Declarative Parsing and Annotation
of Electronic Dictionaries

Christian Schneikér Dietmar Seipél, Werner Wegstemand Klaus Prator
1 Department of Computer Science, University of Wiirzburg, Germany

2 Competence Center for Computational Philology
University of Wiirzburg, Am Hubland, D — 97074 Wirzburg, Germany

8 Berlin-Brandenburg Academy of Sciences and the Humanities
Jagerstr. 22-23, D — 10117 Berlin, Germany

Abstract. We present a declarative annotation toolkit based en Jand RRo-

LOG technologies, and we apply it for annotating the Campe Dictionary to obtain
an electronic version in ML (TEl).

For parsing flat structures, we use a very compact grammar formalism called
extended definite clause grammars (&&5), which is an extended version of
the DcG's that are well-known from the logic programming languagePOG.

For accessing and transforming/X structures, we use thend. query and trans-
formation language FQUERY.

It turned out, that the declarative approach RA20G is much more readable,
reliable, flexible, and faster than an alternative implementation which we had
made in AvA and XsLT for the TEXTGRID community project.

1 Introduction

Dictionaries traditionally offer information on words and their meaning in highly struc-
tured and condensed form, making use of a wide variety of abbreviations and an elab-
orate typography. Retro—digitizing printed dictionaries, especially German dictionaries
from the 18th and early 19th century, therefore requires sophisticated new tools and
encoding techniques in order to convert typographical detail into a fine—gaikup

of dictionary structures on one hand and to allow at the same time for variation in or-
thography, morphology and usage on the other hand, since in the decades around 1800
the German language was still on its way to standardization.

This is one of the reasons whyeXTGRID [17], the first grid project in German
eHumanities funded by the Federal Ministry of Education and Research, chose the
Campe Dictionary [1]: 6 volumes with altogether about 6.000 pages and about 140.000
entries, published between 1807 and 1813 as one testbed for #eilGRID Lab, a
Virtual Research Library. It entails a grid—enabled workbench, that will process, anal-
yse, annotate, edit and publish text data for academic research,ExTGRIDRep,

a grid repository for long—term storage. This paper reflects some of the research on
annotation in this context.

Schneiker C., Seipel D., Wegstein W. and Préator K. (2009).

Declarative Parsing and Annotation of Electronic Dictionaries.

In Proceedings of the 6th International Workshop on Natural Language Processing and Cognitive Science , pages 122-132
DOI: 10.5220/0002203401220132

Copyright © SciTePress

123

Using RRoLOG technology forparsingandannotatingis common in natural lan-
guage processing.RBLOG has been used within the Jean Paul project at the Berlin—
Brandenburg Academy of Sciences [15], whergLXtransformations based ornF
QUERY turned out to be easier to write thansXr transformations. The task is to
find the proper level of abstraction and write suitable madoo frequently occurring
patterns in the code;H®LOG even allows to design dedicated special-purpose lan-
guages [11]. E.g., definite clause grammars have been gdels an abstraction for
parsing; they have been used for parsing controlled natamguages [4, 5, 13]. Since
PROLOG code is declarative and very compact, the variations ofraltanguage can
be handled nicely.

Figure 1 shows the typographical layout of the Campe DietignThe basic text
has been double—keyed in China. The encoding is based orEte5IGuidelines [16],
using a Relax NG Schema. The encoding structure uses eletoenarkup the dictio-
nary entry, the form block with inflectional and morpholagjilmformation, the sense
block handling semantic description and references, oo related entries, usage as
well as notes. In the future, this encoding will help us tasture the digital world ac-
cording to semantic criteria and thus provide an esserdiistfor constructing reliable
ontologies.

Ler Aal, bes —s, 9}5 bie —e, TeeBleincrungdmwort, bod it :f-.;::,

Ded il . by &g 1) Ein lamper, vunber, (i ¢
i e ':[-smq Fifh mit einee febe {HIOpfrigen -{‘fuu' ;
Ball er witd leidge fefigepalten weeben famm, (Muraena ull"'lllllll

L.y Moen biefem ! 1 Umftanbe find bie auf MMenfGen , welde fehe
grwanbt fink, O%cvaeteagenen Mebensacten Soegenommen: Ee it
glatt wie cim Aals ich fennte thn nidie Fafen, er entfdibpfre mic
wie #in Aal. Der bunte Lal see bie Weerfdlanae, ter Weeraal,

thaal. &. b, — Alhen, fo nennt man bie MErmben, welde fidy
Hleifter 10, pescupen, . Gffigithm, Kieiteriiden, 2)
Proerk aud Burtepdeiae o Hefalt cined Kaled, '5) Die fal:
(e, roride bebm Salfen in ten Thdern entfeben.

