NOISE POWER ESTIMATION USING RAPID ADAPTATION AND RECURSIVE SMOOTHING PRINCIPLES

François Xavier Nsabimana, Udo Zölzer
Department of Signal Processing and Communications, Helmut Schmidt University
Holstenhofweg 85, 22043 Hamburg, Germany

Vignesh Subbaraman
Information and Communication Systems, Technische Universität Hamburg-Harburg
Schwarzenbergstr. 95, 21073 Hamburg, Germany

Keywords: Noise estimation, Recursive averaging, Speech presence probability, Smoothing, Bias correction and normalized mean square error.

Abstract: In this paper we present an algorithm for the robust estimation of the noise power from the speech signals contaminated by high non stationary noise sources for speech enhancement. The noise power is first estimated by minimum statistics principles with a very short window. From the resulting noise power excess, the overestimation is accounted for using recursive averaging techniques. The performance of the proposed technique is finally compared with the different existing approaches using various grading tests.

1 INTRODUCTION

Speech Enhancement is a technique to improve the quality as well as the intelligibility of the corrupted speech. The improvement of quality and intelligibility is very important because it provides accurate information exchange and contributes to reduce listener fatigue in highly disturbed environments. In order to enhance a corrupted speech, two activities need to be done first. These are noise estimation and noise reduction techniques. In this paper an algorithm for the noise estimation technique is proposed. Basically the noise estimators can be classified into two types (Loizou, 2007). These are minima tracking and recursive averaging algorithms.

In minima tracking algorithms, the spectral minimum is continuously updated or tracks within a finite window. Optimal Smoothing and Minimum statistics algorithm is an example for the minima tracking type (Martin, 2001). In recursive averaging algorithms the noise power in the individual bands is updated recursively, whenever the probability of speech presence is very low. Minima controlled and recursive averaging for robust speech enhancement (Cohen and Berdugo, 2002) and Rapid adaptation for highly non stationary environments (Rangachari and Loizou, 2006) are examples for the recursive averaging type.

There are also several noise estimation techniques proposed in literature (Martin, 1994; Cohen, 2003; Rangachari et al., 2004; Erkelens and Heusdens, 2008a; Erkelens and Heusdens, 2008b). Continuous Spectral Minima Tracking in Subbands (SMTS) proposed by Doblinger (Doblinger, 1995) is one of the classical noise estimation technique. It is very simple but its performance suffers from pronounced overestimation. Optimal Smoothing and Minimum Statistics (OSMS) proposed by Martin (Martin, 2001) is one of the most commonly used algorithms for noise estimation in speech enhancement techniques. The noise power estimated by this approach is very good but the algorithm fails to track quickly the rapid increase of the noise power in the corrupted speech. Rapid Adaptation for Highly Non-Stationary Environments (RAHNSE) as proposed by Loizou (Rangachari and Loizou, 2006) tracks quickly the sudden changes in the noise power. But this algorithm still suffers from some overestimation, as it partially relies on the SMTS approach.

The motivation for this new algorithm is to have a noise estimator which provides a minimum overestimation and a small adaptation time for increasing noise power. In this work a method to update the noise power recursively with minimum speech leakage is proposed. The adaptation time of this approach is comparable to the one of RAHNSE (0.5 sec). The objective grading tests and the subjective spectrogram
comparison reveal that the proposed algorithm performs better than the simulated OSMS and RAHNSE approaches.

The rest of the paper is organised as follows. Section 2 presents some preliminary definitions. Section 3 discusses the proposed noise estimation algorithm. Section 4 compares the proposed technique with the two existing approaches and Section 5 concludes.

2 PRELIMINARY DEFINITIONS

Let consider the spectrum of a corrupted speech signal to be defined as

\[X(k,m) = S(k,m) + N(k,m), \]

where \(S(k,m) \) and \(N(k,m) \) are the short-time DFT coefficients at frequency bin \(k \) and frame number \(m \) from the clean speech and additive noise respectively. \(S(k,m) \) and \(N(k,m) \) are assumed to be statistically independent and zero mean. The adjacent frames of the corrupted speech \(x(n) \) overlap by 75% in time domain.

The power level of the clean speech \(R_s(k,m) \), of the additive true noise \(R_n(k,m) \) and of the corrupted speech \(R_x(k,m) \) are obtained by squaring their respective magnitude spectrum. In this paper an algorithm to estimate \(R_n(k,m) \) from \(R_x(k,m) \) is proposed. The estimated noise power is represented by \(R_\tilde{n}(k,m) \).

3 PROPOSED RARS APPROACH

Figure 1 presents the flow diagram of the Rapid Adaptation and Recursive Smoothing (RARS) which is the proposed noise estimation technique in this paper.

