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Abstract. The paper introduces the concept of meaning generating capacity 
(MC) of neural nets, i.e. a measure of information processing, depending on the 
size of basins of attraction. It can be shown that there is a significant relation 
between the variance values of the weight matrix of a network and its MC-
values. By the concept of MC network characteristics like robustness and 
generalizing capability can be explained. 

1 Introduction 

The analysis of topological characteristics of complex dynamical systems frequently 
enables important insights into the behavior, i.e. the dynamics of such systems. By 
“topology” we here mean that set of system’s rules that determine, which elements of 
the respective systems interact with which other elements. In the classical 
mathematical meaning of topology these rules define the neighborhood relations of 
the respective elements, which are at the core of, e.g., the fundamental Hausdorff 
axioms of topology. In the case of neural networks the topology is usually defined by 
the according weight matrix, which determines the degree of interaction between the 
different elements, including the limiting case of interaction degree equal to zero.  

In [1] we introduced the concept of the meaning processing capacity (MC) of a 
complex dynamical system. This definition was motivated by some informal remarks 
of Wolfram [3] about the “information processing capacity” of complex dynamical 
systems. With this term Wolfram described the fact that frequently different initial 
states of a system generate the same final attractor state; other systems in contrast 
generate different final states if the initial states are different. In other words, the 
information processing capacity refers to the different sizes of the “basins of 
attraction” of a system, i.e. the sets of initial states that generate the same final 
attractor state.  

In [1] we defined the concept of the “meaning” of a message by the final attractor 
state a system generates when receiving this message; in other words, a system 
processes a message and generates an according meaning. Therefore, we now use the 
term of meaning generating capacity (MC), i.e. the capacity to generate more or less 
different meanings when receiving different inputs. 

The MC-value of a complex dynamical system is now defined as the proportion 
between the size m of the set of all final attractor states and the size n of the set of all 
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initial states of a system, i.e., MC = m/n. Obviously 0 < MC ≤ 1: MC = 0 is 
impossible because each complex system has at least one final state, even if it is an 
attractor state with a very large period. The according limiting case hence is MC = 
1/n. If MC is very small then many different initial states will generate the same final 
states – the according attractors are characterized by large basins of attraction. If MC 
= 1 then each different initial state will generate a different final attractor state. This is 
the other limiting case, where the basins of attraction all are of size 1. In other words, 
small values of MC mean large basins of attractions and vice versa. It must be noted 
that we refer only to discrete systems, i.e. systems with only a finite number of initial 
states.  

There are at least three main reasons why this concept is important: On the one 
hand it is possible via the usage of MC to analyze complex dynamical systems like 
neural networks with respect to their informational complexity. In this sense MC 
allows for new approaches in the theory of computability. On the other hand an 
important and frequently mentioned characteristic of neural networks can be 
understood in a new and more differentiated way: In all textbooks on neural networks 
there are statements like “one of the main advantages of neural networks is their 
robustness, i.e. their tolerance with respect to faulty inputs” or something equivalent. 
We shall show that via the definition of MC not only a theoretical explanation of this 
advantage can be given but also a measurement of this robustness; in particular by the 
variation of MC specific neural networks can be generated that are either very robust, 
less robust or not at all robust in the sense of error tolerance.  

Last but not least it is possible to give by the usage of MC an explanation for 
phenomena known from the field of human information processing. It is well known 
that different humans react in a significant different way to the same messages. This 
can be illustrated by the examples of fanatics who refer all messages to the same 
cause, e.g. the enmity of Western Capitalism to religious movements. The psychiatrist 
Sacks [2] for another example describes a rather intelligent and well-educated man 
who is unable to distinguish little children from fire hydrants. The definition of MC 
can be a useful approach to construct mathematical models for the explanation of such 
phenomena.  

In contrast to dynamical systems like, e.g., cellular automata and Boolean 
networks neural networks are not often analyzed in terms of complex dynamical 
systems. Therefore, it is necessary to clarify what we understand by “initial states” 
and “final attractor states” when speaking of neural networks. 

