USING SYNCHRONIZED LIGHTWEIGHT STATE OBSERVERS TO MINIMISE WIRELESS SENSOR RESOURCE UTILISATION

David Lowe, Steve Murray and Xiaoying Kong
Centre for Real-time Information Networks, University of Technology
Sydney, PO Box 123 Broadway NSW 2007, Australia

Keywords: Wireless Sensor Networks, State Observers, Control, Optimisation.

Abstract: A major trend in the evolution of the Web is the rapidly growing numbers of web-enabled sensors which provide a rich ability to monitor and control our physical environment. The devices are often cheap, lightweight, rapidly deployed and densely interconnected. The current dominant models of Web-based data monitoring are not well-adapted to the operational needs of these devices, particularly in terms of resource utilization. In this paper we describe an approach to the optimization of the resources utilized by these devices based on the use of synchronized state-observers. By embedding state observers with a minimized footprint into both the sensors and the monitoring Web client, we show that it is possible to minimize the utilization of limited sensor resources such as power and bandwidth, and hence to improve the performance and potential applications of these devices.

1 INTRODUCTION

One of the key future directions for the evolution of the Web is a growing integration of real-time embedded devices into the Web infrastructure, facilitating the monitoring and control of the physical environment. This functionality is strongly supported by the increasing availability of cheap, small, but powerful sensors and actuators.

There is increasing attention on the mechanisms for “Web-enabling” these devices, as well as the development of rich applications that leverage the real-world data which becomes available. Indeed the related concept of a Sensor Web is now well established (Delin, 2002), with a considerable body of literature on the architecture and protocols for managing the devices and the resultant real-time data streams, though the integration of the SensorWeb with the World Wide Web is less well developed.

The sensor devices however often have a number of performance and operational constraints which may often conflict with current approaches to the design of Web applications. To illustrate this consider, for example, a simplified application involving the embedding of a network of wireless moisture sensors into a residential garden. The application then makes available across the Web a map of the state of the garden (see Figure 1 for a simplified diagram of a representative architecture). A typical design of the Web interface for an interactive application such as this might be to implement an AJAX-based application with the Web client pulling content from the network of sensors (via the data aggregator) as needed by the user. Whilst this approach provides a rich user experience, it places requirements on the wireless sensor network that may lead to suboptimal performance. In this scenario the communications radio in the sensors would be required to remain active, in order to respond to requests for content – leading to unnecessarily excessive power usage. A simple improvement would be to allow the sensors to periodically push content to the content aggregator node, which then caches the data and responds to client requests. Even this approach however means that data communications will be occurring when they are not necessarily required.

The above scenario is typical of numerous applications involving embedded devices – particularly wireless sensor networks (WSNs). The sensor devices are designed to be extremely low power, thereby enabling them to operate for considerable periods (often years) off a single battery cell. This low power usage is achieved through having the sensors operate on a very low
duty cycle, where they spend most of the time in an extremely low-power “sleep” mode, only waking periodically to take a sensor reading (and transmit it if necessary). This makes it infeasible to rely on a design which requires them to respond to content requests.

In this paper we consider an architecture based on synchronized state observers that addresses these issues and facilitates the optimization of resource usage in web-enabled sensor networks. In the following section we describe related work, considering in particular both the growing trend to embed sensors directly into the Web infrastructure, as well as approaches to data monitoring optimization through the use of a classical technique from control theory – state observers.

In section 3 we provide an overview of our proposed architecture, and describe how it addresses the design constraints. In section 4 we then outline a prototype evaluation that demonstrates the performance gains that can be achieved through our proposed approach. Finally, in section 5, we consider the implications of this approach and outline directions for future work.

2 BACKGROUND

2.1 Integrating Sensors into the Web

Improvements in sensor hardware, communications, and electronics miniaturization have led to a growing availability of cheap, small, and functionally rich sensors. As these sensors are combined with wireless and/or mobile communications and embedded software, it has become increasingly possible to connect these devices either directly into the Web infrastructure, or to make their data available on the Web through appropriate gateways. By embedding these devices into the physical world, and making the resultant environmental data available on the Internet, a diverse range of monitoring and control applications become possible. The result can be a network that is often referred to as a Sensor Web: “The Sensor Web is to sensors what the Internet is to computers, with different platforms and operating systems communicating via a set of shared, robust protocols.” (Delin, 2002).

The information provided by sensors can be incredibly diverse: location, speed, vibration, temperature, humidity, light, sound, pollutants, etc. This information, in turn, enables extremely rich monitoring and control applications, many of which however only become feasible when the sensors are small and cheap – which in turn places constraints on the resources available to the sensors.

