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Abstract: Similarly to the partial fraction decomposition of rational fractions, we provide an approach to the decom-
position of rational series in noncommutative variables into simpler series. This decomposition consists in
splitting the representation of the rational series into simpler representations. Finally, the problem appears as
a joint block–diagonalization of several matrices. We present then an application of this decomposition to the
integration of dynamical systems.

1 INTRODUCTION

This article deals with the problem of splitting a ratio-
nal formal power series into simple series. We present
first well–known results on decomposition of rational
series in a single variable and on reduced linear repre-
sentations of a rational series in noncommutative vari-
ables.

Fliess showed that decomposition of rational
formal power series can be done by joint block-
diagonalization of several matrices. This is a diffi-
cult problem which was approached by numerous re-
searchers such as Gantmacher, Jordan, Dunford and
Jacobi.

The decomposition into simple series has many
different applications in the dynamical system theory
(such as subsystem independence, integration or sta-
bility) and in the automata theory, among others. We
illustrate the application to the integration of dynami-
cal systems.

2 PRELIMINARIES

In this paper, we consider a rational seriess with co-
efficients in the fieldK = C. In some sections,K can
be taken as a semi–ring or as a commutative field.

2.1 Decomposition of Rational Series in
a Single Variable into Simple Series

A rational seriess in a single variable can be rewritten
as a rational fraction (Gantmacher, 1966).

Theorem 2.1. Let s= ∑∞
j=0sjX j+1 ∈ K[[X]] be a for-

mal power series with coefficients in a field K of char-
acteristic 0. Then there are2 polynomials P,Q ∈
K[X], such that

deg(Q) < deg(P),
Q
P

=
∞

∑
j=0

sj

X j+1 (1)

if and only if there is an integer p∈ N such that the
ranks of the Hankel matrices of orders k,∀k ≥ p, are
all equal to p.

In this case there exist polynomials P of degree p
and Q of degree at most p− 1. The minimal possi-
ble degree of P is p, and the pair(P,Q) is completely
determined by these degree conditions and the condi-
tion that P is monic. The polynomials P and Q are
then prime.

The proof of this theorem is based on the resolu-
tion of a system of linear equations obtained by iden-
tifying the coefficients ofXl . Let us remark that the
finiteness condition on the rank of the Hankel matrix
of s expresses the recognizability ofs, that is the ra-
tionality, for a single variable. This rational fraction
can be easily split up into simple fractions of the form
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si = ai
(1−αiX)ri whereai,αi ∈ C, r i ∈ N, si being ex-

panded as a rational simple series.
Remark. A rational series can be considered as a

weighted automaton (also known as automaton with
multiplicity). The previous decomposition ofs as
s= ∑i∈I si appears as a decomposition of the weighted
automaton As of dimensionr into ∪i∈I Asi , where Asi

are simple independent automata of dimensionr i such
that







dim(Asi ) = r i

∑
i∈I

r i = r (2)

2.2 Reduced Linear Representation of
Rational Series in Noncommutative
Variables

2.2.1 Series in Noncommutative Variables

These definitions and notations are from (Berstel and
Reutenauer, 1988; Reutenauer, 1980; Salomaa and
Soittola, 1978; Schützenberger, 1961).K is a semi–
ring.

Definition 2.1. (Formal power series in noncommu-
tative variables)

1. An alphabet X is a nonempty finite set. Elements
of X are letters. The free monoid X∗ generated by
the alphabet X is the set of finite words Xi1 · · ·Xi l ,
where Xi j ∈ X, including the empty word denoted
by 1. The set X∗ is a monoid with respect to con-
catenation.

2. A formal power series s in noncommutative vari-
ables is a function

s : X∗ → K (3)

The coefficient s(w) of the word w in the series s
is denoted by〈s|w〉.

