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Abstract: Similarly to the partial fraction decomposition of rational fractions, we provide an approach to the decom-
position of rational series in noncommutative variables into simpler series. This decomposition consists in
splitting the representation of the rational series into simpler representations. Finally, the problem appears as
a joint block—diagonalization of several matrices. We present then an application of this decomposition to the
integration of dynamical systems.

1 INTRODUCTION 2.1 Decomposition of Rational Series in

a Single Variable into Simple Series
This article deals with the problem of splitting a ratio-
nal formal power series into Simp|e series. We presentA rational seriesin a Single variable can be rewritten
first well-known results on decomposition of rational as a rational fraction (Gantmacher, 1966).
series in a single variable and on reduced linear repre-Theorem 2.1. Let s= Z‘f’:onXHl € K[[X]] be a for-
sentations of a rational series in noncommutative vari- mal power series with coefficients in a field K of char-

ables. acteristic 0. Then there are2 polynomials PQ €
Fliess showed that decomposition of rational K[X], such that
formal power series can be done by joint block- Q 2 s
diagonalization of several matrices. This is a diffi- deg Q) < degP), P= xJ—J+1 (1)
J:

cult problem which was approached by numerous re-
searchers such as Gantmacher, Jordan, Dunford angk and only if there is an integer p N such that the
Jacobi. ranks of the Hankel matrices of ordersW > p, are

The decomposition into simple series has many all equal to p.
different applications in the dynamical system theory In this case there exist polynomials P of degree p
(such as subsystem independence, integration or staand Q of degree at most-p1. The minimal possi-
bility) and in the automata theory, among others. We ble degree of P is p, and the pdiP, Q) is completely
illustrate the application to the integration of dynami- determined by these degree conditions and the condi-

cal systems. tion that P is monic. The polynomials P and Q are
then prime.

The proof of this theorem is based on the resolu-

2 PRELIMINARIES tion of a system of linear equations obtained by iden-

tifying the coefficients ofX'. Let us remark that the

finiteness condition on the rank of the Hankel matrix
In this paper, we consider a rational sersasith co- of s expresses the recognizability fthat is the ra-
efficients in the fiellK = C. In some sectiond{ can tionality, for a single variable. This rational fraction
be taken as a semi-ring or as a commutative field.  can be easily split up into simple fractions of the form
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S = axyr Wherea,ai € C,ri €N, 5 being ex-
panded as a rational simple series.

Remark. A rational series can be considered as a
weighted automaton (also known as automaton with
multiplicity). The previous decomposition af as
S= 3¢ S appears as a decomposition of the weighted
automaton A of dimensiorr into Ui A, where A
are simple independent automata of dimensj@uch

that
dim(As) =

Zri: r
le

2.2 Reduced Linear Representation of
Rational Series in Noncommutative
Variables

fi

()

2.2.1 Series in Noncommutative Variables

These definitions and notations are from (Berstel and

Reutenauer, 1988; Reutenauer, 1980; Salomaa and

Soittola, 1978; Schiutzenberger, 196K).is a semi—
ring.

Definition 2.1. (Formal power series in noncommu-
tative variables)

1. An alphabet X is a nonempty finite set. Elements
of X are letters. The free monoid-generated by
the alphabet X is the set of finite wordg X X,
where X € X, including the empty word denoted
by 1. The set X is a monoid with respect to con-
catenation.

. A formal power series s in noncommutative vari-
ables is a function

s: X*—=K 3)

The coefficient(sv) of the word w in the series s
is denoted bys|w).

. The set of formal power series s over X with co-
efficients in K is denoted by (KX)). A structure
of semi-ring is defined on{X)) by the sum and
the Cauchy product. Two external operations (left
and right products) from K to K(X)) are also de-
fined. The set of polynomials is denoted bXK

2.2.2 Rational Series in Noncommutative
Variables

Definition 2.2. (Rational formal power series in non-
commutative variables)

1. The rational operations in KX)) are the sum,
the product, two external products as well as the
Kleene star operation defined by E 5. T"
for a proper series T (i.e. such théf|1) = 0).

SERIES

2. A subset of K(X)) is rationally closed if it is
closed under the rational operations. The small-
est rationally—closed subset containing a subset
E C K{(X)) is called the rational closure of E.