![Figure 1: Representative architecture of a typical Web-enabled wireless sensor network.](image)

As an example, consider the following scenario: a building incorporates a network of temperature and humidity sensors to support monitoring of the building environment. To enable them to be rapidly and cheaply deployed, without requiring cabling, they are designed as a Zigbee wireless mesh network ("The Zigbee Alliance," 2008) with each sensor node being battery powered. A significant design objective on the sensor modules is therefore to minimize their power utilization in order to maximize their battery life. As an example, a Zigbee module might use as little as 1 µA when in deep sleep, 10 mA when operating, and 40 mA when transmitting or receiving data. A typical scenario would have each set of samples requiring the module to be awake for 5ms and transmitting for 1ms. If it sampled continuously, a standard high-performance Lithium “coin” battery would last approximately 50 hours. Conversely, transmitting a data sample only every 10 seconds, and sleeping the remainder of the time would give a 1:2000 duty cycle and an operating life of over 10 years (ignoring shelf-life characteristics of the battery, which can vary enormously, from less than a year to >> 10 years, depending on the environment and the battery type). Note that other factors, such as the requirements for data routing, will moderate these extreme examples somewhat.

Power minimization in turn requires the module to minimize the time in which it is operational. Similar resource constraints exist in terms of minimization of communication bandwidth, CPU cycles, and other resources.
2.2 Sensor Network Architectures

Research on the design of architectures which leverage sensor network technologies has considered both the architecture of the individual sensors and the broader network architecture. In terms of the former, considerable attention has been given to aspects such as minimization of the software footprint of the sensor module, optimization of the sensor design, development of low-power devices, etc. (Polastre, Hill, & Culler, 2004).

In terms of the broader architecture of sensor networks, considerable effort has gone into designing communication topologies and protocols that are both robust (e.g., self-healing routing) and minimize power and bandwidth overheads (Krishnamachari, Estrin, & Wicker, 2002). By adapting the routing topologies it is possible to obtain significant performance improvements. Consider, for example, approaches such as data-centric routing (Krishnamachari et al., 2002) (which uses in-network aggregation of data flows) and dynamic adaptation of sensor sampling rates (Ganesan, Ratnasamy, Wang, & Estrin, 2004; Polastre et al., 2004), which are used to improve performance, minimize network traffic, and reduce energy consumption.

Whilst these aspects are important, they have typically been developed without a clear consideration of the specific characteristics of the design of the applications which will often be used to leverage the data. For example, where the data is used within a Web-based application then one of the key aspects is consideration of the nature of interactivity in Rich Web Applications, and in particular the use of technologies such as AJAX, Flex and Silverlight to pull content to the Web client as needed in response to user interactions.

The integration of Sensor networks into Rich Web Applications is typically done through continuous collection of the sensor data into a central repository (whether or not it happens to be needed at that time) and then either pulling the content to the browser or streaming it from the server. In either case, it means that data is collected from the sensors which may not be needed at a particular point in time (with the associated wastage of sensor module resources).

Some work on middleware for sensor networks can assist in this area. Approaches to lightweight publish-subscribe models (see, for example (Costa, Picco, & Rossetto, 2005; Gaynor, Moulton, & Welsh, 2004; Huang & Garcia-Molina, 2004)) can provide a mechanism for retrieving sensor content to the Web server, and then to the browser, only when the sensor data is changed (or, rather, when the sensor node determines that the data warrants publishing). Whilst this is an improvement it still neglects the interplay between client and server (and ultimately sensor). For example, the level of information granularity – both spatial and temporal – that is relevant to a particular client session will change over time, and will influence the information that needs to be published by the sensor.

We believe that one of way of addressing this problem is through the use of concepts from classical control theory, and in particular the use of distributed synchronized state observers.

![Figure 2: General form of a Luenberger observer.](image)

2.3 State Observers

In classical control theory, we manipulate the inputs to a system being controlled in order to achieve system output behaviours that meet performance requirements. Appropriate modeling allows us to design controllers which use the error between a desired system output and the actual output to generate the system input. This is straightforward when the system outputs can be reliably measured (and if the system behaviour is readily modeled – particularly if the behaviour is linear, though there are sophisticated techniques for dealing with non-linear systems). However in many cases some of the system outputs cannot be directly observed or accurately measured. (This may be for a range of reasons – the output variables may be of a form that is not easy to measure, they may be inaccessible, or the sensors may themselves introduce errors). In these cases, one solution is to use a state observer. A state observer is a model of a real system that gives us access to an estimate of the internal state of the system. As shown in Figure 2, with a Luenberger Observer (Ellis, 2002), the observable outputs of the physical system are compared to the equivalent
outputs from the state observer and used to correct any errors in the state observer using a compensator. Traditionally state observers have been used to gain access to estimates of the variables which determine the state of the system, when these variables cannot be directly accessed (in Figure 2, we would use \(x_o(k) \) in our system control, rather than \(x(k) \), which cannot be directly accessed). It is, however, equally applicable to use estimates, when gaining access to the actual system variables is inappropriate due to resource requirements, as may be the case with sensor networks.

