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Abstract: Hallmarks of Wireless Sensor Networks (WSN) include their use in demanding environment, autonomous 
and untethered operation, low power requirements, miniaturization and low costs. Such hallmarks led to the 
understandable requirement that WSN sensors contain a specialized microprocessor unit; an innovative 
microcontroller unit which is strikingly dissimilar to general purpose CPUs found in the marketplace today. 
This paper examines two important aspects of current sensor node development work, that of 
microcontroller Operating System (OS) architectures and transceiver standards. The choices of OS designs 
are intended to match and complement the usefulness of the sensor node itself, while meeting hardware 
constraints (e.g. memory limitations). The paper details these design choices and how they are being met. 
Of equal interest, the paper discusses how the choice of transceiver standards for the WSN is determined by 
the overall design goal of device autonomy. One such “device autonomy discussion topic” relates to the 
reader how device power consumption levels are being reduced through the use of a newly developed 
transceiver standard. 

1 INTRODUCTION 

Consumer electronics, military and aerospace 
industries have driven a demand for increased 
miniaturization of electronic devices for many 
decades. The basic dynamics of the miniaturization 
push is understood by most. It is not difficult to cite 
examples in terms of improvements to the weight, 
size, and power consumption of new device families. 
More often than not, such improvements are often 
accompanied by significantly lower per unit cost-
pricing. While electronics miniaturization is 
obviously pervasive throughout the industry and an 
obvious marketplace phenomenon, it is the 
prediction of and enumeration of new application 
concepts for these families, that is more difficult.  

The miniaturization of sensors, computing and 
wireless (radio) networking and the ability of 
computers to analyze data from such devices in real 
time or near real time has opened a number of rather 
unique computing applications. Use of Wireless 
Sensor Networks built on miniaturized, often 
untethered, lower price devices have been actualized 
or suggested for a large number of application types 
(Zhao, F., et al., 2004). Here is a sampling of such 
types: conservation and habitat monitoring, airborne 

toxic chemical discharge monitoring, structural 
monitoring, and armament industry applications 
(e.g. intelligent minefields).  

There are a number of design problems that need 
to be addressed when developing WSNs. Most stem 
from a single demand: device autonomy. From this 
condition power consumption limitations follow 
(Dutta and Culler, 2005). Power constraints affect 
the choice of processor families. Power constraints 
limit rate of sensor data block transmissions and 
block size. Power constraints dictate the need for 
special features, such as a processor and radio sleep 
states. Quite a number of design problems can be 
listed. This paper considers two design problems of 
the WSNs: the OS architecture and the transceiver 
standards. 

2 PROCESSOR BACKGROUND 

In 1971 Intel released the 4004, an IC typically 
acknowledged as the first commercial 
microprocessor. Matched to the microprocessor 
were a number of support chips. These formed a 
microprocessor development family. Since that time, 
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Intel microprocessor families have gain complexity, 
functionality, and speed. The functionality-price 
ratio has also improved. This microprocessor 
maturation process has fit well to a market whose 
product scope consists of servers, workstations, 
desktop computers and laptops. Microcontrollers 
and Digital Signal Processors have served a separate 
computer market consisting of devices (typically 
classified as dedicated task processors or real time 
machines) with sufficient special I/O functionalities, 
instruction/bus speed and memory capacities to 
perform critical tasks. Some microcontroller families 
have followed a development path similar to that of 
Intel, i.e. development of larger and larger data bus 
widths, larger and larger address spaces, and more 
complex instruction sets, however this is not true of 
all microcontroller families.  

An example of the class that has adopted a “non 
Intel” approach is illustrated by a number of 
microcontrollers that implement RISC architecture. 
The instruction set design is not the only difference, 
the accumulator/bus sizes also differ, with the RISC 
machines available in 4-bit, or 8-bit or 16-bit 
processor denominations. Further, some of these 
RISC microcontroller families have implemented 
low-power architectures that are suitable for non-
AC, battery-only, applications. These families are 
reminiscent of the early Intel families, that is, they 
have modest bus sizes and reduced memory address 
spaces (such as 1K of memory space). However, 
unlike the old Intel processors, these devices have 
very small physical dimensions, operate at lower 
voltages and have much lower current draw. In 
addition, unlike the old Intel microprocessors these 
families contain features typical of some 
microcontrollers, such as built in analog-to-digital 
converters. 