3. The set of formal power series s over X with co-
efficients in K is denoted by K〈〈X〉〉. A structure
of semi–ring is defined on K〈〈X〉〉 by the sum and
the Cauchy product. Two external operations (left
and right products) from K to K〈〈X〉〉 are also de-
fined. The set of polynomials is denoted by K〈X〉.

2.2.2 Rational Series in Noncommutative
Variables

Definition 2.2. (Rational formal power series in non-
commutative variables)

1. The rational operations in K〈〈X〉〉 are the sum,
the product, two external products as well as the
Kleene star operation defined by T∗ = ∑n≥0Tn

for a proper series T (i.e. such that〈T|1〉 = 0).

2. A subset of K〈〈X〉〉 is rationally closed if it is
closed under the rational operations. The small-
est rationally–closed subset containing a subset
E ⊆ K〈〈X〉〉 is called the rational closure of E.

3. A series s is rational if s is an element of the ra-
tional closure of K〈X〉.

2.2.3 Recognizable Series in Noncommutative
Variables

We propose several equivalent definitions (Berstel
and Reutenauer, 1988; Fliess, 1977; Fliess, 1974;
Fliess, 1976; Jacob, 1980),K being a commutative
field.

Definition 2.3. (Recognizable formal power series in
noncommutative variables)

1. A series s∈ K〈〈X〉〉 is recognizable if there exists
an integer N≥ 1, a monoid morphism

µ : X∗ → KN∗N (4)

and2 matricesλ ∈ K1∗N andγ ∈ KN∗1 such that

∀w∈ X∗, 〈s|w〉 = λµ(w)γ. (5)

2. A series s∈ K〈〈X〉〉 is recognizable if there ex-
ists an integer N, the rank of its Hankel matrix
H(s) = (〈s|w1.w2〉)w1,w2∈X∗ . The first row of H(s)
indexed by the word1 describes s. The other rows
are the remainders of s by a word w. For instance,
the row LX1 represents the right remainder of s by
X1, denoted by s⊲X1.

3. A series s∈ K〈〈X〉〉 is recognizable if it is de-
scribed by a finite weighted automaton obtained
from its Hankel matrix remainders.

Definition 2.4. The triple(λ,µ,γ) is called a linear
representation of s. The representation with minimal
dimension is called the reduced linear representation.

2.2.4 Theorem of Schützenberger

For a series in several noncommutative variables, the
theorem of Schützenberger proves the equivalence be-
tween the notions of rationality and of recognizabil-
ity (Schützenberger, 1961; Berstel and Reutenauer,
1988).

Theorem 2.2. A formal series is recognizable if and
only if it is rational.

2.2.5 Finite Weighted Automaton Obtained
from a Rational Series

This method is developed in (Hespel, 1998). It is
based on the following theorem (Fliess, 1976; Jacob,
1980).
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Theorem 2.3. A formal series s∈ R〈〈X〉〉 is recog-
nizable if and only if its rank N is finite. Then it is
recognized by aR–matrix automaton M= (N,γ,λ,µ).
Two sets of words{gi}1≤i≤N and {d j}1≤ j≤N, whose
lengths are< N, can be determined so that the appli-
cationχ from X∗ to RN×N defined by

(χ(w))i, j = 〈s|gi .w.d j〉 (6)

satisfiesχ(w) = χ(1)µ(w) with χ(1) invertible.

1. The method consists in extracting from the Han-
kel matrixH(s) (whose rank isN) a systemB of
N row vectors(Lwi )i∈I (resp. N column vectors
(Cw j ) j∈J), indexed by some words of minimum
length, such that their determinant is nonzero and
such that every row (resp. every column) ofH(s)
can be expressed as a linear combination of el-
ements ofB. These relations allow us to define
∀Xk ∈ X the matricesµ(Xk) describing the action
of the letterXk on the row vectorLwi (resp. the
column vectorCw j ). The first row (resp. the first
column) of B definesλ. γ is the initial vector
(1 0· · ·0)T . The seriesscan thus be written

s= ∑
w∈X∗

〈s|w〉 = ∑
w∈X∗

λµ(w)γ (7)