We could use this concept by implementing a state observer in the Web Server, and which provides data to the Web clients as requested, but this raises questions of maintaining the accuracy of the observer. To address this, we can use data from the sensors as input to the observer compensator, however this compensation may often not be necessary (when the observer is accurately tracking the real system state and hence does not require correction) and is therefore a waste of sensor resources.

We therefore propose an architecture which utilizes synchronized distributed observers, so that each sensor includes an embedded copy of the observer, and can hence determine locally on the sensor if the observer is deviating and requires correction. The sensors therefore only provide data when it is required to keep the observer synchronized. More simplistic versions of this approach have been used previously. For example, numerous approaches have adopted variations of using constant sampling rates in the sensors, but only transmitting sensor data when the change exceeds some threshold (a form of adaptive delta modulation – see, (Ishwar, Kumar, & Ramchandran, 2003; Li & Fang, 2007)). A state observer however has the potential to allow a much more intelligent variation of the transmission thresholds based on a system model.

3 A WEB-ENABLED SENSOR OBSERVER

3.1 System Architecture

Figure 3 shows the basic architecture which we have adopted. In this architecture, we implement as part of the sensor module a slightly modified Luenberger observer, with a quantizer included in the compensation so that small corrections to the modeled system are ignored, until the model error reaches a level that requires correction. This minimizes the data flow associated with the correction to the modeled system.

![Distributed Synchronised State Observer Architecture](image)

Figure 3: Distributed Synchronised State Observer Architecture.

An identical model of the system is then incorporated into the data aggregator or Web server, which then provides data to the Web client. Indeed it may even be possible to incorporate the observer directly into the Web client, thereby minimizing Web traffic and improving client interactivity.

The consequence of this is that the communication that needs to occur from the sensor nodes is reduced, thereby reduce resource usage. It also has the potential to provide a more responsive and accurate client side interaction (since the Web client can use the model to support more rapid interactions).

3.2 Design Modeling

The proposed architecture can be modeled as follows. The standard form for the linear relation, at time \(k \), between the input vector \(u(k) \), system state vector \(x(k) \) (which may not be directly measurable) and the vector of observable outputs \(y(k) \) in a discrete system is:

\[
x(k+1) = Ax(k) + Bu(k) \\
y(k) = Cx(k) + Du(k)
\] (1)
Where A, B, C and D are matrices that define the model of the system dynamics, and are obtained through conventional control system modelling techniques.

Assuming that we are able to construct a sufficiently accurate representation of this system, then for a normal Luenberger observer we have:

$$
x_o(k+1) = Ax_o(k) + Bu_o(k)
$$

$$
y_o(k) = Cx_o(k) + Du_o(k)
$$

where x_o and y_o are the estimates of the system state and the system output, and u_o is the input to the observer. But:

$$
u_o(k) = Q(u(k) + y_{comp}(k))
$$

$$
= Q(u(k) + Ly_{err}(k))
$$

$$
= Q(u(k) + L(y(k) - y_o(k)))
$$

Where Q is the quantization function and L is the Luenberger compensator matrix. (Note that the derivation of these is beyond the scope of this paper, but is well covered in most control texts). Therefore, merging equations (2) and (3) gives:

$$
x_o(k+1) = Ax_o(k) + Bu(k) + QBL(y(k) - y_o(k))
$$

$$
= Ax_o(k) + Bu(k) + QBL(y(k) - y_o(k))
$$

For the observer to provide an accurate representation of the system state, we need the observer state error to approach zero as $k \to \infty$, i.e.:

$$
e(k) = x_o(k) - x(k)
$$

$$
e(k+1) = x_o(k+1) - x(k+1)
$$

$$
= Ax_o(k) + Bu(k) + QBL(y(k) - y_o(k)) - Ax(k) - Bu(k)
$$

$$
\approx Ax_o(k) - x(k) - QBL(y_o(k) - y(k))
$$

$$
= Ax_o(k) - x(k) - QBL(x_o(k) - x(k))
$$

$$
= (A - QBL)x(k)
$$

The observer will therefore converge when the eigenvalues of $A - QBL$ all have negative real values.

