
PCA Supervised and Unsupervised Classifiers 
in Signal Processing 

Catalina Cocianu1, Luminita State2, Panayiotis Vlamos3 
Doru Constantin2 and Corina Sararu2 

1 Department of Computer Science, Bucharest University of Economic Studies 
Bucuresti, Romania 

2 Department of Computer Science, University of Pitesti, Pitesti, Romania 

3Department of Computer Science, Ionian University, Corfu, Greece 

Abstract. The aims of the research reported in this paper are to investigate the 
potential of principal directions-based approach in supervised and unsupervised 
frameworks.  The structure of a class is represented in terms of the estimates of 
its principal directions computed from data, the overall dissimilarity of a 
particular object with a given class being given by the “disturbance” of the 
structure, when the object is identified as a member of this class. In case of 
unsupervised framework, the clusters are computed using the estimates of the 
principal directions. Our attempt uses arguments based on the principal 
components to refine the basic idea of k-means aiming to assure soundness and 
homogeneity to the resulted clusters. Each cluster is represented in terms of its 
skeleton given by a set of orthogonal and unit eigen vectors (principal 
directions) of sample covariance matrix, a set of principal directions 
corresponding to the maximum variability of the “cloud” from metric point of 
view. A series of conclusions experimentally established are exposed in the 
final section of the paper. 

1 Introduction  

Classical feature extraction and data projection methods have been extensively 
investigated in the pattern recognition and exploratory data analysis literature. Feature 
selection refers to a process whereby a data space is transformed into a feature space 
that, in theory, has precisely the same dimension as the original data space. However, 
the transformation is designed in such a way that a data set may be represented by a 
reduced number of effective features and yet retain most of the intrinsic information 
content of the data, that is the data set undergoes a dimensionality reduction.  

Principal Component Analysis (PCA), also called Karhunen-Loeve transform is a 
well-known statistical method for feature extraction, data compression and 
multivariate data projection and so far it has been broadly used in a large series of 
signal and image processing, pattern recognition and data analysis applications.  
Principal component analysis allows the identification of a linear transform such that 
the axes of the resulted coordinate system correspond to the largest variability of the 
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investigated signal. The signal features corresponding to the new coordinate system 
are uncorrelated, that is, in case of normal models these components are independent. 
The advantages of using principal components reside from the fact that bands are 
uncorrelated and no information contained in one band can be predicted by the 
knowledge of the other bands, therefore the information contained by each band is 
maximum for the whole set of bits [3].  

Principal components analysis seeks to explain the correlation structure of a set of 
predictor variables using a smaller set of linear combinations of these variables. The 
total variability of a data set produced by the complete set of n variables can often be 
accounted for primarily by a smaller set of m linear combinations of these variables, 
which would mean that there is almost as much information in the m components as 
there is in the original n variables. The principal components represent a new 
coordinate system, found by rotating the original system along the directions of 
maximum variability [7]. 

Classical PCA is based on the second-order statistics of the data and, in particular, 
on the eigen-structure of the data covariance matrix and accordingly, the PCA neural 
models incorporate only cells with linear activation functions. More recently, several 
generalizations of the classical PCA models to non-Gaussian models, the Independent 
Component Analysis (ICA) and the Blind Source Separation techniques (BSS) have 
become a very attractive and promising framework in developing more efficient 
image restoration algorithms [8]. 

In unsupervised classification, the classes are not known at the start of the process. 
The number of classes, their defining features and their objects have to be determined. 
The unsupervised classification can be viewed as a process of seeking valid 
summaries of data comprising classes of similar objects such that the resulted classes 
are well separated in the sense that objects are not only similar to other objects 
belonging to the same class, but also significantly different from objects in another 
classes. Occasionally, the summaries of a data set are expected to be relevant for 
describing a large collection of objects and allowing predictions or to discover 
hypotheses on the inner structures in the data. 

Since similarity plays a key role for both clustering and classification purposes, the 
problem of finding relevant indicators to measure the similarity between two patterns 
drawn from the same feature space became of major importance. Recently, alternative 
methods as discriminant common vectors, neighborhood components analysis and 
Laplacianfaces have been proposed allowing the learning of linear projection matrices 
for dimensionality reduction [4], [10]. 

