß, 2003). Upon completing the training 
process for the network, the closed curve may be 
approximated by plotting the pixels with the 
coordinates ( ))(ˆ),(ˆ

21 krkr ufuf ,where )(ˆ),(ˆ
21 krkr ufuf  

denotes output values, rounded to the closest integer 
values, of the first and the second networks, when 
their inputs are equal to uk. Since the points plotted 
in this way need not contact each other, it is 
additionally recommended to run interpolation of the 
curve under consideration by interconnecting with 
straight line the pixels of the coordinates 
( ))(ˆ),(ˆ

21 krkr ufuf  and ( )ˆ ˆ( ), ( )1 1 2 1f u f ur k r k+ + , which 
are not neighbouring each other. 

 The method presented may be also used, in an 
analogous way, for d-dimensional closed curves, 
where d is natural number greater than or equal to 2. 
The proposed algorithm can by concisely outlined 
by the following items: 

a) find the starting point and number all the 
black pixels in succession. 

b) create d-number of FSNNs.  
c) train all FSNNs. For the i-th network, the 

training set ,)}(,{ 1
0
−
=

P
kik kxu  where i=1,2,...,d is used. 

d) blacken appropriate pixels and run 
interpolation, if applicable. 

Thanks to numbering the pixels as proposed, 
networks are taught the functions which include no 
violent changes. The property of periodicity of 
FSNNs makes this type of networks to be very well 
suitable for the purpose considered. The other 
advantages of FSNNs, as listed in the introduction, 
are also of great importance. It is worth to mention 
that due to application of the method proposed, the 
lossy compression of the closed curve is attained 
because the number of FSNN’s weights is most 
often much less than the number of pixels of the 
curve under consideration. By changing the number 
of FSNN’s neurons, we can modify the degree and 
the quality of the compression.  

Below, there are results from training FSNNs to 
reconstruct the curve shown in Figure 1. The pixel in 
the left-hand upper corner of this figure has the 
coordinates (0,0) while the pixel in the right-hand 
bottom corner has the coordinates (174,94). Figures 
2a and 2b show reproduced shape of the curve from 
Figure 1 for N=10 and N=30, respectively. During 
computer simulations, it was assumed that 
a0=0,a1=1,…,aN=N and b1=1,b2=2,…,bN=N. The 
results shown are those without interpolation. The 
cost function (3) was minimized. 

 
Figure 2: Reconstructed shape of the curve shown in 
Figure 1 a) for N=10, b) for N=30. 

The method presented may be also applied to 
train FSNNs the shape of a closed curve with added 
line, e.g. the tank with an appended antenna as 
shown in Figure 3. However, the reconstructed 
image would be deformed by Gibbs effect, which 
will occur due to stepwise change of at least one co-
ordinate value for pixels with successive numbers. 

Figs. 5 and 6 provide results attained for the 
proposed method used to map the closed curves 
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illustrated in Fig. 4. These curves were selected to 
get clear indication of distinctive features of the 
resulting mapping. For the sake of limited volume of 
the paper no further experimental results are 
presented. 

 
Figure 3: The tank from Figure 1 with an appended 
antenna. 

 
Figure 4: The closed curves a) house b) pliers. 

 
Figure 5: Reconstructed shape of the closed curve shown 
in Figure 4b for N=5 and for N=10. 

 
Figure 6: Reconstructed shape of the closed curve shown 
in Figure 4a for N=5 and for N=10. 

3 TRAINING FSNNS TO MAP 
CLOSED CURVES FROM 
IMAGES WHERE SOME 
PIXELS WERE NOT MARKED 
OUT 

It is enough to introduce minor modifications in the 
situation when we have the closed curve picture 
where not all pixels were marked out of this curve. 
An example of such image is shown in Figure 7. 

Further in this paper, an assumption is made that 
the distance between two points is counted by means 
of norm L1 (i.e. the so called Manhattan distance, 
  

 
Figure 7: Picture of the closed curve where not all pixels 
of this curve are marked. 

called also the taxicab distance). For instance, let’s 
assume that the points w and q have the coordinates 
w1,w2,...,wd and q1,q2,...,qd, respectively. Then, the 

distance between them equals to ∑
=

−
d
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situation under discussion, at first all the pixels shall 
be interconnected so as the sum of lengths of all 
connections was the shortest and so that these 
connections do not cross each other. Modification of 
the method consists in a change of pixel numbering 
way and assuming that the value P equals to the sum 
of lengths of all created connections. Natural 
numbers are assigned to the pixels and these 
numbers are the distances from the starting pixel 
counted along the route created by determined 
connections. Let’s note that these would not always 
be the successive natural numbers. 

4 TRAINING FSNNS TO MAP 
CLOSED CURVES FROM 
DISTURBED PICTURES 

Figure 8 illustrates an example of a picture with 
closed curve disturbances where not all pixels 
related to this curve are marked out. 

 
Figure 8: Picture with disturbances of the closed curve 
where not all pixels of this curve are marked out. 

In situations similar to the case shown in Fig. 8, the 
picture may be first divided into smaller parts of 
identical dimensions.  

Then, for each portion including the number of 
marked out pixels higher than r, where r is 
sufficiently large natural number selected according 
to a priori knowledge about disturbances, the 
average coordinates for all points belonging to the 
specific portion are calculated. These averages are 
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then treated as the coordinates of pixels creating the 
image of closed curve with not all pixels of this 
curve being marked out. Then, the procedure 
outlined in Section 3 is used. 

 
Figure 9: Figure 8 divided into smaller portions. 

5 COMPARISON WITH SOME 
OTHER METHODS 

A mapping method for closed curves using Fourier 
series is presented in (Ünsalan, 1998). This method 
makes use of polar/spherical coordinates. However, 
it is inapplicable when the radius is not a function, 
i.e. the same value of the turning angle may 
correspond to several different radius values. This 
constitutes its essential drawback which drastically 
reduces the number of closed curves which can be 
mapped. The method outlined in (Ünsalan, 1998) is 
applicable to map the curve shown in Fig. 4a but it 
may not be directly applied to map the curves shown 
in Figs 1 and 4b. The method presented in this paper 
is free of that drawback. The method proposed by 
the author has several similar advantages as that 
given in (Ünsalan, 1998), e.g. it requires less 
calculations than the 3L fit method (3LF) (Lei 
1996). A valuable virtue of the proposed method is 
the fact that upon teaching FSNNs, we always attain 
the shape of closed curve which is not always a case 
when implicit polynomials are used with the 
methods of least squares fit (LSF), bounded least 
squares fit (BLSF) and 3L fit (Lei, 1996). The LSF, 
BLSF and 3LF methods are suitable for situation 
described in Section 3. If it is a priori known that the 
closed curve is given by equation of geometrical 
figure or shape, better results could be reached by 
specific-shape-dedicated methods, e.g. the method 
presented in (Pilu, 1996). 

6 CONCLUSIONS 

The presented method is well-suited for 
approximating closed curves. These curves may be 

presented on a monochromatic picture. The FSNNs, 
thanks to the property (2) and essential advantages 
listed in Section 1, are especially suitable for 
described purpose. As the problem size rises, it is 
enough to increase the number of FSNNs used. The 
FSNNs are taught the functions which include no 
rapid changes. The presented method may be used 
for the lossy compression of closed curves. It may 
be also used to find the shape of closed curves out of 
disturbed or incomplete pictures. 
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