However, in the case of typical environmental monitoring, we will be sensing a system that we are not controlling. We would therefore treat $u(k)$ as a disturbance input which we cannot directly monitor. For example, if we are designing a Web interface to a system that monitors temperatures throughout a building, then someone opening a window may lead to the entry of cold air, and hence temperature fluctuations. Given that our only information is the sensor data, we therefore can consider how rapidly our observer can track these variations. In this case:

$$
u_o(k) = QL(y_{err}(k))
$$

$$
= QL(y(k) - y_o(k))
$$

And therefore:

$$
x_o(k+1) = Ax_o(k) + QBL(y(k) - y_o(k))
$$

And hence:

$$
e(k+1) \approx (A - QBL)x(k) - Bu(k)
$$

The stability criteria remain the same, but we can now determine the responsiveness of the system to disturbance rejection, and hence the ability of the observer to track variations.

Appropriate selection of the model parameters, as well as the observer compensator and quantizer, will therefore allow us to select the minimal data stream rate between the sensor observer and the Web client observer that achieves the desired observer accuracy. Where applications require less accuracy, we can tune the compensator and quantizer to reduce the data rates.

3.3 Design Considerations

Given the baseline architecture, we can now move to consideration of the issues this raises, and how it relates to the design of Web-based monitoring. In particular:

1. How accurately can we model the system being monitored, and what are the consequences (in resource utilization) of inaccuracies in the model.

2. What are consequences for sensor and client synchronization of typical network impacts on the data stream – i.e., network delays, packet drops, etc.

3. What additional information needs to be passed between the sensor observer and the Web client observer in order to ensure that synchronization is retained in the event of network delays, packet drops and other forms of disturbances?

4. To what extent is it possible to implement a typical state observer directly within a Web page, so that it operates on the client-side, and hence provides improved interactivity?

5. What additional processing burden does the implementation of the observer place on both the sensor module and the Web client, and how do these additional resources compare to those
saved through possible reductions in the data stream which must be communicated?

In the latter part of this paper we will focus on a consideration of the last two of these questions – as an initial demonstration of the potential resource savings is a crucial first step in justifying the approach. It is only worth deeper analysis of issues such as model robustness and error correction if the approach clearly shows merit in terms of reducing resource utilization in Web-enabled sensors (or conversely, enabling accuracy improvements for a given resource usage level). Consideration of the first three of these design considerations is ongoing and will be reported in subsequent publications.

4 PERFORMANCE EVALUATION

In order to evaluate the approach – and in particular the potential ability to optimize the trade-off between accuracy of the web-monitoring of distributed sensor data and the resources required for this monitoring, we have implemented (in MATLAB) a simulation of a simple thermal system and associated sensor configuration, as well as an associated prototype of a Web interface that incorporates a Web client-side state observer.

This initial implementation (which is much simpler than that which would typically exist in a real system – but nevertheless allows evaluation of the approach) comprised a simulation of a simple model of a two-room house, which had a specified thermal resistance between the rooms and between each room and the outside environment. Both rooms also had substantial thermal capacitance. The system state could therefore be modelled by the following variables:

\[x(k) = \begin{bmatrix} T_E(k) & T_1(k) & \dot{T}_1(k) & T_2(k) & \dot{T}_2(k) \end{bmatrix}^T \]

(9)

Where \(T_E(k) \) is the external temperature, \(T_1(k) \) and \(T_2(k) \) are the temperatures in the two rooms, and \(\dot{T}_1(k) \) and \(\dot{T}_2(k) \) are the corresponding rates of temperature change. Only two system values are actually measured directly by sensors – the external temperature \(T_E(k) \) and the temperature in one of the rooms \(T_1(k) \) – so \(y(k) \) is given by:

\[y(k) = \begin{bmatrix} T_E(k) & T_1(k) \end{bmatrix}^T \]

(10)

4.1 Implementation

The aim was to allow monitoring of these temperatures within a Web browser. Figure 4 shows the architecture for the simulation. In this implementation we have constructed the client observer using Javascript embedded within the Web page. The system state output from the client observer (i.e. estimates of the temperature values and rates of temperature change) is used to support rendering of, and interaction with, the sensor data.

![Diagram of Web client state observer architecture](image)

Figure 4: Example architecture for a typical Web client state observer.

The Javascript also uses an AJAX-like approach to query the Web server for any new quantized observer compensator data which, when available, is used as input to the Web client observer in order to correct its modelled state. Whilst this example is relatively simplistic, it does demonstrate the general approach and allows evaluation of the performance.