2. We define, based on the basisB and matrices
µ(Xi), γ andλ, a finite weighted (left or right) au-
tomatonA = {X,Q, I ,A,τ} such that

• X is the alphabet,
• the state set isQ = {Lwi}i∈I representing{s⊲

wi}i∈I (resp.Q = {Cw j } j∈J representing{wj ⊳

s} j∈J),
• the first row (resp. the first column)I of B is the

initial state,
• every transition between states belonging toτ

is labeled by a letterXi ∈ X and labeled by the
coefficient appearing in the linear dependence
relation,

• A is the final state set; it is the set of rowsLw
(resp. the columnsCw) of B such that〈s|w〉 6= 0.

3 DECOMPOSITION OF
RATIONAL SERIES :
PRINCIPLE

3.1 Theoretical Results

In his thesis (Fliess, 1977), M.Fliess gives the idea of
a unique decomposition of the reduced matrix repre-
sentationµ associated to a rational seriess into the di-
rect sum of a finite number of simple representations.
His idea is based on the Krull–Schmidt theorem.

Let us recall some definitions and notations (Bers-
tel and Reutenauer, 1988; Fliess, 1977).

Let s∈ K〈〈X〉〉 be a rational series. Let us denote
by {N,λ,µ(X∗),γ}, or rather byµ, its reduced matrix
representation. The coefficients ofssatisfy

〈s|w〉 = λµ(w)γ, ∀w∈ X∗ (8)

For a decomposition ofµ

µ= ⊕k
i=1µi (9)

the associated decompositions of the vectorsλ andγ
are

λ = ⊕k
i=1λi , γ = ⊕k

i=1γi (10)

The seriess is then split up intos= ∑k
i=1si , where

every rational series satisfies

si = ∑
w∈X∗

(

λiµi(w)γi
)

w (11)

Among{si}1≤i≤k there can exist a subfamily with
indicesJ ⊆ {1, · · · ,k} such that∀ j ∈ J, the represen-
tationµj is nilpotent.

• A representation µi is nilpotent if and only if
∀w∈ X+, µj(w) is nilpotent.

Using Levitzki theorem (Kaplanski, 1969), the
semi–group of nilpotent matrices{⊕ j∈J µj(w), w ∈
X+} is simultaneously triangulable. Particularly, for
every wordw of sufficient length,⊕ j∈J µj(w) is the
zero matrix. Then the sum∑ j∈J sj of the series as-
sociated to this decomposition into nilpotent matrices
is a polynomial representing the polynomial part ofs.

Let us consider now the representations which
cannot be decomposed and which are not nilpotent.

• Such a representationµi is associated with a sim-
ple seriessi .

• Two seriess1 ands2 are called relatively prime if
and only if

∀α, β ∈C\{0},

rank(αs1 + βs2) = rank(s1)+ rank(s2)
(12)

We can express the following theorem (Fliess,
1977)

Theorem 3.1. K being a field, there is a unique way
for decomposing every rational series s∈K〈〈X〉〉 into
the sum of its polynomial part and of some simple ra-
tional relatively prime series.
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3.2 Approaches of the Simultaneous
Decomposition of Matrices{Ai}i∈I

We restrict the number of matrices to two in order
to simplify the explanations. The problem is the fol-
lowing : to provide a simultaneous decomposition of
A1 andA2 into a nilpotent partA1n,A2n and a block–
diagonalizable partA1d ,A2d , in some basis.

This problem is difficult. We present some ap-
proaches from Gantmacher, Jordan, Dunford and Ja-
cobi.

1. First Approach : Gantmacher

Gantmacher considers the linear pencilA1 + λA2
of the matricesA1,A2. By using elementary trans-
formations, ((Gantmacher, 1966), tome 1, Chap-
ter 2), the original regular/singular pencil can
be reduced to a quasi–diagonal canonical form
((Gantmacher, 1966), tome 2, Chapter 12). The
original pencilA1 + λA2 and the canonical pen-
cil A′

1 + λA′
2 are then equivalent but generally not

similar : there exist some regular matricesP,Q
such thatA′

1+λA′
2 = P(A1+λA2)Q but generally

Q 6= P−1.