In the RARS approach (s. Figure 1), first the noise power is estimated using Optimal Smoothing and Minimum Statistics (OSMS) approach (Martin, 2001) with a very short window. This yields an overestimation of the estimated noise power. Based on the smoothed posteriori SNR from the OSMS noise power a VAD index \(I \) is derived to compute the speech presence probability \(P \) and a smoothing parameter \(\eta \). This smoothing parameter is finally applied to the unbiased estimated noise power \(R_u \) from OSMS approach to account for the overestimation. In order to improve the adaptation time for the estimated noise power, a condition \(BC \) is used to track quickly the fast changes in the noise power. The proposed algorithm is not an optimal solution, yet practically it gives very good results. Optimization of the proposed approach is possible. In the followings the main steps of the RARS approach (s. Figure 1) are individual described.

3.1 Rough Estimate with OSMS

In the first step of the RARS approach, the noise power is estimated using OSMS approach with very short window length (0.5 - 0.6 sec). This causes an overestimate of the noise power since the window length is very small. The estimated noise power with OSMS using small window and the final estimate with RARS can be seen in Figure 2-3, where green curve depicts the power spectrum of the corrupted speech, while red and black curve represent respectively the estimated noise power with OSMS and RARS approach. From Figure 2 to Figure 3 the aforementioned overestimation is clearly observed.

Figure 2: Rough estimate with OSMS vs. final estimate with RARS. Results for frequency bin \(k=5 \).
3.2 Speech Presence Probability

In order to calculate the speech presence probability the idea proposed by Cohen (Cohen and Berdugo, 2002) is used. Firstly the a posteriori SNR is calculated using the OSMS estimated noise power as

$$\tilde{\zeta}(k,m) = \frac{R_x(k,m)}{R_{\text{OSMS}}(k,m)}.$$

(2)

Since $\tilde{\zeta}(k,m)$ is computed using overestimated noise power, it cannot be used directly. To overcome this effect the a posteriori SNR is smoothed over the neighboring frequency bins to take into account the strong correlation of speech presence across the frequency bins in the same frame (Cohen and Berdugo, 2002). Smoothened SNR is given by

$$\tilde{\zeta}(k,m) = \sum_{i=j}^{i=j} w(i) \cdot \tilde{\zeta}(k-i,m)$$

(3)

where,

$$\sum_{i=j}^{i=j} w(i) = 1$$

(4)

and $2j+1$ is a window length for the frequency smoothing. $\tilde{\zeta}(k,m)$ is then compared with a threshold Δ to derive a VAD index $I(k,m)$ as follows,

$$I(k,m) = \begin{cases} 1, & \text{if } \tilde{\zeta}(k,m) > \Delta \\ 0, & \text{otherwise} \end{cases}$$

(5)

where Δ is an empirically determined threshold and $I(k,m) = 1$ represents speech present bin. $\Delta = 4.7$ was proposed by Cohen (Cohen and Berdugo, 2002). Based on the VAD index the speech presence probability is then given by

$$p(k,m) = \gamma \cdot p(k,m-1) + (1-\gamma) \cdot I(k,m),$$

(6)

where γ is a constant determined empirically. Values of $\gamma \leq 0.2$ are suggested for a better estimate (Cohen and Berdugo, 2002). $p(k,m)$ is the probability for the bin to be speech. If $I(k,m) = 1$, then value of $p(k,m)$ increases, else if $I(k,m) = 0$, the value of $p(k,m)$ decreases. It should be pointed out that Eq. (3) implicitly takes correlation of speech presence in adjacent bins into consideration. Note also that the threshold Δ in Eq. (5) plays an important role in speech detection. If the threshold Δ is low, speech presence can be detected with higher confidence thus avoiding overestimation (Cohen and Berdugo, 2002).

3.3 Smoothing Parameter

With the help of the above derived speech presence probability a time frequency dependent smoothing parameter

$$\eta(k,m) = \beta + (1-\beta) \cdot p(k,m)$$

(7)

is updated, where β is a constant. Values of $\beta \geq 0.85$ yield a better estimate of η as proposed in (Cohen and Berdugo, 2002). If $p(k,m)$ is high, then value of $\eta(k,m)$ will be high. Else if $p(k,m)$ is low, then value of $\eta(k,m)$ will be low. $\eta(k,m)$ takes value in the range $\beta \leq \eta(k,m) \leq 1$. It is expected that the smoothing parameter will be close to 1 during speech presence regions.