In a strict systems theoretical sense all initial states of neural networks are the 
same, i.e. the activation values of all neurons are equal to zero, and regardless to 
which layer(s) they belong. Because this fact would make the definition of different 
initial states quite useless we define the initial state of a neural net as the state where 
the neurons of the input layer have been externally activated with certain input values 
and where the activation values of all other neurons still are equal to zero, in 
particular those of the output layer. An initial state Si of a neural net, hence, is 
formally defined by Si = ((Ai), (0)), if (Ai) is the input vector and (0) is the output 
vector, i.e. it denotes the fact that the values of the output neurons are still equal to 
zero. If there is no specific input layer then the definition must be understood that 
some neurons are externally activated and the others are not. 
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The external activation of the input neurons causes via the different functions the 
“spread of information”, determined by the respective weight values. In the case of 
simple feed forward networks the final activation values of an output layer are 
immediately generated; in the case of feed back networks or recurrent ones the output 
is generated in a more complex manner; yet in the end in all cases a certain output 
vector is generated, i.e., each neuron of the output layer, if there is any, has obtained a 
certain activation value. If there is no distinction between different layers as for 
example it is the case with a Hopfield network or an interactive network the output 
vector will consist of the final activation values of all neurons. Note that except in the 
case of feed forward networks the output vector may be an attractor with a period p > 
1. The network will then oscillate between different vectors, i.e. between different 
states of the attractor. For theoretical and practical purposes neural networks are 
mainly analyzed with respect to the input-output relation. Therefore, we define the 
final state Sf of a neural network as Sf = ((Ai), (Af)), if (Ai) is again the input vector 
and (Af) the final output vector. If (Af) is an attractor with period p > 1, then the 
components of (Af) consists of ordered sets, i.e. the set of all different activation 
values the output neurons obtain in the attractor.  

Because in the experiments described below we investigate only the behavior of 
feed forward networks with respect to different MC-values, for practical purposes we 
just define the final state as the values of the output vector after the external activation 
via the input vector. Hence we speak of a large basin of attraction if many different 
input vectors generate the same output vector and vice versa. The limiting case MC = 
1 for example defines a network where each different input vector generates a 
different output vector. Accordingly the case M = 1/n defines a network where 
practically all n different input vectors generate the same output vector. 

With these definitions it is easy to explain and measure in a formal manner the 
characteristics of neural networks with respect to robustness. A robust network, i.e. a 
network that is tolerant of faulty inputs, has necessarily a MC-value significantly 
smaller than 1. Robustness means that different inputs, i.e. inputs that differ from the 
correct one, still will generate the “correct” output, i.e. that output that is generated by 
the correct input. That is possible only if some faulty inputs belong to the same basin 
of attraction as the correct input; these and only these inputs from this basin of 
attraction will generate the correct output. All other faulty inputs transcend the limits 
of tolerance with respect to the correct output and will accordingly generate another 
output. If MC = 1 or near 1 then the network will not be robust at all for the respective 
reasons. 

The same explanation can be given for the also frequently quoted capability of 
neural networks to “generalize”: In a formal sense the generalizing capability is just 
the same as robustness, only looked upon from another perspective. A new input can 
be perceived as “similar” or as “nearly the same” as an input that the net has already 
learned if and only if the similar input belongs to the same basin of attraction as the 
input the network has been trained to remember. In other words, the training process 
with respect to a certain vector automatically is also a training process with respect to 
the elements of the according basin of attraction. The capability of generalization, 
hence, can be understood as the result of the construction of a certain basin of 
attraction. Accordingly the generalization capability is again dependent on the MC-
values: if these are small, i.e. if the basins of attraction are rather large, then the 
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network has a comparatively great generalizing capability and vice versa. Because 
one network can have only one MC-value it is obvious that systems like the human 
brain must have for one and the same perceiving task at least two different networks, 
namely one with a great generalization capability, i.e., a small MC-value, and one 
with a large MC-value to perceive different inputs as different. 