Figure 1. Excerpt from the Campe Dictionary.

The rest of this paper is organized as follows: In Section 2nieshow how to
extract entries of a dictionary using oumX query and transformation languags-+
QUERY. The process for parsing and annotating elements for ageatwell-formed
and valid Tel structure is illustrated for the Campe Dictionary in Sect® we can
access and create elements wittoRP0G using DcG's and EDCG's in an easy and ef-
ficient way. Section 4 describes the use of transformatitesrior the annotation and
the further processing of ML elements. Section 5 gives an overview of our declara-
tive annotation toolkit and compares the declarative tephes with a Ava and XsLT
approach, which we had implemented earlier.

124

2 Basic XML Handling in PRoOLOG and FNQUERY

Currently, the Campe Dictionary, which was written in thelyegears of the 19th cen-
tury, is converted into a machine readable structure. Withis process, the only anno-
tations available so far, were the declaration of the difféfont sizes Joachim Heinrich
Campe uses for displaying the structure of his act, the ndmdpef the line and page
breaks in the dictionary, and paragraphs; thus, we foundaliveited XML structure
in the source file which we used for the first basic transfoomsi

In this paper, we present how to annotate documents wWkthLBG and the XL
guery and transformation languag®®uUERY [14], which is implemented in 8i—
PrRoLOG. To exemplify these annotations, we use the Campe Dictjoaara low—
structured base for obtaining a well-formeaX document according tod.

The PRoLOG Data Structure for X ML. The field notation developed fom&QUERY
represents an ML element<T a; ="v1"...ap = "V,">...</ T> as a ROLOG term
T: As: C, called R triple, with the tag T” and an association ligs =[ag : vi,...,an : Vn|
of attributesa; and their corresponding valugs(with 1 <i < n), which are ROLOG
terms. The conter@can be either text or nested sub—elements representedtaplEs.
If As is empty, then the ¥ triple can be abbreviated as a p&ilC.

In most available dictionaries, each entry is encapsuiatéd own paragraph, and
thus, it could be easily detected. In the following examplegentry is annotated with
par agr aph and is followed by an elemeny 2, which shows the lemma of the entry
in a larger font; recognizing both elements is necessacgure there could exist other
par agr aph elements, which do not represent entries.

<par agr aph>
<W2>Der Aal </W2> <Wli>des -- es, M. die -- e</W1> ...
</ par agr aph>

An XML document can be loaded into an Fiple using the predicatér ead. For the
par agr aph element above we getNRriples with empty attribute lists:
paragraph:['W2':['Der Aal'], ', ',
"WZ1:['des -- es, M. die--¢€e], ", ..."]

Extraction of Entries using FNQUERY. The query languageNQUERY allows for
accessing a component of amX document by its attribute or tag name. Furthermore,
complexpathor tree expressionsan be formulated in a way quite similar to Xim.

The XML element from above could now be parsed with the followingljmate
canpe_find_entry/ 2. The path expressiatanpe/ descendant : : par agr aph selects
a descendant element Ganpe with the tagpar agr aph. For avoiding the recogni-
tion of a new paragraph without a followingj 2 tag, we use another path expression
Entry/nth_child::1/tag::"*’ for computing the tag of the first child of the consid-
ered entry.

canpe_find_entry(Canpe, Entry) :-
Entry : = Canpel/ descendant: : paragr aph,
"W2' = Entry/nth_child::1/tag::"*".

125

Finally, with PROLOG'S backtracking mechanism it is possible to find all entries i
the source file.

3 Annotation with Extended Grammar Rules

In the past, ROLOG has been frequently used for implementing natural langagge
plications, in which parsing text is one of the main conceMgst PROLOG systems
include a preprocessor for defining grammar rules for pgrtgixt. Theselefinite clause
grammarshide arguments which are not relevant for the semanticsegbétnsing prob-
lems; thus, they are more readable and reliable than stfgan oG rules.

In this section, we want to discuss this benefit for parsimgtebnic dictionaries.
We give an example for parsing a lemma of an entry to generatel€ments. In a
further step, we introduce an extended version ofd8 (EDcG's), which give the user
the ability to create compact grammar rules for generatigengege W terms for the
parsed tokens. A comparison tacB's and standard RoLOG rules will be elaborated
in addition to the possibility of integrating Ef¥'s in the other formalisms.