3 OS ARCHITECUTURE 
BACKGROUND 

Over a number of decades, certain computer design 
practices or conditions have dominated for periods 
of time. With respect to operating systems, as 
manufacture of digital computers became more 
common, proprietary hardware/software systems 
enjoyed pre-eminence in the mainframe and 
minicomputer market. However, this practice has 
been eclipsed by other practices. With the advent of 
the mature desktop computer market, hardware has 
become more nearly a commodity piece for 
computer manufacturers. In addition, in many cases 
today operating systems kernel development is 

detached from the computer manufacturers 
themselves. For the most part, desktop and laptop 
operating systems are proprietary software 
enterprises of one company, Microsoft. 

Microsoft has achieved a tremendous 
commercial presence and has sought enterprises 
with significant vertical and horizontal market 
integration. Microsoft has tuned a subset of its 
desktop OS and marketed it for small computing 
device applications, named Windows CE. This 
smaller footprint OS distribution has allowed 
Microsoft penetration of a segment of the wireless 
sensor network world, the Gateway WSN device. 
Other small computing device OS companies market 
proprietary OS software besides Microsoft. This 
includes Symbian with its mobile phone OS, 
SymbianOS.  

Apart from Windows, a number of other OS 
systems vie for market share. Principally, these are 
found in the server market, although some are in the 
desktop, media and graphics markets. Among these 
are OSes are Unix, and Unix-like OSes. Examples 
are: Sun Microsystems and Apple. Sun uses a 
proprietary Unix version called Solaris. Apple uses 
the proprietary Unix version MacOS X. Linux, a 
Unix-like OS, is also found in this market. 
Interestingly, through virtualization software 
products (e.g. VMware) many of these OSes can 
jointly reside as guest OSes on the same server.  

Concerning Linux, in a somewhat less than 
obvious OS creation mechanism, certain software 
development entities (foundations, groups, 
universities, commercial ventures and so forth) take 
its open source kernel and integrate a very needed 
software tool set (e.g. GNU) to it and produce a 
Linux distribution. This distribution base is made 
possible because of its kernel’s public licensing 
scheme. Also, unlike Microsoft, Linux distributions 
have been ported to other CPU architectures (note, 
this is also true with a number of other Unix-like 
OSes). Thus, Linux is better poised to exploit a 
variety of hardware platforms than Microsoft. A 
number of Linux distributions are used in small 
computer and embedded computer applications. 

While Linux has gained a widespread interest 
within the software development community in past 
years through public licensing, other OSes have also 
exploited this licensing, sometimes referred to as 
“free open source software” (FOSS). Some of these 
are real time operating systems, such as RTLinux 
and RTEMS. 
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4 PLATFORMS FOR OS 
ARCHITECTURE 

Wireless Sensor Networks contain two basic 
computing device types: the sensor node and the 
gateway device. Since the gateway device may have 
relaxed power and size constraints when compared 
to the sensor node devices, its OS architecture will 
not be considered here. All attention will be given to 
the sensor nodes. 

The sensor node by design consumes low power 
amounts, well under 1W. This restriction eliminates 
from consideration the Intel families (x86) found 
today within desktops, laptops, and servers. It also 
eliminates the microcontroller families that have 
grown in size and complexity from consideration for 
selection as the CPU of a sensor node. What remains 
are low power microcontrollers. Appropriate WSN 
low power microcontrollers include: Motorola 
AT90LS8535, ATMELS AVR series processors 
(specifically named: ATmega163 and ATmega128), 
and the Texas Instruments MSP430 (Polastre et al., 
2005). The newer system-on-chip (SoC) architecture 
is stated to be preferable to non-SoC architectures 
for WSN work (Beck and Johnson, 2007). The SoC 
design is a practical way to achieve truly 
inexpensive, miniature, sensor nodes. 