3.4 Tracking Fast Changes

An algorithm to track the fast changes in noise power is proposed here. The adaptation time for the proposed algorithm is around 0.5 sec, thus close to that of Rapid Adaption for Highly Non-Stationary Environments (RAHNSE approach) (Rangachari and Loizou, 2006). A simple and effective idea as proposed in (Erkelens and Heusdens, 2008a) is applied here, which ensures that the proposed approach can track quickly changes in the noise power. First a reference noise power estimate using OSMS with a short window (0.5 sec) is computed. The corrupted speech power is smoothed with a low value smoothing constant. The idea here is to push the noise estimate into the right direction when there is an increase in noise power. The smoothed corrupted speech power is given by

$$P(k,m) = \alpha \cdot P(k-1,m) + (1-\alpha) \cdot R_x(k,m),$$

(8)

where values of $\alpha \leq 0.2$ are suggested for better smoothing. From the smoothed power spectrum, P_{min} is found for a window length of at least 0.5 sec. Because of small smoothing constant, smoothed spectrum power almost follows the corrupted speech

Figure 3: Rough estimate with OSMS vs. final estimate with RARS. Results for frequency bin $k=8$.

Estimation at $k=0$

- Corrupted speech power
- Rough estimation with OSMS
- Final estimation with RARS
power. To account for biased estimate the following condition

\[\text{if } BP_{\text{min}}(k,m) > ROSMS(k,m), \text{ then } \]

\[R_u(k,m) = BP_{\text{min}}(k,m) \quad (9) \]

is tested, where \(B > 1 \) is a bias correction factor. For the RARS approach \(B = 1.5 \) yields good bias correction. If the above condition fails then \(R_u(k,m) = ROSMS(k,m) \). In case of increase in noise power \(BP_{\text{min}}(k,m) \) will be greater than \(ROSMS(k,m) \). The value for \(ROSMS(k,m) \) is thus replaced by \(BP_{\text{min}}(k,m) \). For this case the probability is updated to \(p(k,m) = 0 \) and the smoothing parameter for noise update is then recomputed (s. Eq. (7)). Observations (Erkelens and Heusdens, 2008a) reveal that the value of \(B \) and window length is not critical, but a window length of at least 0.5 sec is necessary for good performances.

3.5 Noise Power Update

Finally with the frequency dependent smoothing factor \(\eta(k,m) \) from Eq. (7), the spectral noise power from RARS approach is updated using

\[R(k,m) = \eta \cdot R_u(k,m - 1) + (1 - \eta) \cdot R_u(k,m) . \quad (10) \]

The key idea of this algorithm is that instead of using the corrupted speech power \(R_s(k,m) \) to updated the noise estimate (Rangachari and Loizou, 2006), the unbiased estimate \(R_u(k,m) \) of noise power from OSMS algorithm is used. Since \(R_u(k,m) \) has minimum speech power as compared to corrupted speech power \(R_s(k,m) \), the speech power leakage into noise power in this approach is minimized. Whenever the speech presence probability is low, the estimated noise power will follow \(R_u(k,m) \). But when the speech presence probability is high, estimated noise power will follow the noise power in the previous frame. Thus, as shown in Figure 3, the proposed algorithm avoids the overestimated values observed in the rough OSMS estimation from Figure 2.

4 SIMULATION RESULTS

Figure 4 presents the comparison between OSMS, RAHNSE and RARS approach in terms of rapid adaption and true minimum estimate. This simulation was run for a mixed signal where the first 500 frames consist of only clean speech and the last 500 frames consist of the same clean speech but corrupted with car noise at 5 dB SNR. The estimation for both parts of the mixed signal reveals the best minimum estimate for the RARS approach followed by OSMS. Best rapid adaption is observed by RAHNSE followed by RARS approach. The adaptation time for the proposed approach is also around 0.5 to 0.6 sec as in RAHNSE approach. A comparison at only one specified frequency bin may not be sufficient to state about the performances of the three approaches. Figure 5 thus presents a subjective study of the estimated noise in terms of spectrograms. Obviously the result with the RARS approach (s. Figure 5 lower plot right) is close to the true noise (s. Figure 5 upper plot left). Some pronounced overestimations are observed in the RAHNSE approach (s. Figure 5 lower plot left) especially for high frequency bands. The OSMS result in Figure 5 upper plot right can be found close to the RARS result than to the RAHNSE one.
4.1 Normalized Mean Square Error

