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Abstract: A large number of studies have examined communicating processes in formalizing concurrent systems for 
unicast communications. We propose a process calculus to enable formalizing communicating processes 
and their computational costs to analyze denial-of-service attack resistance by estimating the cost balance 
between a victim and attackers. Our system is similar to other process calculi in that it is based on unicast 
communication. Broadcast communication is also important in the context of denial-of-service attack resis-
tance because several denial-of-service attack methods, such as the Smurf attack, use broadcast communica-
tions. Little is known about the formal framework of broadcast communicating processes. In this paper, we 
formalize broadcast communication in the framework of process calculus and apply it to an analysis of 
denial-of-service attack resistance of communicating processes via broadcast communication. We propose 
an extension of the proposed process calculus and an analysis method that uses the SPIN model checker. 
We give two examples of broadcast communication and verify several properties using the SPIN model 
checker 

1 INTRODUCTION 

The formalization of communicating processes has 
been the object of study for a long time. One of the 
most important frameworks is the pi-calculus (Miln-
er et al., 1992) (Sangiorgi et al. 2004), a system that 
formalizes communi-cating processes. In that calcu-
lus, communication between processes is allowed to 
be point-to-point or unidirectional; the calculus does 
not support broad-cast communication. The spi-
calculus was proposed to formulate and analyze the 
security of communication protocols enhanced by 
adding cryptographic constructs like public-key en-
cryption, shared-key encryption, and hashing (Abadi 
and Gordon, 1997). 

A denial-of-service (DoS) attack is an at-tempt to 
make a computer service unavailable to its users. 
The first study of the formalization of DoS attacks 
on communications protocols and resistance against 
such attacks was performed by Meadows (2001). 
She extended the Alice-and-Bob notation by anno-
tating the computational costs in processing data 
packets. Although the property was deeply related to 
operational behavior, cost annotation was assigned 
to each communication operation independently of 

the operational behavior. We therefore proposed 
another formal framework called spice calculus; this 
is based on process calculi where the cost estimation 
mechanism is linked to operational behavior (Tomi-
oka et al., 2004). We can use this calculus success-
fully to formalize DoS attack resistance; however, it 
can only handle point-to-point communication, not 
broadcast communication. 

In this paper, we study the formalization of 
broadcast communication in spice calculus and a 
verification method using model checking. 

2 FORMALIZATION OF 
BROADCASTING 

Broadcasting is the transmission of a message to be 
received by all hosts in a network. It is supported by 
several network protocols such as Ethernet, token 
ring, and IPv4. On the other hand, point-to-point 
transmission is called unicasting. 

Some DoS attacks on communication protocols 
use broadcasting as a packet amplifier to overwhelm 
a victim. The most typical of these is the Smurf at-
tack, in which an attacker sends ICMP echo requests  
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Figure 1: Unicasting and broadcasting. 

to IP broadcast addresses whose source IP addresses 
are spoofed as the victim’s IP address (CERT-1998). 
Each receiver then replies to the victim with an echo 
reply, and the spoofed echo requests from the at-
tacker are amplified as the echo replies sent from 
hosts in the network. Broadcasting therefore plays 
an important role in DoS attacks. 

There are two ways of incorporating broadcasting 
into spice calculus: 

1. Implement broadcast communication using 
unicast communication, which is already pro-
vided in the calculus. 

2. Introduce broadcast communication primitives 
into the calculus, just like the unicast primitives, 
and then define operational semantics of the 
broadcast primitives. 

In this paper, we start with the first option because it 
works with a model checker. 
We implement a process that creates a group of 
processes simulating a broadcast. We call the 
process a broadcast arranger:  the processes in Fig. 
3 are generated and arranged as the result of the ex-
ecution of the process description shown in Fig. 4. 
We do not explain the description in detail. The code 
does not implement the processes in Fig. 3 directly, 
but generates a procedure that creates the processes 
in Fig. 3. The relay process in Fig. 3 shows the “re-
ception” of a broadcast request and the subrelay 
process is a “control clerk” for each host participat-
ing the broadcast network. If some host, e.g., HST2, 
wants to make a broadcast, (1) it sends a message to 
the channel broadcast; (2) (3) then the relay 
process delivers it to the other subrelays. (4) The 
subrelays send the message to the corresponding 
hosts. 
 