Robustness and generalizing capability of a network, hence, can be “globally” 
defined by the according MC-value. Yet there is a caveat: it is always possible to 
generate networks via according training methods that are characterized by different 
basins of attractions with different sizes. Therefore, the MC-value is not necessarily a 
unique measure for the size of all basins of attraction of a particular network. The 
term “basin of attraction” refers always only to a certain “equivalence class” of input 
vectors, namely a set of input vectors that are equivalent in the sense that they 
generate the same attractor. The size of these sets may be quite different for specific 
attractors. Hence, the MC-value gives just an average measure with respect to the 
different basins of attraction. With respect to some attractors and their generating 
inputs the networks may be robust and with respect to others not. Considering that 
possibility the concept of MC could also be defined as the difference in size of all 
basins of attraction of the networks. Fortunately the results of our present experiments 
hint at the fact that in most cases the basins of attraction of a certain networks differ 
not much in size. The caveat is necessary for theoretical and methodical reasons but 
seems not to be very important in practical contexts. 

Concepts like “size of basins of attraction” and “values of meaning generation 
capacity” obviously are very useful for the explanation of important characteristics 
like robustness or generalizing capability. Yet in a strict sense they are too general 
concepts because they only explain the behavior of certain neural networks from very 
general characteristics of complex dynamical systems. They do not explain, which 
structural characteristics of neural networks may be the reason for specific MC-
values. Hence, these concepts remain, so to speak, on a phenomenological level. 

In the beginning of our article we mentioned the fact that frequently certain 
topological characte-ristics of complex dynamical explain the behavior of such 
systems. The topology of a neural network is mainly expressed in the weight matrix. 
Hence the thought suggests itself to look for features of the weight matrix that could 
explain the size of basins of attraction and MC-values. In anticipation of our results 
we may say that we were successful in the sense that we found some general trends 
although no deterministic relations. 

2 Two Experimental Series 

In the first experimental analysis we used a standard three-layered feed forward 
network; we chose this type because it is very frequently used for tasks of pattern 
recognition and related problems. Because, as is well known, two layers are not 
enough to solve problems of non-linear separableness we took three layers in order to 
get results for networks with sufficient efficiency. The input layer consists of 10 units, 
the hidden layer of 5 and the output layer of 10 units. Input and output neurons are 
binary coded, which results in 210 = 1024 possible input patterns. To keep the 
experiments as clearly as possible we defined “equivalence classes” of input patterns: 
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all input patterns with the same number of zeroes are members of the same class. By 
choosing at random one pattern from each class we obtained 11 different input 
patterns. The activation function respectively is the sigmoid function; because of the 
three layers we chose as learning rule the standard Back Propagation rule. 

The training design was the following: In each step the network was trained to 
associate different input patterns with one target pattern; the target pattern was again 
chosen at random from the 11 input patterns. In the first step the tasks was to 
associate each input pattern with one different target pattern; the according basins of 
attraction all were of size one and the MC-value of this network after the training 
process is 1:1. In the next steps the sizes of the basins of attraction were gradually 
increased to 2, 3, 4, 5, and 6; in the last step the size of the only basin of attraction 
finally was 11, i.e. all input layers had to be associated with one and the same target 
pattern and the according MC-value is MC = 1/11. We did not investigate basins of 
attraction with sizes 7 or 10 because in the according experiments the other basins 
would become too small; for example, one basin of attraction with the size of 8 would 
force the network to take into regard also at least one basin of attraction of size 3. 
Hence we only investigated networks with basins of attraction of maximum size 5, 6, 
and 11. By taking into regard different combinations of basins of attraction we 
obtained 11 different networks. 

The according weight matrices were analyzed with respect to the variance of their 
weight values. This variance analysis was separately performed for the weight matrix 
between the input layer and the hidden layer and the matrix between the hidden layer 
and the output one. The results are shown in figure 1: 

 

   
Fig. 1. Variance of the first part of matrix (left figure) and the second part (right figure) in 
relation to the size of the basins of attraction. 

The order of the different networks in both figures is according to increasing size 
of the basins of attraction. No 1 is the case with MC = 1:1, no 11 is the network with 
MC = 1:11. 

