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Abstract. An Adaptive Cruise Control system prototype based on self-learning 
algorithm for driver characteristics is presented. To imitate the driver opera-
tions during car-following, a driver model is developed to generate the desired 
throttle depression and braking pressure. A self-learning algorithm for driver 
characteristics is proposed based on the Recursive Least Square method with 
forgetting factor. Using this algorithm, the parameters of the driver model are 
real-time identified from the data sequences collected during the driver manual 
operation state, and the identification result is applied during the system auto-
matic control state. The system is verified in a driving assistance system test-
bed with electronic throttle and electro-hydraulic brake actuators. The experi-
mental results show that the self-learning algorithm is effective and the system 
performance is adaptive to driver characteristics. 

1 Introduction 

With the traffic density increasing rapidly, car-following has become the most fre-
quent driving scenario to the driver. In the vehicle active safety field, several types of 
driving assistance systems have been actualized for the car-following scenario such as 
Adaptive Cruise Control (ACC) [1], Stop & Go (S&G) [2] and Forward Collision 
Warning/Avoidance (FCW/FCA) [3]. The aims of the systems are to facilitate driver 
to maintain a safe and comfortable car-following state or to mitigate the workload of 
the driver [4]. Because of the interaction between the driver and the assistance sys-
tem, the driver behavior and characteristics during car-following have been consi-
dered as important issues in system development. 
The research on modeling driver behavior in car-following scenario dates back to the 
1950s and many types of models were established with different approaches [5]. The 
classical method is using mathematic functions to represent the relationship between 
variables like host vehicle speed, acceleration, relative speed and distance headway, 
such as the Gazis-Herman-Rothery (GHR) model [6], the Gipps model [7] and the 
linear (Helly) model [8]. These models can be applied to the system control algo-
rithm, but as the required outputs of the models are the desired vehicle motion states, 
complicated vehicle dynamics model needs to be added. Some models are designed to 
imitate the driver’s throttle and braking operations directly [9]. This method could 
avoid the vehicle dynamics problem such as the inverse model of vehicle longitudinal 
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dynamics. However, the parameters of these models are fixed during system opera-
tion and cannot be adaptive to individual driver car-following characteristics. 
In this paper, a driver model is proposed to imitate throttle and braking operations of 
the driver and a self-learning algorithm for driver characteristics is designed based on 
Recursive Least Square (RLS) method with forgetting factor. Using this algorithm, 
the parameters of the driver model can be real-time identified from the data sequences 
collected during manual driving operation state, and the identification result is applied 
during the system automatic control state. The driver model and the self-learning 
algorithm are implemented in a driving assistance system test-bed and the functions 
of the system are validated by tests in real traffic. 

2 Driver Behavior Test and Characteristics Analysis 

The driver behavior during car-following is a significant factor for the development 
of driving assistance system. To investigate essential driver characteristics and estab-
lish driver behavior database, driver behavior tests in real traffic environment are 
executed and the signals including host vehicle speed, acceleration, depression of 
accelerator pedal/throttle, braking pressure, relative distance/speed to leading vehicle, 
and GPS information are recorded with 10Hz data capture frequency. Thirty drivers 
are invited as experimental subjects to drive on the city highway for 1 hour per per-
son. The drivers are suggested to drive freely according to their own styles and habits.  
The data sequences of steady car-following behavior, which corresponds to the ACC 
function, are extracted from the test data. This behavior is defined as that the driver 
controls the host vehicle to follow a constant leading vehicle steadily more than 15 
seconds without braking and lane-changing. Two common variables are discussed in 
the data analysis to describe driver characteristics. One is Time Headway (THW): 

DTHW
v

=  (1) 

The other one is Time-to-Collision (TTC, and its inverse TTCi): 

, r

r

vDTTC TTCi
v D

= =  (2) 

Where: D is the distance between the host vehicle and the leading vehicle; v is the 
host speed vehicle; and vr is the host vehicle’s relative speed to the leading vehicle. 
The frequency contour of THW and TTCi of one driver’s steady car-following beha-
vior is shown in Fig 1. The number on each area border (50%, 75%, 95% and 99%) 
in this figure means the percentage of the data points falling inside this border. It is 
clear that 50% of THW and TTCi data distribute in a relatively concentrated area 
where THW is around 1.2s to 2.6s and TTCi is around -0.05 to 0.05s-1. This pheno-
menon indicates that the driver prefers to keep THW and TTCi in specific ranges, and 
these two variables can be considered as the driver control targets during car-
following for the driver model design. 
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Fig. 1. Frequency contour of THW and TTCi, steady car-following behavior, one driver. 

3 The System Control Strategy 

3.1 Control Strategy Structure 

The structure of the ACC system control strategy is shown in Fig 2. The upper con-
troller is a driver model to imitate the driver’s operation. The inputs of the model are 
the motion states of the leading vehicle and the host vehicle, and the outputs include 
desired throttle depression Thdes and desired braking pressure Pbdes. The lower con-
troller makes the electronic throttle and Electro-Hydraulic Brake (EHB) actuators 
follow the desired control variables with PID (Proportion-Integral-Differential) con-
trol algorithm. 