3.1 Parsing with Definite Clause Grammars

Firstly, we will use DcG's for parsing the headwords of a single entry and for detgcti
punctuation in natural text. Using grammar rules is moriabé than using standard
PROLOG rules, since the code becomes much more compact and realfaéover,
we introduce theequence predicate for parsing a list of ML elements.

Headwords. An entry of a dictionary normally consists of a lemma whichigh-
lighted with a larger font; in our case, it is annotated witte—tags. Often, such a
lemma only consists of one word — in the case of verbs — or a aodrits determiner:
The DcaG predicateanpe_headwor d given below parses a headwortiX element
<W2>Der Aal </ W 2> and annotates it to derive the followifigr m-element:

<fornp
<form type="| enma" >
<formtype="deternm ner"> <orth>Der</orth> </fornp
<form type="headwor d"> <orth>Aal </ orth> </fornp
</fornp
</formp

There also exist some cases with more than one headword ioadtd XML tags de-
pending on the current stage of the process, such as linksoeabbreviations, e.g.,
the following collective reference to related entries:

<W2>Der Blitzstoffnesser, der Blitzstoffsamier, <lb n="0569.49" />
der Blitzstoffsauger</W2>

The additional elements have to be passed through and shotulloe annotated; the
different headwords have to be annotated, afdrai-element for each lemma has to
be created.

The following DcG rule forcanpe_headwor d can handle the described variations;
it parses the different types @f 2 elements to createNFtriplesX:

126

canpe_headword(X) -->
([X, { X=TAs:Es}
; [X], { atomic(X), canpe_is_unicode_char(X) }
. [A B], { atomic(A), atonic(B),

canpe_i s_determi ner (A),

X = form[type:lemms]:[
form[type:determiner]:[orth:[A]],
form[type: headword]:[orth:[B]]] }

» [Al, { atomic(A),

X = form[type:|lemm]:[

form[type: headword]:[orth:[Al 1] }).

With standard @G technology, this predicate has to be called recursivelpos-
ing a (possibly empty) sequence of headwords. This is dortbéyecursive predicate
canpe_headwor ds, which terminates when no more headwords are found:

canpe_headwords([X| Xs]) --> canpe_headword(X), canpe_headwords(Xs).
canpe_headwords([]) --> { true }.

To simplify this, we have developed the meta-predicaiguence; like in regular ex-
pressions, the first argumeérit indicates that we look for an arbitrary number of head-
words (other possible values are, e.g, or’ ?"):

canpe_headwor ds(Xs) --> sequence(’*’', canpe_headword, Xs).

We can applyanpe_headwor ds to produce a sequence of headwords, which are after-
wards enclosed infor mtag and written to the screen:

?- canpe_headwords(Xs, ['Der’, "Aal'], []), dwite(xm, formXs).

Punctuation. For annotating punctuation in a lemma, which can appeardetgingle
headwords, the DG predicatecanpe_punct uat i on is used for checking each token if
it is a punctuation mark, and — if so — annotating it witt-dag.

canpe_punct uations(Xs) --> sequence(’*', canpe_punctuation, Xs).

canpe_punctuation(X) -->
([Al, { is_punctuation(A), X=c:[A } ; [X).

The meta-predicateequence used in the [@G predicatecanpe_punct uati ons
parses a list of elements.

3.2 Parsing with Extended Definite Clause Grammars

In the following, we show how nouns can be parsed usingcEB. For complex ap-
plications, standard ©G's can have a complex structure, and understanding and de-
bugging them can be tedious. Thus, we have developed a new, compact syntax

for writing DcG rules in RoLOG, which we call Extended DG's (EDcG). For the
representation of ML elements created by Kf%'s we use a generic field notation.

127

Assume that a paragraph of a dictionary has to be parsed atbded for labeling
the inflected forms of a noun. In the Campe Dictionary, lemarétions (such as plural
or genitive forms) are found in nearly all of the regular ¢absives; thus, an easy to read
structure has to be developed to give the programmer thafmaltef writing complex
parsers in a user friendly way.

The following line shows such an extract of the Campe Dicign

des -- es, M. die -- e

These tokens have to be annotated i1, Tand different or mtags with sub—elements
defining the corresponding grammatical structure have tarbated. The following
XML code, which should be produced, shows the complexity of anobtations, which
indicates that the corresponding®._0G code will also be complex:

<formtype="inflected">
<granG p>
<gram type="nunber"> <abbr>M. </ abbr> </ granm»
<case val ue="nomi native"/>
<nunber val ue="plural"/> </granG p>
<formtype="detern ner"> <orth>di e</orth> </fornp
<form t ype="headwor d">
<orth> <oVar> <oRef>-- e</oRef> </oVar> </orth> </fornp
</formp

Extended Definite Clause Grammars. For solving a parsing problem using regular
PrRoOLOG rules, the input tokens as well as the field notation for theated XL have
to be processed.

