

Using UML Activity Diagrams and Event B for the
Specification and the Verification of Workflow

Applications

Ahlem Ben Younes and Leila Jemni Ben Ayed

Research Unit of Technologies of Information and Communication (UTIC)
ESSTT, Tunisia

Abstract. This paper presents a specification and formal verification technique
for workflow applications using UML Activity Diagrams (AD) and Event B.
The workflow application is initially modeled graphically hierarchically with
UML AD, then the resulting model is translated into Event B in order to check
the correctness of workflow models (such as no deadlock, no livelock,
fairness,.) automatically, using the B support tools. In this paper, we discuss the
contributions and by an example of workflow application, we illustrate the
proposed technique.

1 Introduction

Workflow modelling needs a language that is intuitive and easy to use. Activity
diagrams of UML [1] provide a good option. Today, UML AD are considered as an
OMG standard notation in the area of workflow applications modelling [3]. However,
the fact that UML lacks a precise semantics is a serious drawback of UML-based
techniques. Also, UML AD is not adapted to the verification of workflow
applications. In this paper, our goal is to provide a specification and verification
technique for workflow applications using UML AD which give readable models and
an appropriate formal method which allows verification of required properties (such
no deadlock, liveness, fairness) to prove the correctness of the workflow
specification. Our contribution consists of using Event B method and its associate
refinement process and tools for the formal verification of workflow applications. The
verification is based on a proof technique and therefore it does not suffer from the
state number explosion occurring in classical model checking as in the cases of works
in [10] and [11]. In our previous work [2], we have proposed an approach which
combines the use of UML AD and Event B for the specification and the verification
of workflow applications. Hence, a semi-formal specification in UML AD could be
verified by analysing derived Event B models. The workflow is initially modeled
graphically with UML AD (Step1). After that, the resulting graphical readable model
is translated into Event B in incremental development with successive refinements
(Step2). This refined model is enriched by relevant properties (no deadlock, no
livelock, strong fairness, etc) (Step3) which will be proved using the B4free tool [6]
(Step4). In our works [2][13], we have presented the proposed translation rules for the

Ben Younes A. and Jemni Ben Ayed L. (2009).
Using UML Activity Diagrams and Event B for the Specification and the Verification of Workflow Applications.
In Proceedings of the 7th International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems, pages
149-155
DOI: 10.5220/0002202001490155
Copyright c© SciTePress

basic concepts of UML AD (activity, Sequence of activities, choice (decision), loop,
parallel activities (fork and join)) and for dynamic invocations concept [13] into
Event B. In this paper, we discuss contribution of the proposed approach for the
verification of workflow applications. These translation rules give not only a
syntactical translation, but also give a formal semantics using the Event B method
semantics for the activity diagrams. In addition, in this paper, by an example of
workflow application ‘’ The Production Company’’, we illustrate the proposed
technique and the feasibility of our approach.

This paper is structured as follows. Section 2 discusses related work to ours.
Section 3 presents a brief overview of the Event B method. Section 3 describes our
approach for the translation of hierarchical decomposition in UML AD into a
hierarchy of Event B models. Section 5 discusses the interest of this approach for the
verification and the validation of workflow applications. Then an example illustrating
our approach is given. Finally we conclude and give an overview of our future work.

2 Related Work

Modeling of Workflow Applications. Some related works have proposed to use
Petri nets as a standard language for workflow modelling [15][12]. Considering
classical Petri nets are not powerful enough for modelling workflows, Van Der Aalst
and al have elevated it to high level Petri nets by adding time, colour, and hierarchy
[12]. The problem with this is that still Petri net is not an easy language for modeling
workflows. Moreover, there are not many results available with high level Petri nets.
Today, UML AD is considered as an OMG standard notation in the area of workflow
applications modelling [3]. Eshuis et al. [14] argue that Petri Nets may be unable to
model workflow activities accurately without extending its semantics and this
drawback has been addressed in UML activity diagrams.