3. A series s is rational if s is an element of the ra-
tional closure of KX).

2.2.3 Recognizable Series in Noncommutative
Variables

We propose several equivalent definitions (Berstel
and Reutenauer, 1988; Fliess, 1977; Fliess, 1974,
Fliess, 1976; Jacob, 198, being a commutative
field.

Definition 2.3. (Recognizable formal power series in
noncommutative variables)

1. A series € K((X)) is recognizable if there exists
an integer N> 1, a monoid morphism

pX* — KNN (4)
and2 matricesh € KN andy € KN*! such that
Ywe X", (gw) =Ap(w)y. (5)

2. A series & K((X)) is recognizable if there ex-
ists an integer N, the rank of its Hankel matrix
H(s) = ({S|W1.W2) )w; wrex=. The first row of Hs)
indexed by the word describes s. The other rows
are the remainders of s by a word w. For instance,
the row Ly, represents the right remainder of s by
X1, denoted by s X;.
. A series s K((X)) is recognizable if it is de-
scribed by a finite weighted automaton obtained
from its Hankel matrix remainders.

Definition 2.4. The triple (A,,y) is called a linear
representation of s. The representation with minimal
dimension is called the reduced linear representation.

2.2.4 Theorem of Schiitzenberger

For a series in several noncommutative variables, the
theorem of Schiutzenberger proves the equivalence be-
tween the notions of rationality and of recognizabil-
ity (Schitzenberger, 1961; Berstel and Reutenauer,
1988).

Theorem 2.2. A formal series is recognizable if and
only if it is rational.

2.2.5 Finite Weighted Automaton Obtained
from a Rational Series

This method is developed in (Hespel, 1998). It is

based on the following theorem (Fliess, 1976; Jacob,
1980).
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Theorem 2.3. A formal series € R((X)) is recog- Let us recall some definitions and notations (Bers-
nizable if and only if its rank N is finite. Then itis tel and Reutenauer, 1988; Fliess, 1977).
recognized by &—matrix automaton M= (N, y,A, ). Letse K((X)) be a rational series. Let us denote

Two sets of word$gi }1<i<n and {dj}1<j<n, Whose by {N, A, u(X*),y}, or rather by, its reduced matrix
lengths are< N, can be determined so that the appli- representation. The coefficientssxdatisfy
cationy from X* to RN*N defined by

(X(W))i,j = <S|gi-WdJ> (6) (gw) = Ap(w)y, Ywe X* (8)
satisfiesq(w) = x(1)pu(w) with x(1) invertible. N
1. The method consists in extracting from the Han-  For @ decomposition qf
kel matrixH(s) (whose rank iN) a systermB of
N row vectors(Ly )ici (resp. N column vectors H= @F:M 9)

(Cw;)jed), indexed by some words of minimum _ N
length, such that their determinant is nonzero and the associated decompositions of the vechoesidy

such that every row (resp. every column)-ofs) are

can be expressed as a linear combination of el- A=@K A, y= & v (10)
ements ofB. These relations allow us to define

VX € X the matricegi(X) describing the action The seriesis then split up inte= YK ; 5, where

of the letterX, on the row vectot, (resp. the every rational series satisfies

column vectoiCy; ). The first row (resp. the first

column) of B definesA. vy is the initial vector

(10---0)T. The series can thus be written i EZ( Nk W)y )w (11)
W *

S= Z( (gw) = Z( Ap(w)y @) Among{s }1<i<k there can exist a subfamily with
wex* weX* indicesJ C {1,---,k} such thatvj € J, the represen-
2. We define, based on the basisand matrices tationy; is nilpotent.
H(X), yandA, a finite weighted (left or right) au-
tomatonA = {X,Q,1,A 1} such that e A representation jiiis nilpotentif and only if
« Xis the alphabet, vYw e X*, pj(w) is nilpotent.