Thus, we have developed a new notation for parsing langu&geenthe output is
regular XmL. Instead of using the functer > of DcG's, we are using the new functor
==> for writing EDCG's. The output arguments can be hidden, since the outputis co
structed in ggenericway: the output of an EDG rule with the head is a list[T: Xs]
containing exactly onenrtriple, whereXs is the list of W triples produced by the body
of the rule.

The following EDcG rules parse inflected forms — like indicated above — into F
triples:

form ==> grammar_det erni ner, form headword.

gramar _determ ner ==> (gram !, deterniner ; determner).
gram==> ["M.’].

determiner ==> [X], { canpe_is_determner(X) }.

form headword ==> orth.

orth ==>["--",].

Below, we call the predicatfeor mfor parsing a list of tokens (the second argument)
into a listXs (the first argument) dfor melements; the last argument contains the tokens
that could not be parsed —i.e., it should be empty:

?- form(Xs, ['M.’', die, "--€'], []), dwite(xm, formXs).

128

The output of the predicatieor mis enclosed in a furthdror mtag and written to the
screen:

<fornp
<gr anmar _det er ni ner >
<granpMe. </ gran> <det er ni ner >di e</ det er ni ner >
</ grammar _det er m ner >
<f orm headwor d> <orth>-- e</orth> </form headword>
</formp

From this, the exact, desiredX structure can be derived using some simple trans-
formations, which we will describe in Section 4. The code iscmbetter understand-
able than for ZG’s, because this notation suppresses irrelevant arguments

If we definegr anmar _det er mi ner with the following DcG's and mix them with
the EDcG's for the other predicates, then we can get even closer tddésged XL
structure in one step — at the expense of a less compact code:

granmar _determner([G F]) -->
gram([gram[C]]), !, deternminer([determner:[D]),
{ G=granGp:[gram[type:nunber]:[abbr:[C],
case: [val ue: nonminative]:[],
nunber: [value:plural]:[]],
F =form[type:determner]:[orth:[D]] }.
granmar _determner([G F]) -->
determner([deternminer:[D]]),
{ G=granGp:|[
case: [val ue: genitive]:[],
nunber: [val ue:singular]:[]],
F =form[type:determner]:[orth:[D]] }.

Instead of the generic elemegrtanmar _det er ni ner produced by the EDG rule,
the DcG rules can produce the two elemenBandF) of the desired XL structure.
Now, we can derive the complete desiresiXwith very simple transformations.

Finally, the different cases like genitive or dative andgheal forms of a dictionary
entry could be parsed using similacB or EDCG rules.

Comparison with DcG’s and Standard PROLOG. In contrast, for our example the
corresponding standardd® rules of RROLOG (we show only half of them) are more
complex than the EDG rules:

form([formEs]) -->
grammar _det erm ner (Xs), form headword(Ys),
{ append(Xs, Ys, Es) }.
gram([gram['Me."]]) --> ["Me."].
determiner([determiner:[X]]) --> [X], { canpe_is_determiner(X) }.

In many applications — like the annotation of electronididitaries or other pro-
grams producing XiL — these [ZG rules are quite complex and simplifying them is
necessary. Finally, the implementation in pure, standawl ®G would look even more
complicated (again, we show only half of the rules):

129

form([formEs], As, Bs) :-
grammar _det erm ner(Xs, As, Cs), formheadword(Ys, Cs, Bs),
append(Xs, Ys, Es).
gram[gram['M."], As, Bs) :-
As = ['M.'|Bs].
determner([determiner:[X], As, Bs) :-
canpe_i s_deternminer(X), As = [X|Bs].

Besides the output in the first argument of thedpredicates here, which is con-
structed explicitely rather than generic, there are twoaraguments for passing the
list of input tokens. [@G's only use the first argument, and EB's hide all three argu-
ments.

Sequences of Form Elements.If we add the following G rule for f or m at the
beginning of the @G program and assume that commas have already been annotated
as R triplesc: [, '], then we can annotate sequences of inflettedhelements:

form[X) -->[X, { X = T:As:Es, ! }.