The left figure obviously gives no unambiguous result with respect to possible 
relations between variance values and the size of basins of attraction but it suggest a 
certain trend, namely the decreasing of the variance by increasing the basins sizes. 
The right figure confirms this and even shows an unambiguous result: The variance 
values indeed gradually decrease with the increasing of the size of the basins of 
attraction. We then combined the two matrices by summing up the variance values of 
both matrices and obtained the final result shown in figure 2: 

0       1         3        4         5        6        7         8        9        10      11 0       1         3        4        5         6        7        8         9       10       11 
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Fig. 2. Variance and size of basins of attraction for the whole network; the networks are 
ordered as in figure 1. 

This final result completely confirms the trend shown in figure 1, left side, and the 
clear results of figure 1, right side: the larger the size of the basins of attraction are, 
i.e., the smaller the MC-values are, the smaller are the variance values and vice versa. 
By the way, the difference between the variance of the upper matrix and that of the 
lower one is probably due to the fact that the Back Propagation rule does not operate 
in exactly the same way on both matrices: The lower half of the whole matrix is 
changed by directly taking into account the error, i.e. the distance between the output 
neurons and those of the target vector. The changing of the upper half of the matrix is 
done by computing a certain proportion of the error and thus “dispersing” the changed 
weight values with respect to those of the lower half. Yet these just force the variance 
of the whole matrix to the shown result. If our networks had contained only two 
layers the whole result would have been like that of figure 2. We shall come back to 
this effect of a certain learning rule in the next section. 

We did not expect such unambiguous results yet on hindsight they are quite 
plausible and comprehensible: Low variance values mean dispersion of information 
or of the differences between different information respectively because of the near 
equality of the weight values. If on the other hand the weight values are significantly 
different, i.e. a high variance, then differences between different messages can be 
preserved. As small or large sizes respectively of basins of attraction have exactly that 
effect on the performing of messages it is no wonder that we obtained that clear and 
unambiguous relation between variance and size of basins of attraction. 

Yet although these clear results are quite satisfactory we knew very well that they 
must be treated with a great methodical caveat: the behaviour of neural networks, as 
that of practically all complex dynamical systems, depends on many parameters, in 
this case for example on specific propagation, activation and output functions, number 
of layers, special learning rules and so on. The results shown above were obtained 
with a specific type of neural network, although a standard and frequently used one 
with a standard learning rule. To make sure that our results are not only valid for this 
special methodical procedure we undertook another experimental series. 

In these experiments we did not use one of the standard learning rules for neural 
networks but a Genetic Algorithm (GA). The combination of a GA with neural 
networks has frequently been done since the systematic analysis of neural networks in 
the eighties. Usually a GA or another evolutionary algorithm is used in addition to a 
certain learning rule in order to improve structural aspects of a network that are not 
changed by the learning rule, e.g. number of layers, number of neurons in a particular 
layer, threshold values and so on. In our experiments we used the GA as a substitute 

         0        1       3       4       5        6       7       8        9      10     11    
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for a learning rule like the Back Propagation rule in the first experimental series. The 
according weight matrices of the different networks are, when using a GA, written as 
a vector and the GA operates on these vectors by the usual “genetic operators”, i.e. 
mutation and recombination (crossover). 

We chose this procedure for two reasons: On the one hand the operational logic of 
a GA or any other evolutionary algorithm is very different from that of the standard 
learning rules. A learning rule modifies usually just one network; in this sense it is a 
simulation of ontogenetic learning. In contrast an evolutionary algorithm always 
operates on a certain population of objects and optimizes the single objects by 
selecting the best ones from this population at time t. This is a model of phylogenetic 
evolution. In addition learning rules like the Back Propagation rule or its simpler 
form, namely the Delta Rule, represent the type of supervised learning. Evolutionary 
algorithms represent another type of learning, i.e. the enforcing learning. In contrast 
to supervised learning enforcing learning systems get no feed back in form of 
numerical values that represent the size of the error. The systems just get the 
information if new results after an optimization step are better or worse than the old 
ones or if there is no change at all in the improvement process. Therefore, the training 
procedure in the second series is as different from that of the first one as one can 
imagine. 