 
Figure 2: Smurf amplifier. 
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Figure 3: Translated broadcast. 

new (broadcast); 
store last = []; 
fork( /* relay arrangement */ 
 inp con(reply); 
 out internal <[broadcast, last]>; 
 inp internal (data); 
  split [n,out] is data; 
  store last=n; 
  out reply <[broadcast,out]>; 
) 
fork(/* sub-relay creation */ 
  inp internal(data); 
  split [b,last] is data; 
  new(out); new(n); 
  out internal <[n,out]>; 
  fork( 
    inp n (data); 
    out last <data>; 
    out out <data>; 
  ) 
) 
fork( /* relay creation  */ 
 inp broadcat (data); 
 out last <data> 
)   

Figure 4: Description in spice calculus. 
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chan dummy = [0] of { int }; 
chan broadcast = [0] of { int }; 
chan con = [0] of { int }; 
chan last; 
byte sink_started = 0; 
int node_num = 0; 
active proctype sink() 
{chan prev = [0] of { int }; 
 int data; 
 atomic { 
last = prev;  
sink_started = 1; 
} 
 do ::prev ? data; od 
} 
active proctype broad_net() 
{int data; 
 sink_started == 1; 
 do ::true ‐> 
   broadcast ? data; last ! data; 
 od 
} 
active proctype add() 
{chan reply;  
chan prev = [0] of { int }; 
 chan out;  
chan internal = [0] of { chan, chan }; 
 sink_started == 1; 
 do ::con ? reply ‐> 
   run c(internal); 
   internal ! dummy, last; 
   internal ? prev, out; 
   last = prev; node_num = node_num + 1; 
   reply ! out; 
 od 
} 
proctype c(chan internal) 
{int data; chan dum; chan next; 
 chan prev = [0] of { int }; 
 chan out = [0] of { int }; 
 internal ? dum, next; 
 internal ! prev, out; 
 do ::prev ? data; 
    next ! data; 
    if ::out ! data; fi; 
 od 
}   

Figure 5: Translated code in Promela. 

% ping ‐b 192.168.108.255 
WARNING: pinging broadcast address 
PING 192.168.108.255 (192.168.108.255) 
     56(84) bytes of data. 
PING 192.168.108.255 (192.168.108.255) 
56(84) bytes of data. 
64 bytes from 192.168.108.128: 
icmp_seq=1 ttl=64 time=0.289 ms 
64 bytes from 192.168.108.90: 
icmp_seq=1 ttl=64 time=0.479 ms (DUP!) 
64 bytes from 192.168.108.65: 
icmp_seq=1 ttl=64 time=1.38 ms (DUP!) 
64 bytes from 192.168.108.43: 
icmp_seq=1 ttl=64 time=1.38 ms (DUP!)   

Figure 6: Example of Ping. 

proctype sender(){ 
 int:data; 
 chan pong = [0] of { int }; 
 broadcast ! ping; 
 sended: skip; 
 do 
  ::pong ? data; 
 od 
}   

Figure 7: Ping Sender. 

3 PRACTICE OF BROADCAST 
COMMUNICATION IN MODEL 
CHECKER 

Nowadays, many model checkers are implemented 
and used widely not only in academia but also in 
industry. Among them, we choose SPIN model 
checker (Holzmann 2004), which enables us to give 
a model description in a kind of distributed pro-
gramming language with synchronous communica-
tion via channels. The language is called Promela 
(Process Meta-Language) .  The SPIN model check-
er verifies that a temporal logic’s formula satisfies a 
model written in Promela. We translate a process 
description of the spice-calculus to a model defini-
tion written in Promela. Similarity between the 
spice-calculus and Promela is multi-process lan-
guage based on synchronous communication via 
channel.The difference is process creation: although 
we can create unlimited number of processes in the 
spice-calculus, we can use only processes deter-
mined by a given program code in Promela. Such 
limitation is due to efficiency of model checking in 
SPIN. In translation of the spice-calculus code to 
Promela’s, we naively impose the restriction on 
process creation: unlimited process creation is trans-
lated as fixed number’s creation. In Figure 5, the 
translated code of the spice-calculus to Promela is 
presented, which is slightly editted for readablility. 