With the predicatsequence it is possible to parse a sequericeof tokens to inflected
form elements, even when more than one genitive or plurahfoccurs. Since the
outputFs is a list of lists of elements, we have to flatten it to an ordjrisst Xs before
we can write it to the screen:

?- Ts = [des, '--', es, ¢:[","], "M.", die, '--", €],
sequence('*', form Fs, Ts, []),
flatten(Fs, Xs), dwite(xns, Xs).

These RoLoOGrules are efficient and easly readable. The derivedriples can be
ouput in XML using the predicatéwri te/ 2.

4 Annotation with Transformation Rules

In this section, we transformmL elements from the Campe Dictionary withQUERY
in a way quite similar to XLT, but with a more powerful backengine iRBLOG.

A rule with the head - ->(Predicate, T1, T2) transforms an R triple T1 to
another i triple T2. Arbitrary PROLOG calls could be integrated within the rules; thus,
FNQUERY is a Turing complete transformation languags. tFansformation rules are
called by the predicaten_i t em transf orm The transformation is recursive; it starts
in the leaves of the ML tree and ends in the root element.

For example, the following rules transform alelements in an & triple to anhi
element with an attributeend="r oman" and allW 1 elements to ahi element with an
attributer end="1 ar ge" for labeling the font size. Other elements are left unchdnge
because of rule 3:

--->(antiqua, 'A:_:Es, hi:[rend:roman]:Es).
--->(large_font, "W1': _:Es, hi:[rend:large]:Es).
__>(_7 X X)

130

Another example is the transformation of theiX elements created by the EB's
of Section 3.

-->(inflected, form_:[T1, T2], form[type:inflected]:[G F1, F2]) :-
D := Tl/determiner/content::'*", O:= T2/orth,
(C:=Tl/grancontent::’*", C=["M."] ->
G=...
y G=0),
F1 = form[type:deterniner]:[orth:D],

form [type: headword]:[oVar:[oRev:[Q]].

This rule transforms annrtriple analogously to the BG rule forgr anmar _det er mi ner
defined in Section 3; an attributgpe is added to each of thfeor melements. The ele-
mentgr ammar _det er ni ner is separated into two different elements (nanwglgnG p
including two additional elementsase andnunber) and an optionafir am element;
all of them depend on the content of thase element. Thert h sub—element of the
f or melement with attributé ype="headwor d" is enclosed in two more elements for
obtaining the desired structure.

5 The Declarative Annotation Toolkit

The annotation techniques presented in the previous sectiee part of an integrated
declarative annotation toolkit. In this section, we sketome further annotations which
we have implemented in the field of electronic dictionaries.

5.1 Annotations of Electronic Dictionaries

With FNQUERY, DcG's and EDcG's we have developed several applications for pars-
ing natural text in electronic dictionaries such as Campkfatelung. These techniques
give us the possibility to identify and annotate lemmasy tinlected forms, as well as
punctuations and hyphenations in parsed entries.

Furthermore, it is possible to match slightly modified vatsaof a lemma in the
text and to parse certain German relative clauses. Moreaxehave developed an
application for annotating sub—grouped senses in an ealrgléd with list markers
suchad, 1), 2),a.,b), where RoLOGS backtracking mechanism is very useful for
obtaining the proper structure. Figure 2 shows the renderimn entry, which we had
annotated with ROLOG before.

5.2 Comparison to AvA and XSLT

In an earlier step of the BxTGRID—project, we had designed and implemented a tool
for parsing and annotating the Campe DictionaryAmwaland XsLT. According to the
guidelines of the EXTGRIDLAB, this implementation was necessary for the commu-
nity project.

For Volume 1 of the Campe Dictionary, which consists of 26.84tries, the AvA
approach needs approximately 44 minutes for parsing andtatimg all entries on a

131

Der Aal, |des—eSJ‘ |die—ez‘

‘\/erkleinerungswort, das ‘Alchen, H |des -5, | ‘d‘ Mz, w. d. Ez.

1)

Ein langer, runder, schwiérzlicher, in stiRem Wasser lebender Fisch

mit einer sehr schiUpfrigen Haut, wel=

halb er nicht leicht festgehalten werden kann, (Muraena anguilla L.).
Van diesem letzten Umstande sind die auf Menschen, welche sehr gewandt
sind, Ubergetragenen Redensarten hergenommen: Er ist glatt wie ein Aal;
ich konnte ihn nicht fassen, er entschitpfte mir wie ein Aal. Der bunte Aal
oder die Meerschlange, der Meeraal, Sandaal. 5. d. - Alchen, so nennt
man die Wirmchen, welche sich in Essig, Kleister (etc.) erzeugen, s.
Essigalchen, Kleisterdlchen

2)
‘Ein Bac kwerlk aus Butterteige in Gestalt eines Aales.