4.2 Data Flow Improvements

The client-side implementation allows evaluation of the improved interactivity that is enabled by including the state observer directly within the web pages (such as zooming into sensor trend data or interpolating spatially between sensor values). The more substantial benefits however are potentially achieved through reduction in the sensor data rates. In order to evaluate this, we analysed the outputs of the simulated system under varying circumstances, and in particular considered the data transmissions associated with the quantized observer compensator data that are required to correct both the sensor observer and the client observer.

In our simulated system we introduced various disturbances to the system (equivalent to sudden temperature variations that were not predicted by the
simple model used), and looked at the level of data that was required to be transmitted by the sensor in order to retain synchronization between the sensor observer and the Web client observer. We also considered the implications on these data flows of inaccuracies in the observer model.

Figure 5 shows the Matlab model used for the simulations to compare the system output and observer transmission rates under conditions of a disturbance to the system.

4.3 Resource Usage

We can see the implications of this reduction in data flow by considering the implications in terms of the average power usage in a typical sensor configuration.

Table 1: Typical data rates associated with different configurations of simulated temperature monitoring.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Data Rate (transmit s / day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline system with no observers</td>
<td></td>
</tr>
<tr>
<td>No sensor-side or client-side observer, and system transmits raw sensor data from both temperature sensors (rate=1 sample/sec)</td>
<td>86,400</td>
</tr>
<tr>
<td>System with implemented observers</td>
<td></td>
</tr>
<tr>
<td>No disturbances, (T_k) stable, observer is completely accurate (Note: resynchronization transmissions occur every 10 minutes)</td>
<td>144 (0.2%)</td>
</tr>
<tr>
<td>No disturbances, (T_k) stable, observer has minor inaccuracies that lead to drift</td>
<td>462 (0.5%)</td>
</tr>
<tr>
<td>No disturbances, (T_k) stable, observer has major inaccuracies that lead to drift</td>
<td>2,712 (3.1%)</td>
</tr>
<tr>
<td>External temperature (T_k) sinusoidally varying by 10 degC with 24 hour period, observer has minor inaccuracies that lead to drift</td>
<td>3,842 (4.4%)</td>
</tr>
<tr>
<td>Internal temperature (T_k) varying in a square wave by 10 degC with a 2 minute period</td>
<td>7,563 (8.8%)</td>
</tr>
</tbody>
</table>

In our scenario, the base sampling rate was 1 sample (from each sensor) per second. A typical Zigbee-based single temperature sensor that immediately transmitted each sensor value would operate on the following 1 second cycle:

- Reading sensor + housekeeping: 10mA, 0.4 mSec
- Transmitting data: 40mA, 1 mSec
- Asleep: 0.001mA, remainder of time

Giving an average power usage of 0.045mA (or approximately 92 days from a 100mAh battery).

The data rate required with the state observer implemented depended upon a number of factors, but a typical scenario would reduce the transmitted data to an average of approximately one sample every 15 seconds (though, as observed above, this was highly dependant upon the volatility of the data and the accuracy of the model). The additional processing time to implement the observer in the sensor module will depend substantially upon the particular module used, though a quick prototype on a Jennic JN5139 Zigbee module indicated that the observer could be implemented in approximately 140 µSec per cycle. This gives:

- Reading sensor + housekeeping: 10mA, 0.54 mSec.
- Transmitting data: 40mA, 1 mSec (every 15th sample)
- Asleep: 0.001mA, remainder of time

This gives an average power usage of 0.009mA (or approximately 460 days on a 100mAh battery) – a very significant improvement.

In cases where the sensor data is very volatile, and the observer is not able to track, and hence there is absolutely no reduction in sensor data that is being transmitted, the increased power usage due to the inclusion of the observer minimal – a 3% increase from 0.045mA to 0.046mA.

5 CONCLUSIONS

In this paper we have considered an architectural model that includes into the client-side Web pages a distributed state observer that is synchronized with identical observers in real-time wireless sensors. Whilst still preliminary, our initial results have demonstrated that significant gains may be possible in terms of minimizing resource utilization within the sensors (by limiting the data that has been wirelessly transmitted – potentially at significant power cost) and potentially also improving the interactivity of the client-side experience (though this needs further consideration).

Further work on the development of this approach will consider the extent to which we can construct useful models of the dynamics of the physical systems being monitored by the sensors, and the implications of these models as the sensors become more distributed.
Further work will also consider how reliably the multiple observers can remain synchronized in the presence of network delays, data loss, etc.

Finally, we are also constructing a more substantial physical implementation of a sensor network which can be used as a test bed environment to validate our model simulations.

ACKNOWLEDGEMENTS

The authors wish to acknowledge the Centre for Real-Time Information Networks (CRIN) at the University of Technology, Sydney, in supporting this research project.

REFERENCES