3.1 Case Study: ICMP’s Ping 

Ping is a basic network command in several operat-
ing systems that enables sending ICMP communica-
tions, including ICMP broadcasts. Figure 6 shows an 
example of using the ping command where a user 
has broadcast to network 192.168.108.0/24 and four 
hosts have responded. Code fragments in Figs. 7 and 
8 describe the sender of a broadcast and one of four 
responders, respectively. The sender sends a broad-
cast packet ping and receives pong responses. The 
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responder sends a pong back. The two code frag-
ments provide a model for the SPIN model checker. 

proctype sender(){ 
 int:data; 
 chan pong = [0] of { int };
 broadcast ! ping; 
 sent: skip; 
 do 
  ::pong ? data; 
 od 
}   

Figure 8: Ping sender. 

proctype responder1(){ 
 chan reply = [0] of { chan }; 
 chan out = of { int }; 
 chan pong; int prefix = 1; int data; 
 con ! reply; 
 reply ? out; 
 do 
  ::out ? pong ‐> ping ! prefix; 
    received: skip; 
 od   

Figure 9: Ping Responder. 

An assertion to be checked by SPIN is described in 
linear temporal logic as 

[](sender@sent ‐> 

  (<>responder1@received && 

   <>responder2@received && 

   <>responder3@received)), 

where sender@sent means reachability in line 5 of 
Fig. 8, and responder1@received means reach-
ability at line 9 of Fig. 9. The formula denotes that if 
control reaches sent in process sender, then it will 
finally reach the received points in responder1, 
responder2, and responder3. The formula was 
successfully checked by the SPIN model checker. 

3.2 Case Study: Smurf Attack 

We next formalize the Smurf DoS attack using our 
framework. In a Smurf attack, an attacker transmits 
a spoofed broadcast message with the victim’s 
address to a network (CERT 1998). Those receiving 
the broadcast send messages back to the victim, and 
a large number of messages arrive at the victim to 
cause DoS. 

byte victim_ready = 0; 
proctype attacker(){ 
 int ping_num = 0; 
 victim_ready == 1; 
 broadcast ! victim_chan; 
 ping_num++; 
 smurf_attacked:skip; 
}   

Figure 10: Smurf attacker. 

In the example used in this section, we assume one 
attacker, one victim, and three broadcast listeners. 

Figure 10 represents a Smurf attacker and Fig. 10, a 
victim. We assumed three other receivers of the at-
tacker’s broadcast as shown in Fig. 11. An assertion 
to be checked by SPIN is given as a never claim, 
which describes an automaton that should not 
terminate in the final state. Figure 12 represents “it 
holds globally that if the attacker sends a ping, then 
the victim will finally receive more than four 
packets in total.” 
As shown in Fig. 13, this was successfully checked 
by the SPIN model checker, showing the property of 
leverage, which causes the DoS effect in the Smurf 
attack. 

4 CONCLUSIONS 

We have proposed a method of formalizing broad-
cast communication in a process calculus and of 
verifying formal properties using the SPIN model 
checker. We presented two case studies: the ICMP 
ping and the Smurf attack. Although these two cases 
are quite rudimentary, they demonstrate the merit of 
our model-checking method compared to other me-
thods such as simulation.  

At first, we did not check the condition in line 15 
of Fig. 5, “sink_started == 1;”. Without this 
condi-tion, if the sink process stops, then whole the 
system stops, causing an error. First, we tried to find 
the error using the random simulation mode of SPIN 
rather than comprehensive model checking, but we 
were unsuccessful. We then successfully found the 
error using comprehensive model checking. Several 
issues remain to be addressed.  
First, we should study broadcast communica-tions 
more formally. In our work, we encoded the broad-
cast in the spice calculus and Promela; al-though this 
approach seems reasonable, it is not yet theoretically  
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int victim_ping_received = 0; 
prototype victim(){ 
 chan reply = [0] of { chan }; 
 chan out = [0] of { int }; 
 chan pong; int prefix = 0; int data;
 con ! reply; 
 reply ? out; 
 node_num >= 4; 
 victim_chan = out; victim_read = 1; 
 do :: out ? pong ‐> 

victim_ping_received++; 
 od; 
}   

Figure 11: Smurf victim. 

justified. We should axiomatize broad-cast commu-
nication in some concurrent theory to justify our 
encoding. 

Second, we provided two examples that are very 
rudimentary. DoS attacks occur in other envi-
ronments such as internet routing algorithms. We 
should try to formalize more practical examples. 

#define p 
(smurf_attacker@smurf_attacked) 

#define q (victim_ping_received >= 4) 
 
never {    /* !([](p ‐> <>q)) */ 
T0_init: 
  if 
  :: (! ((q)) && (p)) ‐>  

goto accept_S4 
  :: (1) ‐> goto T0_init 
  fi; 
accept_S4: 
  if 
  :: (! ((q))) ‐>  

goto accept_S4 
  fi; 
}   

Figure 12: Never claim. 
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