3) Die fal=
schen Briche, welche beim Wallken in den Tuchern entstehen.

Figure 2. Rendering of an Annotated Entry.

dual core CPU system using two threads. In our new approaéRdLoG, we can
reduce this runtime to about 4 minutes while using only orre of the system. Since
we are now using declarative technology, the code lengthlddmeireduced to only 5%
of the AvAa implementation.

6 Conclusions

In the BMBF research project ovariations in languagewe want to build a meta—
lemma list by analyzing a huge collection of dictionariemfrdifferent epochs of the
German language. Both here and in treXT GRID community project, we need a fast,
reliable, easy to read and modular toolkit for parsing, aatirog and querying data sets.
With the development of FRQUERY and EDCG's, we have the possibility to fulfil these
requirements; our declarative annotation toolkit is exastdr than modern applications
written in JAVA and XSLT.

The usability of the introduced technologies is not limitedthe annotation and
parsing of natural language; in another project we are UsIDgG's and transformation
rules for analyzing log messages — or even data buses — intorfied root causes in
network systems.

The aspect of integratingxt miningto extend our toolkit will be a subject of future
research.

References

1. Campe, Joachim Heinrich¥orterbuch der deutschen SpracleVolumes, Braunschweig,
1807-1811.

2. Covington, M.A.:GULP 3.1: An Extension of Prolog for Unification—-Based GraannRe-
search Report Al-1994-06, Artificial Intelligence Centéniversity of Georgia, 1994

132

11.
12.

13.

14.

15.

16.

17.

Dereko: The German Reference Corpus Projecthttp://www.sfs.nphil.uni-
tuebingen.de/dereko/, 2009

. Fuchs, N.E.; Fromherz, M.P.Jransformational Development of Logic Programs from Ex-

ecutable Specifications — Schema Based Visual and Textagbh&Xition of Logic Programs
C. Beckstein, U. Geske (eds.), Entwicklung, Test und Wadeklarativer KI-Programme,
GMD Studien Nr. 238, Gesellschaft fir Informatik und Datmarbeitung, 1994

. Fuchs, N.E.; Schwitter, RSpecifying Logic Programs in Controlled Natural Language

Proc. Workshop on Computational Logic for Natural Languégecessing (CLNP) 1995

. Gazdar, G.; Mellish, Q\Natural Language Processing in Prologn Introduction to Compu-

tational LinguisticsAddison—Wesley, 1989

. Hausmann, F.J.; Reichmann, O.; Wiegand, H.E.; Zgusteeds.:Worterbucher / Dictio-

naries / Dictionnaires — Ein internationales Handbuch zexlkographie / An International
Encyclopedia of Lexicography / Encyclopédie internatiende lexicographieBerlin/New
York, 1989 (1), 1990 (I1)

. Hirakawa H.; Ono, K.; Yoshimura, YAutomatic Refinement of a POS Tagger Using a Reli-

able Parser and Plain Text Corpor&roc. 18th International Conference on Computational
Linguistics (COLING) 2000

. Landau, S.Dictionaries. The Art and Craft of Lexicograph3nd Edition, Cambridge, 2001
. Lloyd, J.:Practical Advantages of Declarative Programmir@SLI| Lecture Notes, Number

10, 1987

O’Keefe, R.A.The Craft of PrologMIT Press, 1990

Pereira, F.C.N.; Shieber, S.Mrolog and Natural-Language AnalysiSSLI Lecture Notes,
Number 10, 1987

Schwitter, R.Working for Two: a Bidirectional Grammer for a Controlled ftle@al Lan-
guage Proc. 21st Australasian Joint Conference on Atrtificial liigence (Al) 2008pp. 168-
179

Seipel, D.Processing XML Documents in Proldgroc. 17th Workshop on Logic Program-
mierung (WLP) 2002

Seipel, D.; Prator, K.: XL Transformations Based on Logic ProgrammiRgoc. 18th Work-
shop on Logic Programming (WLP) 200%p. 5-16

TEI Consortium, eds.: g P5: Guidelines for Electronic Text Encoding and Interchang
http://www.tei-c.org/Guidelines/P5/

Textgrid: Modular platform for collaborative textual editing — a coranity grid for the
humanitieshttp://www.textgrid.de, 2009