We assumed that by choosing such different procedures similar results from both 
experiments would be a very strong indicator for our working hypothesis, namely the 
relation between MC-values or size of the basins of attraction respectively and the 
mentioned characteristics of the according weight matrices. To be sure, that would not 
be a final proof but at least a “circumstantial evidence” that the results of the first 
series are no artifacts, i.e., that they are not only effects from the chosen procedure. 

On the other hand we were in addition interested in the question if networks with 
certain MC-values are better or worse suited to adapt to changing environmental 
conditions. It is evident that per se high or low MC-values are not good or bad. It 
always depends on the situation if a network performs better with high or low 
capabilities to generate different meanings. Sometimes it is better to process a 
message in a rather general fashion and sometimes it is necessary to perceive even 
small differences. Yet from a perspective of evolutionary adaptation it is quite 
sensible to ask if systems with higher or lower MC can adjust better. That is why we 
used an evolutionary algorithm to investigate this problem although it is another 
question than that of a relation between the variance of the weight matrix and the 
according MC-values. 

Because a GA can be constructed with using many different parameters like size of 
the mutation rate, size of the sub vectors in crossover, selection schemas, schemas of 
crossover (“wedding schemas”), keeping the best “parents” or not and so on it is 
rather difficult to obtain results that are representative for all possible GA-versions. 
We used a standard GA with a mutation rate of 10%, a population of 20 networks, 
initially generated at random, crossover segments of 5, and a selection schema 
according to the fitness of the respective networks. Because the networks were 
optimized with respect to the same association tasks as in the first series those 
networks are “fitter” than others that successfully have learned more association tasks 
than others. If for example a network is optimized with respect to the task to operate 
according to two basins of attraction of size 8 then a network is better that correctly 
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associates 6 vectors of each basin to the target vector than a network that does this 
only for 5 vectors. 

The population consists again of three-layered feed forward networks with binary 
coding for input and output layers; the input and output vectors consist of four 
neurons and the hidden layer of three. As in the first series the networks operate with 
the sigmoid activation function. We simplified the networks a bit because, as 
mentioned, a GA has not one network to operate with but a whole population. The 
target vectors were chosen at random; the vectors for the respective basins of 
attraction were chosen according to their Hamming distance to those output vectors 
that define the basins of attraction. It is no surprise that the GA came faster to 
satisfactory results, i.e. the generation of networks that are able to solve the respective 
association tasks, if the MC-values of the networks should be large than in the cases 
when the MC should be small. The main results are shown in figure 3: 

 

 
Fig. 3. Variance and size of basins of attraction in networks generated by a GA. 

The figure obviously expresses a striking similarity to figure 1 of the first series. 
The trend is the same, namely a clear relation between the size of the variance and the 
increasing size of the basins of attraction or the decreasing size of the MC-values 
respectively. Like in figure 1 the exceptions from this trend occur in the cases of 
rather small basins of attraction, but only there. As we remarked in the preceding 
section these exceptions may be due to the fact that the GA even more disperses the 
weight values than does the Back Propagation rule for the upper half of the weight 
matrix. This fact clearly demonstrates that the relation between variance values and 
the sizes of the basins of attraction is “only” a statistical one, although the correlation 
is very clear. We omit for the sake of brevity he results of the evolutionary analysis.  

As we mentioned in the beginning of this section, the fact that such totally different 
optimization algorithms like Back Propagation rule and GA, including the different 
types of learning, generate the same trend with respect to our working hypothesis is 
important evidence that the hypothesis may be valid in a general sense. Yet in both 
series we just considered “case studies”, i.e. we concentrated in both cases on one 
single network type and in the case of the GA-training on populations of the same 
type of networks. That is why we started a third series. 

3 Third Series: Statistical Analysis of Large Samples 

Experiments with large samples of neural networks are always difficult because of the 
large number of variables or parameters respectively that have to be taken into 
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account. Besides the influence of different learning rules, activation and propagation 
functions and such parameters like learning rates and momentum the main problem is 
a “combinatorial explosion”: if one takes into account the many different possible 
combinations of neurons in the different layers and in addition the possible variations 
of the number of layers one quickly gets such large samples that it is seldom possible 
to obtain meaningful results. That is why we chose another way in the preceding 
sections, namely the analysis of the two case studies in order to get a meaningful 
hypothesis at all. 