Formal Verification of Workflow Applications. Van Der Aalst and al [10] discuss
how to use Petri Net to model and analyse workflow processes . Karamanolis and al
[11] use process algebra for the verification of correctness of workflow. In our works,
our goal is to provide a specification and verification technique for workflow
applications using UML AD which give readable models and an appropriate formal
method which allows verification of required properties (such no deadlock) to prove
the correctness of the workflow specification. Indeed, the main problem with UML
activity diagrams is that they have no formal semantics. In this context, there have
been efforts for defining semantics for activity diagram in the works of Eshuis [7].
However, these works not consider the hierarchical decomposition of activities in
UML AD, and suffer from the state number explosion. Our contribution, in this
context, consists of using Event B method and its associate refinement process to
encode the hierarchical decomposition of activities in UML AD and tools for the
formal verification of workflow applications. In addition, Event B allows the use of
arbitrary natural number using the:∈ operators. The possibility of using arbitrary
natural numbers allows to deal with all the possible case for activity/process
description and modeling. Notice that this is almost impossible in model checking
techniques [10][7][11], where a fixed value for the natural numbers is required.
Usually the state number explosion problem arises when this natural number increase.

150

3 The Event B method

We use the B method [5] and its event based definition [9] to formalize UML AD
models of workflow application.

Event B Models. An Event B model is composed of a set atomic events described by
particular generalized substitution (ANY, BEGIN and SELECT). Each event Evt is
fired if the guard P associated to this event is true. For the purpose of this paper, we
will only use the SELECT substitution Evt= SELECT P THEN G END. Moreover,
a B model contains a set of properties i.e invariants, liveness, safety and reachability
properties which can be prove during the development thanks to the embedded proof
system associated to B and the tool supported by B4free [6]. Finally, B models can be
refined into other B models which can be enriched by new events and new properties.

Design with Event B. A set of events is described to define a transition system that
allows to represent the workflow application to be specified. In the case, of a
workflow application described by several sub-system (sub-process), our approach
uses the refinement technique to introduce the events of the composed automate
(workflow). Each system is then described progressively by refinement in an
incremental way. Robustness and reacheability were expressed and checked
according to the B method. Moreover, in the refinement, it is not needed to re-prove
these properties again while the model complexity increases. Notice that this
advantage is important if we compare this approach to classical model checking
where the transition system describing the model is refined and enriched.

Finally, a strong point of the B method is that the B support tools like B4free [6]
provide utilities to discharge automatically the generated proof obligations (of the
invariant preservation and the refinement correctness). Analyzing the non-discharged
proof obligations with the B support tools is an efficient and practical way to detect
errors encountered during the specification development.

4 The Translation Process from UML AD into Event B

The proposed translation process, uses the refinement process of Event B to describe
composition of AD: to each decomposition level of an activity (workflow process),
which corresponds to a subactivity in UML AD notation, is associated an Event B
refinement. In our approach, each subactivity Act0, composed, for example, of two
activities Act01 and Act02, is translated into an abstract Event B model and one
refinement: ModelLevel0 and RefLevel1. The abstract model ModelLevel0 is
associated to the abstract level (Level0) (the AD containing the subactivity Act0) and
contains only event EvtAct0 associated with the subactivity Act0. The second model
(RefLevel1) is a refinement of the first one and corresponds to the second level of
decomposition (Level1) (the AD of the subactivity Act0 describing the execution of
the activities Act01 and Act02). Two new events EvtAct01 and EvtAct02 associated
with the two activities Act01 and Act02 are added in the refinement. These events
carry the semantics of the execution of the two activities Act01 and Act02. The new
events are fired and when they are completed, the refined event EvtAct0 is fired. The

151

firing order of the events is determined by introducing a decreasing variant [2] that
represents the control pass in the UML semantic (The token)[1]. A variant is a natural
number, which decreases to 0. In practice, this variant corresponds to a decreasing
enumeration of action states in UML AD.

In [2] [13], we have proposed translation rules for the concepts of UML AD
(activity, Sequence of activities, choice (decision), loop, parallel activities (fork and
join), atomic process, and dynamic invocation) into Event B.

5 Validation and Verification of UML AD Model

The most important interest of the proposed translation of UML AD into Event B is to
allow the formal verification of functional/structural properties (safety, no deadlock,
etc) of workflow applications specified in UML AD, using a powerful support tool
like B4free [6].