 
Fig. 2. The structure of the ACC system control strategy. 

3.2 Driver Model 

According to the driver characteristics analysis of steady car-following behavior, the 
driver desires to obtain THW in his/her preferred range and TTCi around zero. This 
control target is implemented based on the variations of throttle depression and brake 
pressure. If THW and TTCi reach desired values and the leading vehicle drives in a 
constant speed, the driver will fix the throttle and keep the current speed. Based on 
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this analysis, a driver model is proposed: 

( ) ( ) [ ( ) ] ( )des ss THW d TTCip t Th t K THW t THW C TTCi t= + ⋅ − + ⋅  (3) 

Where: Pdes(t) is generalized depression at time t; Thss(t) is steady throttle depression 
to keep the current host vehicle speed v(t); THWd  is the driver’s desired time headway; 
KTHW and CTTCi are error gains of THW and TTCi respectively. 
Interpolation method is used for Thss calculation based on the experimental calibra-
tion. The desired control variables, Thdes and Pbdes, are calculated according to the 
value of the generalized depression pdes. The throttle depression for idle-speed is 15. 
When pdes(t) >15: 

( ) ( )
( ) 0

des des

des

Th t p t
Pb t

=⎧
⎨ =⎩

 (4) 

Considering the driver’s operation delay at the switching between accelerator and 
brake pedal, the braking control is not activated immediately when pdes(t) falls below 
the idle-speed depression 15. When 15>= pdes(t) >10: 

( ) 15
( ) 0

des

des

Th t
Pb t

=⎧
⎨ =⎩

 (5) 

When pdes(t) <=10: 

( ) 15
( ) [ ( ) 10]

des

des pb des

Th t
Pb t B p t

=⎧⎪
⎨ = ⋅ −⎪⎩

 (6) 

Where: Bpb is the gain from pdes to Pbdes, whose value is set as -0.1, and the unit of the 
desired brake pressure Pbdes is MPa. The maximal value of Pbdes is set as 10MPa. 

4 Self -Learning Algorithm for Driver Characteristics 

The driver model could describe the driver characteristics and present the individual 
differences during car-following. The parameter THWd presents the driver’s preferred 
following distance at same vehicle speed level and reflect his/her aggressive degree. 
The parameters KTHW and CTTCi present the driver’s sensitivity of THW error and TTCi 
error. To improve the system’s adaptability of individual driver characteristics, a self-
learning algorithm based on Recursive Least Square (RLS) method is proposed. The 
core idea of this algorithm is to identify the model parameters from the driver manual 
car-following drive state on-line and apply the identification result to the model dur-
ing system automatic driver state. Because of the time-variability of the driver, it is 
supposed that the latest data of driver operation will describe the driver characteristics 
more accurately and therefore, forgetting factor is brought into the algorithm. The 
flow chart of this self-learning algorithm is shown in Fig 3. 
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Fig. 3. The flow chart of self-learning algorithm. 

After the system initialization, the signal collection of distance D, relative speed vr, 
host vehicle speed v and throttle depression Th is enabled. The driver selects the drive 
states. During the driver manual control process, the algorithm starts the cycle to 
judge the car-following state and identify the parameters step-by-step. The system 
step length is 0.1s. The parameters THWd, KTHW and CTTCi are identified from steady 
car-following data sequence. 
The first condition is that the leading vehicle should be a constant target (i.e. no target 
changing such as cut-in and cut-out scenarios) and this condition is judged according 
to the variation of the distance signal. Furthermore, the driver is not controlling the 
brake system. At step k: 

( ) ( 1) 5
( ) 0
D D k D k

B k
⎧Δ = − − <⎪
⎨

=⎪⎩
 (7) 

If the first condition is satisfied, the algorithm will use the current data D(k), vr(k), v(k) 
and Th(k) to start the iteration process of LRS method.  
The observation vector of the iteration process is hT(k): 
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( )( )( ) [    -1   ]
( ) ( )

T rv kD kk
v k D k

=h  (8) 

The output of the process is z(k): 

( ) ( ) ( )ssz k Th k Th k= −  (9) 

Where: Thss(k) is the current steady throttle which can be interpolated with v(k). 
According to the standard linear square form, the parameter vector ˆ( )kθ  to identify in 
this process can be derived from Equation (1): 

1 2 3
ˆ ˆ ˆ ˆ( ) [ ( ) ( ) ( )] [ ( )  ( ) ( )  ( )]T T

THW THW d TTCik k k k K k K k THW k C kθ θ θ= = ⋅θ  (10) 

 The iteration algorithm of LRS method with forgetting factor is [10]: 

1 2 3
ˆ ˆ ˆ ˆ( ) [ ( ) ( ) ( )] [ ( )  ( ) ( )  ( )]T T

THW THW d TTCik k k k K k K k THW k C kθ θ θ= = ⋅θ  
1( ) ( 1) ( )[ ( ) ( 1) ( ) ]Tk k k k k k μ −= − − +K Q h h Q h

1( ) [ ( ) ( )] ( 1)Tk k k k
μ

= − −Q I K h Q  

(11) 

Where: K(k) and Q(k) are  process matrices and μis forgetting factor with value 0.9. 
The identified parameter vector of the driver model in this step is Pt(k): 

2 1 1 3

( ) [ ( )  ( )  ( )]
ˆ ˆ ˆ ˆ        [ ( )/ ( ) ( ) ( )]

T
t d THW TTCi

T

k THW k K k C k

k k k kθ θ θ θ

=

=

P  (12) 

After obtaining Pt(k), the second condition is that the parameters should be in proper 
ranges. These ranges are provided by the off-line parameter identification results of 
the driver real traffic steady car-following data sequences with linear square method, 
which are shown in Table 1. The proper range of each parameter is selected as its 
25% to 75% accumulation frequency. 