Some SoC computer architectures begin by 
realizing a CPU core based on well known non SoC 
chips. An example of such a device is: 
MC9RS08KA2 Series Microcontroller. This 
microcontroller is manufactured by Freescale and is 
based on their low power small dimension RS08 
CPU core, a core modeled on their venerable HCS08 
microcontroller family. Another example of such a 
device is the CC1010 Series Microcontroller. This 
microcontroller is manufactured by Chipcon (Texas 
Instruments) and is based on an 8051 compatible 
processor. An important point to consider for 
extreme miniaturization of CPUs for sensor 
applications is capability of the SoC to perform 
radio functions. A number of SoC computer 
architectures do integrate an on-chip radio 
transceiver. This section must be in one column. 

5 OS ARCHITECTURE FOR WSN 

The low wattage mandate coupled with the low cost 
and miniaturization goal for sensor WSN devices 
require that they have very low memory (RAM and 
ROM) capacities. This constrains OS design 
significantly (Gay et al., 2007). This disallows the 
use of a proprietary OSes such as Windows CE and 

non-proprietary OSes such as Linux for these 
devices since their OS features consume these finite 
resources. Instead the OSes found in the smaller 
market of embedded realtime or near realtime 
microcontrollers are considered the model to be 
followed when designing an OS to accomplish the 
tasks of program and memory management, 
hardware and data flow management. 

To conserve resources, popular memory-
constrained embedded systems OS architectures 
often rely on the “event driven” programming model 
rather than a multithreaded programming model 
(Dunkels et al., 2006). One expression of the event 
driven model is realized by implementing an OS 
program scheduler that posts “event specific tasks” 
to a program queue once an event happens. The 
program queue is emptied in a first in, first out 
fashion. They are executed in a single thread 
manner, with the thread itself being uninterruptible 
by other tasks or the scheduler (although tasks may 
include internal code to allow interrupts to 
programmatically affect their execution). This 
greatly simplifies memory architecture and memory 
demand. The scheduler, user applications and code 
components are all compiled into a single 
executable. Thus, all code (OS and user) shares the 
same memory addressable memory space. This 
single memory space design concept has its 
advantages, for instance, program debugging is 
much more straightforward. This OS architecture 
style has been adopted by the WSN OS “TinyOS” 
(Hill, et al., 2000). TinyOS (TinyOS v1 and TinyOS 
v2) is commonly cited as a standard for WSN OSes. 
To optimize OS performance, some embedded 
systems use specialized programming languages; for 
example, TinyOS is coded in nesC, a “C” style 
language extension. TinyOS first uses the nesC 
compiler to generate program code that is 
compatible to Gcc, the “C” compiler. A Gcc 
microcontroller compatible compiler then creates the 
output executable code. 

The TinyOS architecture can be viewed as 
grouping of four software functionalities: 

 
1. Scheduler and User Application 
2. High Level Components 
3. Synthetic Hardware Components 
4. Hardware Abstraction Components  
 

The components are the primary element in a 
TinyOS application. Each has interfaces that allow 
interactions with other components. Hence they are 
“wired” elements and can be put together to 
accomplish various sensor operations. They are 
named based on their function or device name. 
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Examples of TinyOS components by name include: 
Temperature, UART, I2C_bus, and RFM (RF 
Monolithics radio device).  

One factor that separates WSN OS models from 
a number of other OS models in the embedded OS 
design community is the nature of the underlying 
hardware task. In many embedded OS applications, 
the OS seeks to service hardware that is primarily 
composed of non-communication intensive devices. 
In WSN, a primary service is to provide intensive 
data communication. This is reflected in TinyOS 
component structure, with a number of components 
devoted to transport of packets, bytes and bits within 
the OS. In general, sensor data can originate at the 
sensor or it can result from a transit operation (a 
“hop”) from another WSN device. Data throughput 
is paramount to system performance. Blocking of/or 
waiting on I/O is not desirable. Loss of events 
because of scheduler program queue overflow is also 
not desirable (Decker et al., 2006). If an OS can 
justify a new native feature based on its benefits to 
I/O reliability, it will likely be accepted by the WSN 
community. 