o the state set iQ = {Lw }icI representings» Using Levitzki theorem (Kaplanski, 1969), the
Witiel (resp.Q = {Cy; } jes representingw; < semi-group of nilpotent matricesbjey 1j(W), w €
S}jea), X*} is simultaneously triangulable. Particularly, for

o thefirst row (resp. the first columhpf B is the every wordw of sufficient length®je; j(w) is the
initial state, zero matrix. Then the suny ;.; s; of the series as-

e every transition between states belongingto  sociated to this decomposition into nilpotent matrices
is labeled by a letteX; € X and labeled by the is a polynomial representing the polynomial parsof
coefficient appearing in the linear dependence  Let us consider now the representations which

relation, cannot be decomposed and which are not nilpotent.
e Ais the final state set; it is the set of rowg L. . . )
(resp. the columnGy) of B such thatsiw) # 0. e Such a representatiqnis associated with a sim-
ple series.
e Two seriess) ands, are called relatively prime if
3 DECOMPOSITION OF and only if
RATIONAL SERIES : Vo, BeC\(0), )
PRINCIPLE rank(as; + Bsz) = rank(sy) + rank(sp)
3.1 Theoretical Results We can express the following theorem (Fliess,

: - . : . 1977)
In his thesis (Fliess, 1977), M.Fliess gives the idea of

a unique decomposition of the reduced matrix repre- Theorem 3.1. K being a field, there is a unique way

sentatiorp associated to a rational serigisito the di- ~ for decomposing every rational series & ((X)) into
rect sum of a finite number of simple representations. the sum of its polynomial part and of some simple ra-
His idea is based on the Krull-Schmidt theorem. tional relatively prime series.
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3.2 Approaches of the Simultaneous 4 DECOMPOSITION OF
Decomposition of Matrices{A }ic| RATIONAL SERIES IN
PRACTICE

We restrict the number of matrices to two in order
to simplify the explanations. The problem is the fol-
lowing : to provide a simultaneous decomposition of
A1 andA; into a nilpotent par\;,, Az, and a block—
diagonalizable pary,, A,, in some basis. Proof. Let s be a rational series= S, (W) =

This problem is difficult. We present some ap- Ywex-AH(W)y. For a simultaneous change of basis
proaches from Gantmacher, Jordan, Dunford and Ja-matrix P for u(x;; )i;, we have

Theorem 4.1. A rational series can be decomposed
into a sum of simpler series using matrix joint block—
decomposition.

cobi.
(SXig -+ ) = ARy ) -+~ M%)y =
1. First Approach : Gantmacher = APU(x,)P~L- - PU(x, )Pty (14)
Gantmacher considers the linear pergib- AA, = (AP) (%) - (%, )(Py) =
of the matriceg\;, A;. By using elementary trans- = Apkp(Xiy ) - -~ Mp(Xi, )YP

formations, ((Gantmacher, 1966), tome 1, Chap-

ter 2), the original regular/singular pencil can Thus, wheni((x,),---,l(x;) are decomposed into
be reduced to a quasi_diagona| canonical form bIOCk—diagonaI matrices, we obtain the decomPOSi'
((Gantmacher, 1966), tome 2, Chapter 12) The tion of sinto Corresponding Simpler series. O
original pencilA; + AA; and the canonical pen-
cil A1+ AA; are then equivalent but generally not
similar : there exist some regular matrice€Q
such that\] + AA, = P(A1+AA2)Q but generally X1 X1

Q#P L
2. Second Approach : Jordan, Dunford

Example 1. A representation of the series is given
by the finite weighted automaton

X2

These methods are suitable for a single matrix. _ X2 .
The Jordan’s method consists in computing 2 reg- The actions of the letters; andx; are given by the
ular matricesP,Q and irreducible block diagonal —matrices

matricesA,, A, such that 10 0 1
v u(xl):(o 1) and H(XZ):(]_ O) (15)

AL=P IR Ay =QIALQ. (13) The initial vector is

1
So one can use the Jordan decomposithgn Y= <O) (16)
andA; of each matrix in order to initialize a si-  and the covector is
multaneous decomposition in block diagonal ma-
trices of suitable size. The knowledge of the A=(0 1). (17)
eigenspaceéEs, ) and (Ep) of A; andA; allows

to set some bounds on the size of the blocks. The eigenvalues gi(x;) areA, = 1 andiz = —1. In

the basid of the eigenvectors, the matricgsg ) and
The Dunford decomposition into a diagonalizable HU(xp) are

part and a nilpotent part can be provided from the

Jordan decomposition. u(xa)p = <é (D and p(x)p — (é 01> (18)
3. Approach by Jacobi Algorithms The initial vector is now
When the sizes of the decomposition blocks are
known, the method consists in providing a joint Yo = 1/2 (19)
block—diagonalizer. This matrix is iteratively 1/2
computed as a product of Givens rotations. The gnd the covector is
convergence of this algorithm is proven but not
necessary to obtain an optimal solution. Ap = (1 _1) ) (20)
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Thus this series can be decomposed into sefiasd
$ . S=5 + . The representation af is