The results obtained for the estimated noise with three compared approaches have been graded also in terms of Normalized Mean Square Error (NMSE) given by

\[\text{NMSE} = \frac{1}{M} \sum_{m=0}^{M-1} \frac{1}{L-1} \sum_{k=0}^{L-1} [R_n(k,m) - \hat{R}_n(k,m)]^2 }{ \sum_{k=0}^{L-1} [R_n(k,m)]^2 }, \quad (11) \]

where \(R_n(k,m) \) is the true noise power and \(\hat{R}_n(k,m) \) represents the estimated noise power. Ideally the value for \(\text{NMSE} \) lies in the interval \([0 \ 1]\), where 0 represents true estimation and 1 represents very poor estimation. But practically the \(\text{NMSE} \) value can be greater than 1 due to overestimation. Whenever there is an overestimation in the algorithm, the value for \(\hat{R}_n(k,m) \) can be twice greater than \(R_n(k,m) \) therefore the ratio in Eq. (11) can be greater than 1. All the signals used for the simulation in this paper are from the Noisex-92 database taken from Sharon Gannot and Peter Vary web pages. Table 1 to 3 show NMSE results for three kinds of corrupting noise. These results reveal that the RARS approach is graded best.

Table 1: NMSE for the estimated noise power from a speech signal corrupted by car noise at 5 dB SNR.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>NMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSMS</td>
<td>0.740</td>
</tr>
<tr>
<td>RAHNSE</td>
<td>0.692</td>
</tr>
<tr>
<td>RARS</td>
<td>0.601</td>
</tr>
</tbody>
</table>

Table 2: NMSE for the estimated noise power from a speech signal corrupted by room noise at 9 dB SNR.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>NMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSMS</td>
<td>0.211</td>
</tr>
<tr>
<td>RAHNSE</td>
<td>0.391</td>
</tr>
<tr>
<td>RARS</td>
<td>0.061</td>
</tr>
</tbody>
</table>

Table 3: NMSE for the estimated noise power from a speech signal corrupted by white noise at 9 dB SNR.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>NMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSMS</td>
<td>0.023</td>
</tr>
<tr>
<td>RAHNSE</td>
<td>0.011</td>
</tr>
<tr>
<td>RARS</td>
<td>0.007</td>
</tr>
</tbody>
</table>

While Table 1 and 3 reveal that the RAHNSE approach is graded second for these two kinds of corrupting noise, Table 1 clearly shows that OSMS approach remains close to RARS approach for that corrupting noise. In general the NMSE values remain close for these three approaches.

4.2 Subjective Comparison using Plots

The results of the three approaches have been also compared subjectively in terms of plots. The following figures presents the results of the comparison between true noise and estimated noise for speech signal corrupted by car noise at 5dB, room noise at 9 dB and white noise at 9 dB. In the following figures, the green, red, blue and black curve represent respectively the true noise power, the estimated noise power from the OSMS, RAHNSE and RARS approaches. For the sake of completeness, the comparison is presented for the simulation of the estimated noise power at frequency index \(k = 5 \).

Figure 6 presents the plot of true noise power and the estimated noise power from a speech signal corrupted by car noise at 5dB. The purpose of the estimator is to find the mean value of the green curve from the corrupted speech power. It can be noticed that the red curve is below the mean value of the green curve. The blue curve (noise power estimated by RAHNSE) is instead pretty high. It clearly reveals some overestimation. It is obvious that the black curve (estimated noise power by the RARS approach) clearly follows here the mean of the true noise power (see green curve).

Figure 7 depicts the plot of true noise power against the estimated noise power from a speech signal corrupted by room noise at 9dB at 5dB. The green curve still represents here the true noise power. The black curve (noise power from RARS) reveals some underestimation of the noise power in the region of frame number 75 to 150. Outside this region it follows the mean of the true noise power. Blue (noise power from RAHNSE) and red curves (noise power from OSMS) are pretty close and they follow the
mean value pretty well in this case.

Figure 7: Estimated noise power for speech signal corrupted by room noise at 9dB. Results for frequency index k=5.

Figure 8 shows the plot of true noise power and the estimated noise power from a speech signal corrupted by white noise at 9dB. The green curve still depicts here the true noise power. The red curve (noise power from OSMS) represents the underestimated power. Blue (noise power from RAHNSE) and Black curves (noise power from RARS) are pretty close. But an in-depth view states that the black curve really follows the mean of green curve.

Figure 8: Estimated noise power for speech signal corrupted by white noise at 9dB. Results for frequency index k=5.

5 CONCLUSIONS

A robust noise estimation technique based on minimum statistics and recursive averaging is presented here. The proposed approach (RARS) relies on the OSMS approach with very short window. But the RARS approach addresses the subsequent overestimation and adapts fast to rapid changes in noise power than the OSMS approach. The results of the RARS approach has been compared to the results of OSMS and RAHNSE approach subjectively in terms of plots (spectrograms) and objectively in terms of NMSE. A Comparison in terms of true noise estimate and rapid adaptation time reveals that the RARS approach is performing best. A subjective study of spectrograms for the estimated noise also reveals that the RARS estimated noise is close to the true noise.

REFERENCES