The consequence of the OS architecture using 
(generally) uninterruptible tasks, as in the case of 
TinyOS, can result in the un-expected blocking of 
subsequent event handling. A number of OS variants 
seek to remedy the lack of task prioritizing and task 
multithreading present in TinyOS. These include 
TinyMOS, Contiki, Mantis OS, t-kernel, and Nano-
RK (Bhatti et al., 2005; Eswaran et al., 2005). 
Specifically, the OS features that these seek to 
achieve or improve on are: 

 

1. Multithreading of user tasks 
2. Assignable task priorities 
3. Expanding task pre-emption abilities 

(implementation of time-slicing etc.) 
4. Facilitating different operation on different 

hardware platforms (portability) 
 

A negative consequence of coding multithread- 
ding capability into the OS is the adverse effect on 
memory and processor resources. In all cases, 
inclusion of multithreading will cause more 
overhead because of the need to implement OS 
thread switching actions. Additionally, dedicated 
stack memory assignments are needed for the thread 
management. Program debugging is also made more 
difficult in a multithreaded environment. 

Besides the complexity associated with 
multithreading itself, the multithreaded approach 
creates unintentional deficits that must be corrected 
with new programming features (hence more OS 
complexity). An example of this is a critical energy 

savings features in event driven systems that are 
incidentally lost in multithreaded systems. 
Specifically, in TinyOS energy savings is assured 
because a task runs until completion and once all 
tasks are complete, the OS can invoke a simple 
hardware sleep state to conserve energy until the 
next event. It provides for a straightforward energy 
savings algorithm. In multithreading as program 
execution is switched from task to task, the trick is 
not to wait until all the tasks have ended to 
implement a sleep state. Rather to gain energy 
conservation in multithreading, it is desirable for the 
existing threads to invoke the sleep state 
programmatically, during, say, blocked I/O 
transactions. Thus the OS must be expanded to 
efficiently accommodate programmatic sleeps, as in 
the “usleep” C function.  

Advantages can exist for the programmer who 
uses a more complex multithreaded WSN OSes as 
compared to simpler OS designs, such as the 
TinyOS. Consider the case of a user requiring a 
rather long-lived routine, say execution-to-
completion in the 100 ms range in an event driven 
OS based system. To avoid overflows of bounded 
buffers, for operational reliability the programmer 
should recode the larger program into a cluster of 
smaller segments, each with shorter lifetimes; each 
whose design works against the ill effectives 
exhibited by long-lived routines. It can be argued 
that for this case the required programming skill 
level well exceeds the abilities of an average 
programmer. A more complex, interruptible, OS 
allows the programmer of average experience to 
code programs without worrying about whether 
he/she has written a long-lived program. If a long-
lived program results from their work, the OS will 
seamlessly interrupt that code as needed to meet 
system needs and events thereby avoiding 
catastrophic outcomes. However, if long-lived tasks 
are not required in an application, then the 
usefulness of TinyOS as a sensor platform is 
undiminished. Further, development work 
performed using TinyOS benefits from its robust 
library of ready made program components. 

Regardless of OS scheduling and threading 
designs, much of the OS development work is 
performed for the hardware dependency level. For 
WSN sensor devices typical hardware includes: 

 

1. Clock (timers) 
2. Serial Interface (e.g. I2C to temperature 

sensor) 
3. ADC (to analog devices, e.g. light sensor) 
4. Bitwise output (e.g. LEDs) 
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5. Radio Module 
6. Interrupt(s) 
 

While the amount of work is significant, its 
scope is adjustable. By choice, the OS can invest in 
a less expansive hardware interface and put the 
burden of device initialization, control and command 
with the programmer, or alternately it can perform 
these functions nearly transparently through well 
written supporting routines.  

In WSN deployment, sensor devices network 
traffic is concentrated at a network edge in Gateway 
devices. Gateway devices are responsible for 
matching two different network standards, the 
transceiver wireless standard of the sensor nodes, 
and the network standard of the high level system 
(e.g. IEEE 802.3 or IEEE 802.11). If the sensors are 
deployed in a redundant manner, the gateways may 
be responsible for managing the sensor network (i.e. 
issuing startup-shutdown commands to the sensors), 
and managing data flow (Ilyas 2004).  