Ha(x1) = (1), pu(x2) = (1), Y1 = (1/2), A = %1)

For s, we have
Ho(X1) = (1), Ho(X2) = (—1), i = (1/2), A1 = (-1).
(22)

Example 2. Now let us consider the series with
the following representation. The actions of the letters
X1 andxp are given by the matrices

o) = (5 9) and o= (5 5) @)

The initial vector is

(24)
and the covector is

A=(0 1)

There is no decomposition of

Example 3. Finally, let us consider the series
whose Hankel matrix is shown in Table 1.

The rank of this Hankel matrix is 6. We se-
lect the independent rowd1, Ly, , Lx,, Lx;x, » Lxoxgxo s
Lx,xx,x } @and the columns associated with the same
words. This determinant has a maximal ranks.

The matricegu(x1) etp(x2) describe the action of
the lettersq andx,.

(25)

0O 0 0O OO
1 00 00O
01 1010
IJ-(Xl): 0 00O OO (26)
0O 0 0O1 0 1
0 00 0O
and
0O 0 0O OO
0O 00O0O0OTO
1 01 1 0 1
“(XZ): 01 00O0O (27)
0O 0 OO OO
0 00 01
The initial vector is
y=(1L 0 0 0 0 Q' (28)
and the covector is
A=(3 1 1 3 1 2. (29)

By using the Jordan reduction quix;) (with Maple)
we obtain

218

01 000
0 00 O0OO O
0 01 00O
A:u(xl>P: 0 00O 10 (30)
0 00 O0OTO O
0 00 00O
where the change of basis matrix is
0O 0 0O 0 -1 o0
0O 0 0 -1 0 O
-1 -1 1 0 0 O
P=lo 0o o o o -1| ©Y
1 0 0 1 o0 O
0 12 0 0 1 1
By this change of basigi(x2) becomes
0 00 00O
1 00 0O0O
@ ORJIF 007 0
B:H(Xz)p: 0 00O OO (32)
0 00 0O0OTO O
0 0010
In this new basis
Ap=(0 1 1 0 -1 -1) (33)
and
yy=(0 110 -1 0 (34)

In this case, we are lucky and the matrideand B
corresponding tQ(x1)p andp(x2)p in the same basis
directly present 3 diagonal blocks :

o the upper left block of size 2 corresponding to the

seriess; =
1fxlxz
e the middle block of size 1 corresponding to the
. 1
seriess) = ————,
2 1- (X1+X%2)

o the lower right block of size 3 corresponding to
the polynomials; = 1+ x1X2. This last block is
associated to a nilpotent representation.

5 AN APPLICATION TO
DYNAMICAL SYSTEMS

Definition 5.1. A bilinear dynamical system is a sys-
tem of ordinary differential equations of the form

0=yt

=A-q(t),

(35)
s(t)

where
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Table 1: Hankel matrix of example 3.

| L [xa[ x| [ X [xx [ X[ | XpXe | xuxox | X004 | XXt | Xexuxe | X% [ G- |

1 3|11]1]1 3 1 1)1 1 1 1 1 1 1 1.
X1 1(1(3]|1 1 1 1)1 1 1 1 1 2 1 1.
X2 1(1(1|1 1 1 1|1 1 1 1 1 1 1 1.
X% 11111 1 1 1)1 1 1 1 1 1 1 1.
X1X2 3|11 1]1 2 1 1|1 1 1 1 1 1 1 1.
XoX1 17111 1 1 1)1 1 1 1 1 1 1 1.
x% 1 (111 1 1 1|1 1 1 1 1 1 1 1.
xf 17111 1 1 1)1 1 1 1 1 1 1 1.
xfxz 17111 1 1 1)1 1 1 1 1 1 1 1...
xxeXe || L 1|21 1 1 1)1 1 1 1 1 2 1 1.
1. u(t) = (ug(t),...,un(t)) € R" is the (partwise Now we apply the decomposition in the 3 above
continuous) input vector, examples to the corresponding dynamical systems
2. q(t) € a7 is the current state, wherer is areal  (identifyingz with x; andz; with xp).
differential manifold, usualliR™, _ Example 1. The corresponding dynamical system
3. qt) € R is the output function. IS
Definition 5.2. The generating series G of a bilinear Va(t) = ya(t) +u(tyz(t), y1(0) =1,
dynamical system (Fliess, 1981) is a formal power se- Yo(t) = ya(t) +u(t)ys(t), y2(0) =0, (38)
ries with the alphabet %- {2, 21, ... zn}, where zfor s(t) = ya(t).
j > 0 correspond to the input;(t) whereas g corre-
sponds to the drift. It is defined by Maple gives its solution is some complicated form.