Yet despite the great difference between our two case studies it is always rather 
problematic to draw general consequences from only several case studies. That is why 
we studied a larger sample of two-layered neural nets, i.e., ca. 400.000 different 
networks. We restricted the experiment to networks of two layers in order to keep the 
experiments as clear as possible. The number of neurons in the input and output 
vector are in all experiments the same and ranged from 3 to 10. The restriction to 
equal dimensions of the two vectors was introduced because networks with different 
sizes of the two vectors do not generate all MC-values with the same probability: If 
the input vector is larger than the output one then MC = 1 would not be possible at all 
because always more than one input vector will generate the same output vector. For 
example, a simple network that is trained to learn a certain Boolean function has an 
input vector of size 2 and an output vector of size 1. Its MC-value is 0.5. If conversely 
the output vector is larger than the input vector the probability for large MC-values 
will be greater than in networks with the same number of neurons in both vectors. To 
avoid such distortions we used only vectors of equal size. 

The networks were, as in the two case studies, binary coded and operated with the 
sigmoid function. Thus we obtained ca. 400.000 pairs (MC, v), v being the variance. 
The general results are the following: 

As we supposed from the results of the two case studies the relation between 
variance and MC-values is “only” a statistical one in the sense that there are always 
exceptions from the general rule. Yet we discovered very clearly that indeed there is a 
significant probability: the larger the variance is the smaller is the probability to 
obtain networks with small MC-values, that is with large basins of attraction, and vice 
versa. This result is in particular valid for variance values significantly large or small. 
Only in the “middle regions” of variance values the probability to obtain MC-values 
as a deviation from the general rule is a bit larger but not very much. This probability 
distribution is shown in figure 4: 

 

 
Fig. 4. Statistical relation between variance (x-axis) and MC-values (y-axis). 

By the way, the deviations in the middle regions from the general trend may be a 
first explanation for the mentioned results from section 2 with respect to the 

1 

1/n 
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evolutionary capability of networks with different MC-values. These networks adapt 
more easily to changing environments than those with very large or very small values. 

The hypothesis of the relation between MC-values and variance values seems to be 
a valid one, at last as a statistical relation, Hence it is possible to predict the meaning 
generating capacity of a network and thus its practical behaviour for certain purposes 
with sufficient probability from a variance analysis of its weight matrix. Yet a caveat 
is in order: We analyzed only one type of networks and further experiments are 
necessary if our results are also valid for different types like, e.g. recurrent nets of 
Self Organized Maps. 

4 Interpretations and Conclusions 

The behavior of complex dynamical systems can practically never be explained or 
predicted by using only one numerical value (a scalar) as the decisive parameter. In a 
mathematical sense the problem for such a system is always the task of solving 
equations with a lot of variables, that is more variables than equations. It is well 
known that for such tasks there is always more than one solution. When considering 
neural networks by investigating the according weight matrix it is rather evident that 
for example large basins of attraction may be constructed by very different matrices. 
Hence, it is no wonder that the variance value, considered as a structural measure for 
the occurrence of certain MC-values and the according sizes of the basins of 
attraction, always allows for exceptions.  

The knowledge about parameters that could predict the meaning generation 
capacity would not only give important insights into the logic of neural network 
operations; that would be an improvement of our theoretical understanding of these 
complex dynamical systems. It could also give practical advantages if one needs 
neural networks with certain capabilities – either if one needs robust networks with 
great generalizing capacity or if there is need for sensitive networks that react in a 
different manner to different inputs. To be sure, the relations we have discovered so 
far are of only statistical validity. Yet to know that with a high probability one gets 
the desired characteristics of a certain network if one constructs a weight matrix with 
a specific variance is frequently a practical advantage: one has not to train the 
networks and look afterwards if the network has the desired behavior but can 
construct the desired matrix and if necessary make the additionally needed 
improvements via learning rules and/or additional optimization algorithms like for 
example a GA. For these theoretical and practical reasons it will be worthwhile to 
investigate such relations as we have shown in this article further and deeper. 
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