Gateway devices, unlike sensor node devices, do 
not suffer the extreme constraints on size, cost and 
energy consumption.With x86 devices being offered 
in industrial form factors, such as the PC/104 form, 
its CPUs are suitable for use in WSN installations. 
In turn, this allows incorporation of a Windows or 
Linux OS into the device. Somewhat surprisingly 
however, commercial WSN gateway manufacturers 
have chosen to skip use of x86 devices, in favor of 
RISC machines, such as that of Advanced RISC 
Machine architecture (ARM, Xscale) machines. The 
choice of these RISC machines leaves the OS 
selection process open to a small set of Linux OS 
variants and Windows CE. Since the RISC machines 
have a long history of use in handheld battery 
powered computers, they are well suited for the 
WSN environment. 

6 BACKGROUND WIRELESS 
RECEIVER STANDARDS 

There are a number of ways wireless transceiver 
standards can be categorized. One way is to group 
them by spatial coverage, another by intended 
market. Classifying wireless into spatial coverage 
yields three distinct groupings by area of service: 

 

1. Wide 
2. Local 
3. Personal 

 

Classifying into market type yields three 
categories: 

 

1. Mobile Telephony 
2. Mobile Internet 
3. Personal Devices  

 

The within the categories standards will vary 
with respect to the frequency band used, the 
communication techniques and data rates employed, 
message syntax and data protocol. Between the 
categories, the energy consumption requirements are 
likely to differ. For example, in some desktop 
deployments schemes mobile internet (WiFi) is used 
so that the tasks of running cables and installing 
jacks are minimize; in this example energy 
consumption is not critical. This is in contrast to 
mobile telephony where minimization of energy 
consumption is always desirable.  

7 WSN TRANSCEIVER 
STANDARDS 

The same constraints that exist during the 
determination of a WSN OS architecture exist for 
determination of a WSN Transceiver Standard. A 
primary consideration is power; the transceiver 
standard must consume low levels of power. WSN 
sensors do not have the luxury of an AC-based 
recharge as do mobile cellular phones. A secondary 
consideration is the protocol complexity, where 
complexity is assumed to correspond directly to 
length of program code. The second consideration is 
interrelated to the first since long programs consume 
more energy than short programs. For these reasons, 
the ideal WSN transceiver standard is a low power, 
low complexity network protocol. 

The power constraint and complexity constraint 
can be used to eliminate certain transceiver 
standards from consideration. Consider the IEEE 
802.11b standard. Its power consumption would 
drain a few AA batteries in a matter of hours. Its 
protocol complexity would require a significant 
increase in program code and program memory. The 
rather quick data rate of the standard (11 Mbps 
max), while attractive, is overkill for sensor nodes 
recording temperatures, performing light sensing, 
and other low speed acquisition and reporting tasks.  

The power constraint can be used to eliminate 
other existing transceiver standards as well. In 
discussions of digital communication systems, a 
primary design concern cited is the maximizing the 
Bits/s/Hz figure. With power constraints, the 
importance of the Bits/s/Hz figure is discarded in 
favor of J/Bits/s/Hz. When considering power issues 

WINSYS 2009 - International Conference on Wireless Information Networks and Systems

42



 

 

three regions of power consumption are considered, 
the transmitter, the power amplifier, and the 
receiver. A common mobile low power device, the 
cellular phone, uses transceiver standards that 
provide for transmission distances greater than 1000 
meters. At these distances, much of the energy 
consumed is consumed by the analog power 
amplifier section. The power levels consumed in this 
section are well above those levels that are 
acceptable in WSN work. Therefore WSN 
applications restrict themselves to ranges under 
200m or so. 

While the energy per bit associated with cellular 
transmissions standards eliminate them for 
consideration in WSN applications, certain cellular 
phone standards are of value. For example, cellular 
phone units mitigate the power amplifier 
consumption by use of power management schemes. 
These schemes minimize “on” time in favor of low 
power idle states or equivalent states. Additionally, 
newer cellular devices seek to minimize the analog 
circuitry in favor of lower power CMOS digital 
devices. Energy-aware transceivers make use of 
these concepts (Schurges, C., 2002).  

Finally, the choice of signaling scheme is also 
critical. Here, low power devices can choose to 
sacrifice spectrum for power efficiencies. Thus 
highly spectral efficient signaling schemes such as 
QAM and M-ary modulation are rejected in favor of 
power efficient schemes. Certain schemes that are 
constant envelope modulation (e.g. Frequency Shift 
Keying - FSK) or near constant envelope modulation 
(e.g. Offset Quadature Phase Shift Keying - 
OQPSK) are well matched for use with the power 
efficient direct modulation transmitter architecture 

(Otis, et al., 2004). Data rates for WSN sensors are 
intended to be modest, running well under 1 Mbps. 
It is assumed that higher rate devices such as 
realtime video would require specialized solutions 
outside the WSN norm. 