2. Second Approach : Jordan, Dunford

These methods are suitable for a single matrix.
The Jordan’s method consists in computing 2 reg-
ular matricesP,Q and irreducible block diagonal
matricesA′

1,A
′
2 such that

A1 = P−1A′
1P, A2 = Q−1A′

2Q. (13)

So one can use the Jordan decompositionA′
1

andA′
2 of each matrix in order to initialize a si-

multaneous decomposition in block diagonal ma-
trices of suitable size. The knowledge of the
eigenspaces(E1i ) and(E2i ) of A1 andA2 allows
to set some bounds on the size of the blocks.

The Dunford decomposition into a diagonalizable
part and a nilpotent part can be provided from the
Jordan decomposition.

3. Approach by Jacobi Algorithms

When the sizes of the decomposition blocks are
known, the method consists in providing a joint
block–diagonalizer. This matrix is iteratively
computed as a product of Givens rotations. The
convergence of this algorithm is proven but not
necessary to obtain an optimal solution.

4 DECOMPOSITION OF
RATIONAL SERIES IN
PRACTICE

Theorem 4.1. A rational series can be decomposed
into a sum of simpler series using matrix joint block–
decomposition.

Proof. Let s be a rational seriess = ∑w∈X∗ 〈s|w〉 =
∑w∈X∗ λµ(w)γ. For a simultaneous change of basis
matrixP for µ(xi j )i j , we have

〈s|xi1 · · ·xi l 〉 = λµ(xi1) · · ·µ(xi l )γ =

= λPµ′(xi1)P
−1 · · ·Pµ′(xi l )P

−1γ

= (λP)µ′(xi1) · · ·µ
′(xi l )(P

−1γ) =

= λPµP(xi1) · · ·µP(xi l )γP

(14)

Thus, whenµ′(xi1), · · · ,µ
′(xi l ) are decomposed into

block–diagonal matrices, we obtain the decomposi-
tion of s into corresponding simpler series.

Example 1.A representation of the series is given
by the finite weighted automaton

1 2

x2

x2

x1 x1

The actions of the lettersx1 andx2 are given by the
matrices

µ(x1) =

(

1 0
0 1

)

and µ(x2) =

(

0 1
1 0

)

(15)

The initial vector is

γ =

(

1
0

)

(16)

and the covector is

λ =
(

0 1
)

. (17)

The eigenvalues ofµ(x2) areλ1 = 1 andλ2 = −1. In
the basisB of the eigenvectors, the matricesµ(x1) and
µ(x2) are

µ(x1)P =

(

1 0
0 1

)

and µ(x2)P =

(

1 0
0 −1

)

(18)

The initial vector is now

γP =

(

1/2
1/2

)

(19)

and the covector is

λP =
(

1 −1
)

. (20)
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Thus this series can be decomposed into seriess1 and
s2 : s= s1 +s2. The representation ofs1 is

µ1(x1) = (1), µ1(x2) = (1), γ1 = (1/2), λ1 = (1).
(21)

Fors2 we have

µ2(x1) = (1), µ2(x2) = (−1), γ1 = (1/2), λ1 = (−1).
(22)

Example 2. Now let us consider the series with
the following representation. The actions of the letters
x1 andx2 are given by the matrices

µ(x1) =

(

0 0
1 1

)

and µ(x2) =

(

1 1
0 0

)

(23)

The initial vector is

γ =

(

1
0

)

(24)

and the covector is

λ =
(

0 1
)

(25)

There is no decomposition ofs.
Example 3. Finally, let us consider the series

whose Hankel matrix is shown in Table 1.
The rank of this Hankel matrix is 6. We se-

lect the independent rows{L1,Lx1,Lx2,Lx1x2,Lx2x1x2,
Lx1x2x1x2} and the columns associated with the same
words. This determinant has a maximal rank= 6.