Our translation approach is based on the refinement of Event B to encode UML
AD hierarchical decomposition of activities. A subactivity Act0 (process) is described
by an initial state and a final state. It is refined into a sequence of basic events which
lead from the initial state to the final one. The refinement preserves all the properties
of the initial activity Act0. This process is repeated until basic events are reached. In
this case, the validation process is completed. First, this allows to validate an
activity/process. The final sequence of events shows that there is a sequence of basic
elements implementing the upper abstract activity. Then, the activity is validated: If
an activity is validated (feasible) then its objective is realisable[9]. Second, this allows
to validate a conception and hierarchical decomposition. If some proof obligations
related to the basic events cannot be proved, in the B resulted models, then, we can
assert that some of basic events are missing and/or wrongly specified and therefore,
the conception shall be update and/or completed. If all proof obligations related to the
basic events are proved, then the hierarchical decomposition is correct. This ensures
completeness properties. Compared to classical model checking verification
techniques, where the transition system describing the model is refined and enriched
with properties to be checked again, the advantage of using Event B is that it is not
needed to re-prove again verified properties in the refined model while the model
complexity increases.

6 Application to the Example of Production Company Application

Step 1. Initially, we describe the production company using UML AD by employing a
refinement technique, as it presented in figure 1.

Step2 and Step3. By the application of the translation process and using the
translation rules [2][13], the initial UML AD model is translated into B event in a set
of property preserving refinements. Three refinement steps which correspond to each
level of three level of decomposition in the UML AD model (Figure 1) are necessary.

152

Level_0

Level_1 Level_2

UML Activity Diagram

 Order

Receive

Execute

Ship_Order

Level_3

Make production
plan

[not]
[in Stock]

Check Item

Check_Line_ItemPayment

Fig.1. The UML AD model of the Production Company.

Following figure1, the activities Receive_order, Ship_order, Payment,
Chek_Line_Item and Make_production_plan correspond to basic process/tasks of
production company application. To illustrate this decomposition, initially we below
give the first refinement level for subactivity Order_Processing.

REFINEMENT Ref1_Ord_Pro
REFINES Order_Processing
VARIABLES order_state
INVARIANT order_state ∈ 0..3
ASSERTIONS order_state =0 ∨ order_state =1 ∨ order_state =2 ∨ order_state =3
INITIALISATION order_state :=3
EVENTS
 Evt_Order_Processing = SELECT order_state= 0 THEN skip END ;
 Evt_ReceiveOrder= SELECT order_state= 3 THEN order_state:=2 END ;
 Evt_ExecuteOrder= SELECT order_state= 2 THEN order_state:=1 END ;
 Evt_shipOrder= SELECT order_state= 1 THEN order_state:=0 END
END

The variable order_state play the role of variant ensuring the right events firing

order: The variable order_state is decreased by each firing of events
Evt_ReceiveOrder, Evt_ExecuteOrder, and Evt_ShipOrder, corresponding to the
activities Receive_order, Execute_Order, and Ship_Order. The variant describes
the precedence constraints.

In following, we give below the second refinement level for subactivity
Execute_Order. In the Evt_InitChekLineItem event, the expression nb_item :∈ NAT
allows to initialize the loop variant with any natural number corresponding to the
arbitrary iteration of Chek_Line_Item activity. Then, the event Evt_ChekLineItem is
fired nb_item times. The variant nb_item decreases from its arbitrary initial values to
0. The decreasing variant nb_item describes the events interleave and prevent that an
event is fired infinitely (an event will be infinitely crossed in detriment of others).
The strong fairness (no livelock) properties are expressed by the events interleave.

 REFINEMENT Ref2_Ord_Pro

REFINES Ref1_Ord_Pro

VARIABLES pay_state, check_state, nb_item

INVARIANT pay_state∈ 0..1 ∧ check_state ∈ 0..1∧ nb_item∈ NAT

ASSERTIONS

order_state =0 ∨ order_state =1 ∨ order_state =2 ∨ order_state =3

=> order_state =0 ∨ order_state =1 ∨ (order_state =2 ∧ check_state=1) ∨ (order_state =2 ∧ check_state=0∧ nb_item ≠0)∨(order_state =2 ∧

153

The ASSERTIONS clause contains liveness properties expressing that there is no
deadlock. This property is ensured by asserting that the disjunction of all the abstract
events guards implies the disjunction of all the concrete events guards.