8 TOWARDS A TRANSCEIVER 
STANDARD SOLUTION 

The wireless communities’ standards for wireless 
personal network (WPAN) are lead by the IEEE 
802.15 standards. This is the standards group that is 
most likely to attract placement of specialized low 
power, low range, and low firmware/software 
complexity data communication standards. Indeed 
this is the case; IEEE 802.15.4 is one such new 
standard that has risen to meet these requirements. 
Interestingly, while being a standard, it is 

simultaneously a fee-based supported membership 
organization named the Zigbee Alliance. The 
practice of an alliance operating in conjunction with 
a standard is not uncommon.  

Zigbee is a low cost device specification that 
operates in the industrial, scientific and medical 
(ISM) radio band. It implements energy conserving 
modulation schemes (e.g. FSK, OQPSK). It supports 
network topologies and network operation in a 
fashion that avoids the software and firmware 
complexities found in standards such as IEEE 802.3 
and IEEE 802.11. It supports sleep states that are 
important to meeting WSN energy requirements. Its 
overall energy requirements are modest due to its 
reliance on CMOS digital circuits and minimization 
of analog components. This combined with 
programmatic use of sleep states (etc.) allows 
Zigbee transceiver devices to operate over extended 
periods using batteries.  

Recently (summer 2007), through the work of 
Nokia, the existing Bluetooth standards, the IEEE 
802.15.1 standard, has been expanded to include an 
ultra low power separate Bluetooth communication 
definition, called Wibree. One point of 
differentiation between the two standards is the 
device range. Zigbee indoor range is about 30m, 
while Wibree has a lower range value of 10m. 
Another point of difference is their method of their 
implementing network topologies. Also, Zigbee has 
already been incorporated into existing WSN nodes 
(e.g. MicaZ, Telos sensors), while Wilbree hasn’t. 
Finally, despite Zigbee’s status as a new device, it 
already exhibits a certain maturity as its radios have 
already been combined with microcontrollers to 
produce a SoC device suitable for WSN 
applications. An example of a SoC device used in 
academic studies of sensor node operation is TI’s 
CC2430 (Leopold, et al., 2007). The future of 
Wibree’s use in WSNs is not clear at this time.  

9 SUMMARY 

The needs of the wireless sensor network 
community are being met through innovative 
developments in microcontroller operating systems 
and wireless personal networks. In each case the 
existing models and architectures have been adjusted 
to meet energy constraints, size constraints, and cost 
constraints unique to WSN work. For the 
transceiver, modulation schemes and transmitter 
architectures have been selected to minimize power 
consumption. For designers from other backgrounds, 
some of these selections are somewhat surprising 
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since they reject commonly sought after goals, such 
as maximum bit throughput, and radio range.  

Considering the operating system, an OS 
designer from another background might be 
surprised by the issues at hand. Gone are the 
incentives for large scale memory addressing 
capabilities, incorporation of parallel processing for 
dual core machines and other such features. In 
contrast, the WSN sensor node OS and application 
task(s) is accomplished by TinyOS in a single 
address space and as a single piece of code. 
Programmers with a background of embedded 
systems are more likely to be comfortable with the 
size constraints of the WSN development than 
others. But as discussed for WSN sensor nodes, both 
power constraints and good data throughput are 
critical to OS success. Not all embedded 
applications has this set of constraints.  

From what has been identified in this discussion 
it is evident that the existing WSN solutions will be 
challenged to improve as time progresses. In terms 
of OS development, developers will continue to test 
and improve the “event driven” model and the 
“multithreaded” model approaches. Additionally, 
developers will continue to work towards 
determining the best host programming language for 
their particular OS (e.g. nesC, C). Developers will 
also continue to port WSN OS solutions from one 
hardware platform to another. However, regardless 
of future improvements it can be stated that to date 
the unique architectural challenges for both the OS 
and transceiver of wireless sensor networks have 
been successfully met.  
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