The aims of the research reported in this paper are to investigate the potential of 
principal directions-based approach in supervised and unsupervised frameworks.  The 
structure of a class is represented in terms of the estimates of its principal directions 
computed from data, the overall dissimilarity of a particular object with a given class 
being given by the “disturbance” of the structure, when the object is identified as a 
member of this class. In case of unsupervised framework, the clusters are computed 
using the estimates of the principal directions. Our attempt uses arguments based on 
the principal components to refine the basic idea of k-means aiming to assure 
soundness and homogeneity to the resulted clusters. The clusters are represented in 
terms of skeletons given by sets of orthogonal and unit eigen vectors (principal 
directions) of each cluster sample covariance matrix. According to the well known 
result established by Karhunen and Loeve, a set of principal directions corresponds to 
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the maximum variability of the “cloud” from metric point of view, and they are also 
almost optimal from informational point of view, the principal directions being 
recommended by the maximum entropy principle as the most reliable characteristics 
of the repartition.  

A series of conclusions experimentally established are exposed in the final section 
of the paper. 

2 Methodology Based on Principal Direction for Classification and 
Recognition Purposes 

In probabilistic models for pattern recognition and classification, the classes are 
represented in terms of multivariate density functions, and an object coming from a 
certain class is modeled as a random vector whose repartition has the density function 
corresponding to this class. In cases when there is no statistical information 
concerning the set of density functions corresponding to the classes involved in the 
recognition process, usually estimates based on the information extracted from 
available data are used instead.     

The principal directions of a class are given by a set of unit orthogonal eigen 
vectors of the covariance matrix. When the available data is represented by a set of 
objects  NXXX ,...,, 21 , belonging to a certain class C, the covariance matrix is 
estimated by the sample covariance matrix,     
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Using first order approximations [11], the estimates of the eigen values and eigen 

vectors respectively are given by,  
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On the other hand, when an object has to be removed from the sample, then the 

estimate of the covariance matrix can be computed as (see appendix), 
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Let N
n

N ψψ ,...,1 be set of principal directions of the class C computed using NΣ̂ . 
When the example XN+1 is identified as a member of the class C, then the disturbance 
implied by extending C is expressed as,  
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where d is the Euclidian distance and 11
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Let { }MCCCH ,...,, 21= be a set of classes, where the class Cj contains Nj 

elements. The new object X is allotted to Cj, one of the classes for which 
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In order to protect against misclassifications, due to insufficient “closeness” to any 

class, we implement this recognition technique using a threshold T>0 such that the 
example X is allotted to Cj only if relation (7) holds and D<T. 

Briefly, the recognition procedure, P1, is described below [3].  

Input: { }MCCCH ,...,, 21=  
Repeat 
i←1 
Step 1:  Let X be a new sample. Classify X according to (7) 
Step 2: If Mjj ≤≤∃ 1, such that X is allotted to jC , then  

2.1.re-compute the characteristics of jC  using (2), (3) and (4) 
2.2. i++ 
Step 3: If i<PN go to Step 1 
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     Else 
     3.1. For i= M,1 , compute the characteristics of class iC  using M. 

     3.2. go to Step 1. 
Until the last new example was classified  
Output: The new set{ } CRCCC M ∪,...,, 21  

In unsupervised classification, the clusters are computed by identifying the natural 
grouping trends existing in data. Our approach based on principal directions, P2, is 
described as follows [12]. The input is represented by the data to be classified 

{ }NXXX ,...,, 21=ℵ , the number of clusters M, and the set of initial seeds 

MPPP ,..,, 21 . 
Parameters are: 

• θ , the threshold value to control the cluster size; ( )1,0∈θ  
• nr, the threshold value for the cluster homogeneity; 
• Cond, the stopping condition, expressed in terms of the threshold value NoRe, for 

the number of re-allotted data; 
• ρ ,    the control parameter, ( )1,0∈ρ , to control the number of re-allotted data. 

Initializations. 

0←t ; MPPP ,..,, 21  are taken as initial centers of the clusters 00
2

0
1 ,...,, MCCC  

respectively. 

Step 1. Generate the set of initial clusters, C0 { }00
2

0
1 ,...,, MCCC=  

The data NXXX ,...,, 21  are allotted to the initial clusters according to the 
minimum distance to the cluster centers.  