The matricesµ(x1) et µ(x2) describe the action of
the lettersx1 andx2.

µ(x1) =















0 0 0 0 0 0
1 0 0 0 0 0
0 1 1 0 1 0
0 0 0 0 0 0
0 0 0 1 0 1
0 0 0 0 0 0















(26)

and

µ(x2) =















0 0 0 0 0 0
0 0 0 0 0 0
1 0 1 1 0 1
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0















(27)

The initial vector is

γ =
(

1 0 0 0 0 0
)T

(28)

and the covector is

λ =
(

3 1 1 3 1 2
)

. (29)

By using the Jordan reduction onµ(x1) (with Maple)
we obtain

A = µ(x1)P =















0 1 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0















(30)

where the change of basis matrix is

P =















0 0 0 0 −1 0
0 0 0 −1 0 0
−1 −1 1 0 0 0
0 0 0 0 0 −1
1 0 0 1 0 0
0 1 0 0 1 1















(31)

By this change of basis,µ(x2) becomes

B = µ(x2)P =















0 0 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0















(32)

In this new basis

λP =
(

0 1 1 0 −1 −1
)

(33)
and

γP =
(

0 1 1 0 −1 0
)T

(34)
In this case, we are lucky and the matricesA andB
corresponding toµ(x1)P andµ(x2)P in the same basis
directly present 3 diagonal blocks :

• the upper left block of size 2 corresponding to the

seriess1 =
1

1−x1x2
,

• the middle block of size 1 corresponding to the

seriess2 =
1

1− (x1+x2)
,

• the lower right block of size 3 corresponding to
the polynomials3 = 1+ x1x2. This last block is
associated to a nilpotent representation.

5 AN APPLICATION TO
DYNAMICAL SYSTEMS

Definition 5.1. A bilinear dynamical system is a sys-
tem of ordinary differential equations of the form











q̇(t) =

(

M0 +
m

∑
i=1

ui(t)Mi

)

q(t)

s(t) =λ ·q(t),

(35)

where
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Table 1: Hankel matrix of example 3.

1 x1 x2 x2
1 x1x2 x2x1 x2

2 x3
1 x2

1x2 x1x2x1 x1x2
2 x2x2

1 x2x1x2 x2
2x1 x3

2 · · ·

1 3 1 1 1 3 1 1 1 1 1 1 1 1 1 1· · ·
x1 1 1 3 1 1 1 1 1 1 1 1 1 2 1 1· · ·
x2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1· · ·
x2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1· · ·
x1x2 3 1 1 1 2 1 1 1 1 1 1 1 1 1 1· · ·
x2x1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1· · ·
x2

2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1· · ·
x3

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1· · ·
x2

1x2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1· · ·
x1x2x1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1· · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

1. u(t) = (u1(t), . . . ,un(t)) ∈ Rn is the (partwise
continuous) input vector,

2. q(t) ∈ M is the current state, whereM is a real
differential manifold, usuallyRm,

3. s(t) ∈ R is the output function.

Definition 5.2. The generating series G of a bilinear
dynamical system (Fliess, 1981) is a formal power se-
ries with the alphabet X= {zo,z1, . . .zm}, where zi for
j > 0 correspond to the input ui(t) whereas z0 corre-
sponds to the drift. It is defined by

〈G|zj0 · · ·zjk〉 = λ ·M j0 · · ·M jk ·q(0). (36)

Theorem 5.1. The generating series of bilinear dy-
namical system are rational. Inversely, every rational
series is a generating series of a bilinear dynamical
system.

Proof. We takeµ such thatµ(zi) = Mi for i ≥ 0 and
we denoteγ = q(0). It follows directly that〈λ,µ,γ〉 is
a rational series.