However using our decomposition into two dynamical
(Glzjo - -Zjy) =A-Mjy---M;, -q(0).  (36)  systems

Theorem 5.1. The generating series of bilinear dy-

namical system are rational. Inversely, every rational nit) =nO@+ut), 9100 = X su(t) =%(t)
series is a generating series of a bilinear dynamical (39)
system. and

Proof. We takep such thatu(z) = M; fori >0 and  y,(t) =y,(t)(1—u(t)), V,(0)= %, S(t) = —¥s(t)
we denotey = q(0). It follows directly that(A, b, y) is (40)
a rational series. [ we can easily obtain that

Definition 5.3. The Chen series measures the input  g(t) =5 (t) + s(t) =

contribution (Chen, 1971), and is independent of the i i

system. The coefficients of the Chen series are cal- == (exp/(1+ u(t))dr) —exp/ (1- u(r))dr)
culated recursively by integration using the following 2 0 0 (41)

two relations : . .
Example 2. The corresponding dynamical system

e (cu(t)]1) =1, is
t
o (Cut)|W) = /o (cu(T)V)uj (T)dT for a word w= yi(t) =u(t)(ya(t) +y2(t)),  y1(0)=1,
Zv. ' 3/2( ) =ya(t) +ya(t), y2(0) =0, (42)
The causal functional(t) is then obtained locally s(t) = yo(t).
as the product of the generating series and the Chen
series We can compute its solution directly
y(t) = (Gl|cu(t)) = Z*<G|W><Cu(t>|w> (37) s(t) = /0 t exp< /0 Tl(1+ u(rz)drz> dri.  (43)

This formula is known as thPeano—Baker formula  s(t) cannot be decomposed as a sum of two simpler
as well as thé&liess’ fundamental formula expressions.

219



ICINCO 2009 - 6th International Conference on Informatics in Control, Automation and Robotics

Example 3. The corresponding dynamical system
cannot be solved directly. However, using the above
decomposition we obtais(t) = s1(t) + s(t) + s3(t),
where

t 71
sl(t):1+/0/0 u(tz)dtodti+

t ,r71 T2 ,13
// u(rz)/ / U(Ta)dtadtadtodty + -+
0 Jo o Jo

(44)

corresponds to the first dynamical system and is the

solution of the system

Yi(t) = (1), y1(0) =0,
Yo(t) = u(t)sa(t), y2(0) =1, (45)
si(t) = ya(t).
whereas
$(t) = exp< /Ot(lJr u(r))dr) (46)

corresponds to the second dynamical system and

sa(t) = 1+/Ot /OTlu(Tz)drszl (47)

is the solution of the third system.

6 CONCLUSIONS

In this paper, we presented an approach to the prob-

lem of decomposition of rational series in noncom-

mutative variables into some simple series. The study

of the simultaneous block—diagonalization has yet to
be improved. We present an application of this de-
composition to dynamical systems.

There are numerous further applications of this
decomposition to dynamical systems and automata :

e The study of the stability of bilinear systems can

be approached by using its generating series (Ben-
makrouha and Hespel, 2007) : in some cases, the

output can be explicitly computed or bounded.
The decomposition of this series into simple se-
ries would simplify this study in the other cases.

In a bilinear system, the dependence or the inde-
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A finite weighted automaton being another rep-
resentation of a rational series, the property of de-
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is transferred to the corresponding finite weighted
automaton. So we can define a simpler finite
weighted automaton.
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