Step2. Compute the set of cluster skeletons, St= { }t
M

t SS ,...,1 , where 

( )t
nk

t
k

t
k

t
kS ,2,1, ,...,, ψψψ=  is the skeleton of the cluster k at the moment t.  
Step3.  
Repeat 
t=t+1; 
St= St-1; Ct= Ct-1  

Compute the new set of clusters according to the minimum distance to the 
skeletons of the current clusters. For each cluster 1−t

kC compute t
kC by performing the 

following operations.  

1. Add the elements ℵ∈iX  not belonging to t
kC , and ( )t

cliMcl
SXDk ,minarg

1 ≤≤
= . 

2. Remove the elements t
ki CX ∈ for which ( ) ( )t

cliMcl

t
ki SXDSXD ,min,

1 ≤≤
>  

3. Test on the homogeneity of t
kC :  
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3.2. If nrFF >∪ 21 then t
kC  is not homogenous and it is homogenous otherwise, 
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4. Extend t
kC  in case it is homogenous by adding each ℵ∈iX for which 

( ) ( )t
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t
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5. In case the test decides that t
kC is not homogenous, the cluster t

kC is corrected by 
re-allotting the set of the most 21 FF ∪ρ disturbing elements from 21 FF ∪ that 

is the elements of the maximum distance to t
kS . 

6. Re-compute t
kS , the skeleton of  the new  t

kC   

7. Re-allot the elements of t
k

t
k CC \1−  according to the minimum distance to cluster’s 

skeleton 
8. Compute the new set of skeletons tf  
Until Cond  

3 Tests on the Proposed Signal Classification and Recognition 
Methods 

Several tests on the recognition procedure P1 were performed on different classes of 
signals. The results proved very good performance in terms of the recognition error. 

The results of a test on a two-class problem in signal recognition are presented in 
Fig. 1, Fig. 2, and Fig. 3. The samples are extracted from the signals depicted in Fig. 
1. In Fig. 2 are represented the initial samples. The correct recognition of 20 new 
examples coming from these two classes using P1 failed in 2 cases. The correctly 
recognized examples are presented in Fig. 3. The performance was improved 
significantly when the volume of the initial samples increases. Using the leaving-one-
out method, the values of the resulted empirical mean error are less than 0.05 (more 
than 95% new examples are correctly recognized).  In order to apply the leaving-one-
out method, some first order approximations for the covariance matrices, eigen values 
and eigen vectors had to be derived. The recursive equations based on first order 
approximations allow to avoid the re-computing of covariance matrices, eigen vectors 
and eigen values. The computations are provided in the appendix.  

A series of tests were performed on P2 and they pointed out that in spite of its 
higher complexity as compare to k-means, significantly increased accuracy is 
obtained.   
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For instance, in case of 5 classes of data of dimensionality 6, using the first 2 
principal directions, the results obtained in the compressed space are presented in Fig. 
4. The examples were generated by sampling from the normal distributions for each 
class. The matrix having as entries the Mahalanobis distances between classes is, 
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⎞

⎜
⎜
⎜
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⎛

0         2.2807    1.9008    2.0341    2.8579    
2.2807    0         1.7881    4.1304    2.5378    
1.9008    1.7881    0         0.6417    1.5008    
2.0341    4.1304    0.6417    0         3.3655    
2.8579    2.5378    1.5008    3.3655    0         

*103 . 

Table 1. 

The sample ℵ 1 ℵ 2 ℵ 3 ℵ 4 
Number of misclassified examples 
by our method 

0 0 1 0 

Number of misclassified examples 
by k-means 

1 0 280 3 

Number of iterations 2 2 3 2 
 

 

 
Fig. 1. 

 
Fig. 2. 
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Fig. 3. 

The results in case of the sample ℵ 3 are shown in Figures 4a, 4b, and 4c. 
 

   
Fig. 4a. The actual 
classification. 

Fig. 4b. The clusters resulted 
by applying k-means. 

Fig. 4c. The clusters resulted 
by applying the proposed 
method. 
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Appendix 

Lemma. Let KXXX ,...,, 21  be an n-dimensional Bernoullian sample. We denote by 
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Using first order approximations, from (11) we get, 
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The first order approximations of the orthonormal eigen vectors of NΣ̂   can be 

derived using the expansion of each vector 1+Δ N
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Using the orthonormality, we get,   
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holds for each ni ≤≤1 . 
For nij ≤≠≤1 , from (20) we obtain the following equations, 
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Consequently, the first order approximation of the eigen vectors of NΣ̂  are, 
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