The INVARIANT clause allows expressing robustness properties. For Example,
in the third refinement level Ref3_Ord_Pro for subactivity Chek_Line_Item,
Evt_PlanPro is fired if the quantity in stock is deficient (stock = FALSE). (The
variable stock is used to know if the quantity in stock is deficient or not)

 REFINEMENT Ref3_Ord_Pro

REFINES Ref2_Ord_Pro

VARIABLES item_state, stock

INVARIANT item_state ∈ 0..2∧ stock ∈ BOOL……………………

|| k
Step4. Validation of the production company application.

Table 1. Summary of proofs, all Proof Obligations generated (nOp) have been proved (Pr=
100%).

Model nOp Auto %Pr
Order_Processing
Ref1_Ord_Pro
Ref2_Ord_Pro
Ref3_Ord_Pro

0
4
9

 14

0
4
9

 14

100%
100%
100%
100%

TOLAL 27 27 100%

The table 1 illustrates the obtained results on our case study. The resulting Event
B specification has been proven totally and then the initial UML AD model of our
production company application is validated.

7 Conclusions

In this paper, we have presents a Event B based approach to reasoning about
workflow applications. We show how an Event-B model can be structured from
UML Activity diagrams (UML AD) and then used to give a formal semantic to UML
AD which supports proofs of their correctness. More precisely, we propose a solution
that uses the refinement in Event B to encode the hierarchical decomposition of
activities in UML AD. The refinement in Event B allows to go from one abstract
level to less abstract one (may be a program). Validation can be performed at any
development stage and particularly at early development step allowing saving at
development. Finally, this approach is tool supported. Indeed, The B4free is used to
illustrate this approach. We are aware that the presented case study is simple, but it
shows its feasibility and the possibility to scale up since the developed approach is
generic. Currently, we are working on the implementation of this approach. In future
works, we envisage the validation of transformation rules, and studying the
correctness of the approach.

154

References

1. J.R, I. Jacobson, and G.Booch. The Unified Modelling Language reference Manual. In
Addison- Wesley, 1998.

2. A. Ben Younes and L Jemni. Ben Ayed. Using UML Activity Diagrams and Event B for
Distributed and Parallel Applications. In 31st Annual IEEE International Computer
Software and Applications Conference (COMPSAC 2007). Volume 1. Beijing, China. 24-
27 July 2007.

3. M. Dumas and A.H.M ter Hofstede. UML activity diagrams as a Workflows Specification
Language. In UML2001 page 76-90. Spinger-Verlag, 2001.

4. Clearsy. System Engineering Atelier B, Version 3.6, 2001.
5. J.R. Abrial. The B Book. Assigning Programs to Meanings. In Cambridge University Press,

1996.
6. JClearsy, “B4free,” Available at http://www.b4free.com, 2004.
7. R. Eshuis, R. Wieringa. A formal semantics for UML Activity Diagrams – Formalising

workflow models, Technical Report CTIT-01-04. Twente, Dept. Of Computer Science,
2001.

8. P. Behm, P. Desforges, and J.-M. Meynadier. METEOR: An Industrial Success in Formal
Development. An invited talk at the 2nd Int. B conference, LNCS 1939, April 1998.

9. J-R Abrial. Extending B without changing it . In H Habrias, editor, First B Conference,
Nantes, France, 1996.

10. W.M.P. van der Aalst. Workflow Verification: Finding Control-Flow Errors Using Petri-
Net-Based Techniques. LNCS 1806, Springer-Verlag, 2000.

11. C. Karamanolis, D. Giannakopoulou, J. Magee, and S. M.Wheater. Formal verification of
workflow schemas. University of Newcastle, Tech. Rep., 2000.

12. W.M.P. van der Aalst. The application of Petri nets to workflow management. The Journal
of Circuits, Systems and Computers, 8(1):21–66, 1998.

13. A. Ben Younes and L Jemni. Ben Ayed. From UML Activity Diagrams to Event B for the
Specification and the Verification of Workflow Applications. In 32st Annual IEEE
International Computer Software and Applications Conference (COMPSAC 2008), July
2008,

14. R. Eshuis and R. Wieringa. Comparing Petri Net and Activity Diagram Variants for
Workflow Modelling – Lecture Notes in Computer Science (LNCS), Germany, 2003.

15. A. Oberweis, R. Sch¨atzle, W. Stucky, W. Weitz, and G. Zimmermann. INCOME/WF: A
Petri net based approach to workflow management. In H. Krallmann, editor,
Wirtschaftsinformatik ’97, pages 557–580. Springer, 1997.

155