Definition 5.3. The Chen series measures the input
contribution (Chen, 1971), and is independent of the
system. The coefficients of the Chen series are cal-
culated recursively by integration using the following
two relations :

• 〈Cu(t)|1〉 = 1,

• 〈Cu(t)|w〉 =

∫ t

0
〈Cu(τ)|v〉u j (τ)dτ for a word w=

zjv.

The causal functionaly(t) is then obtained locally
as the product of the generating series and the Chen
series :

y(t) = 〈G||Cu(t)〉 = ∑
w∈X ∗

〈G|w〉〈Cu(t)|w〉 (37)

This formula is known as thePeano–Baker formula,
as well as theFliess’ fundamental formula.

Now we apply the decomposition in the 3 above
examples to the corresponding dynamical systems
(identifyingz0 with x1 andz1 with x2).

Example 1.The corresponding dynamical system
is











y′1(t) = y1(t)+u(t)y2(t), y1(0) = 1,

y′2(t) = y2(t)+u(t)y1(t), y2(0) = 0,

s(t) = y2(t).

(38)

Maple gives its solution is some complicated form.
However using our decomposition into two dynamical
systems

y′1(t) = y1(t)(1+u(t)), y1(0) =
1
2
, s1(t) = y1(t)

(39)
and

y′2(t)= y2(t)(1−u(t)), y2(0)=
1
2
, s2(t)=−y2(t)

(40)
we can easily obtain that

s(t) = s1(t)+s2(t) =

=
1
2

(

exp
∫ t

0
(1+u(τ))dτ)−exp

∫ t

0
(1−u(τ))dτ

)

(41)
Example 2.The corresponding dynamical system

is










y′1(t) = u(t)(y1(t)+y2(t)), y1(0) = 1,

y′2(t) = y1(t)+y2(t), y2(0) = 0,

s(t) = y2(t).

(42)

We can compute its solution directly

s(t) =
∫ t

0
exp

(

∫ τ1

0
(1+u(τ2)dτ2

)

dτ1. (43)

s(t) cannot be decomposed as a sum of two simpler
expressions.
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Example 3.The corresponding dynamical system
cannot be solved directly. However, using the above
decomposition we obtains(t) = s1(t)+ s2(t)+ s3(t),
where

s1(t) =1+
∫ t

0

∫ τ1

0
u(τ2)dτ2dτ1+

∫ t

0

∫ τ1

0
u(τ2)

∫ τ2

0

∫ τ3

0
u(τ4)dτ4dτ3dτ2dτ1 + · · ·

(44)
corresponds to the first dynamical system and is the
solution of the system











y′1(t) = s2(t), y1(0) = 0,

y′2(t) = u(t)s1(t), y2(0) = 1,

s1(t) = y2(t).

(45)

whereas

s2(t) = exp

(

∫ t

0
(1+u(τ))dτ

)

(46)

corresponds to the second dynamical system and

s3(t) = 1+

∫ t

0

∫ τ1

0
u(τ2)dτ2dτ1 (47)

is the solution of the third system.

6 CONCLUSIONS

In this paper, we presented an approach to the prob-
lem of decomposition of rational series in noncom-
mutative variables into some simple series. The study
of the simultaneous block–diagonalization has yet to
be improved. We present an application of this de-
composition to dynamical systems.

There are numerous further applications of this
decomposition to dynamical systems and automata :

• The study of the stability of bilinear systems can
be approached by using its generating series (Ben-
makrouha and Hespel, 2007) : in some cases, the
output can be explicitly computed or bounded.
The decomposition of this series into simple se-
ries would simplify this study in the other cases.

• In a bilinear system, the dependence or the inde-
pendence of subsystems can be studied via the de-
composition of the generating series of the sys-
tem.

• A finite weighted automaton being another rep-
resentation of a rational series, the property of de-
composition of a rational series into simpler series
is transferred to the corresponding finite weighted
automaton. So we can define a simpler finite
weighted automaton.
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