Table 1. Data Statistics of Driver Model Parameters. 

 Mean Std Max Min 25% 75% 

THWd 1.80 3.18 56.51 0.15 0.9 2.3 
KTHW 44.26 50.68 408.35 0.10 6 95 
CTTCi -157.3 129.4 -0.96 -842.7 -20 -300 
 

When the identified Pt(k) is in the proper ranges, the parameters will be inspected by 
the third condition to judge if the identified result tends to be steady correspondingly: 

max( ( ), ( ), ( ))m THW K Ck k k εΔ = Δ Δ Δ <  (13) 
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Where: 

( ) ( 1)( )
( )

d d
THW

d

THW k THW kk
THW k
− −

Δ =  (14) 

( ) ( 1)( )
( )

THW THW
K

THW

K k K kk
K k
− −

Δ =  (15) 

( ) ( 1)( )
( )

TTCi TTCi
C

TTCi

C k C kk
C k
− −

Δ =  (16) 

εis the threshold, which is 0.5% in this algorithm.  
Because that the driver state is time-varied, the identified parameters are always fluc-
tuating. In order to find the parameters describing the driver characteristics as precise-
ly as possible, an accumulation method is used: 

( )sum sum t k= +P P P  (17) 

All parameters satisfied the conditions are accumulated to Psum and when the drive 
state switches to system automatic driving, the current parameter vector Pc is called 
by the driver model: 

sum
c N
=

PP  (18) 

Where: N is the counter of the parameters. 
With the running time increasing, the algorithm will accumulate more identified re-
sults from driver manual operation and the learning effect will be improved. The 
driver model will be closer to the driver average characteristics. During the algorithm 
running process, if any of the three conditions are not satisfied, the iteration will be 
stopped and the current Psum and N will be held. Until new proper parameters are 
identified, the accumulation will be continued.  

5 System Verification in Driving Assistance System Test-bed  

A test-bed on a passenger car is developed to verify the system functions including 
driver characteristics self-learning algorithm and ACC. During the self-learning algo-
rithm verification experiment, a driver subject drives the test-bed vehicle in real traf-
fic and the self-learning algorithm runs online synchronously to identify the model 
parameters. The parameter identification test continues for 600 seconds to make the 
results closer to the driver average characteristics, Fig 4 gives the driver manual oper-
ation data sequence when following a specified leading vehicle. Fig 5 shows the pa-
rameter identification process from this data sequence. It is indicated that the algo-
rithm is effective and the parameters tend to be stable gradually after some fluctuation 
at the beginning. At the end of the test, the final identification results are: THWd = 
1.84, KTHW = 33.5, CTTCi = -109.5. 
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Fig. 4. Data sequences of driver manual car-following. 
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Using these identified parameters, the system is switched to ACC mode and Fig 6 
shows a data sequence of system automatic car-following. The system can track the 
leading vehicle’s speed steadily and keep safety distance. The control performances 
of the upper and lower controllers are both favorable. 
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Fig. 6. The performance of the system ACC function. 

More experiments of ACC verification are carried out in real traffic and the system 
performance is analyzed with THW-TTCi frequency contour, which is shown in Fig 7.  
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Fig. 7. Frequency contour of THW and TTCi during system control. 

Comparing with Fig.1, it is indicated that the overall data distributions (99% percen-
tage) of the system and the driver are similar. Based on the parameter identified from 
the driver behavior, the system performance is adaptive to the driver characteristics 
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and gives the driver comfortable riding experience. Furthermore, the 50% and 75% 
areas of system performance are more centralized than the driver. This result indicates 
that the THW and TTCi fluctuations during system control state are much smaller and 
the system is more stable than the driver. 

6 Conclusions 

In this paper, an Adaptive Cruise Control system prototype with self-learning func-
tions is developed on a passenger car test-bed.  
(1) Driver real traffic tests are carried out and the driver behavior database for the 
system upper controller design is established. The data analysis of steady car-
following show that the driver prefers to keep THW and TTCi in specific ranges, and 
a driver model is designed based on this result.  
(2) The Recursive Least Square method with forgetting factor can identify the driver 
model parameters online from data sequence of driver manual operation state, and the 
self-learning algorithm for driver characteristics is proposed with this method.  
(3) The experimental results show that the ACC system can be adaptive to the driver 
characteristics automatically with the learned parameters. The system has similar 
performance with the driver manual operation and favorable acceptability of driver. 
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