
Towards a Generic Traceability Framework for
Model-driven Software Engineering

Birgit Grammel

SAP Research CEC Dresden, Chemnitzer Str. 48
01187 Dresden, Germany

Abstract. With the inception of Model-Driven Software Engineering (MDSD)
the need for traceability is raised to understand the complexity of model trans-
formations and overall to improve the quality of MDSD. Using the advantage of
generating traceability information automatically in MDSD, eases the problem of
creating and maintaining trace links, which is a labor intensive task, when done
manually. Yet, there is still a wide range of open challenges in existing trace-
ability solutions and a need to consolidate traceability domain knowledge. This
paper proposes a generic framework for augmenting arbitrary model transforma-
tion approaches with a traceability mechanism. Essentially, this augmentation is
based on a domain-specific language for traceability providing the formalization
on integration conditions needed for implementing traceability. The paper is of
positional nature and outlines work currently in progress.

1 Introduction

In the Standard Glossary of Software Engineering Terminology1 traceability is defined
as:The degree to which a relationship can be established between two or more prod-
ucts of the development process, especially products having a predecessor-successor or
master-subordinate relationship to one another. Traceability information in MDSD can
be understood as the runtime footprint of model transformations. Essentially, trace links
provide this kind of information by associating source and target model elements w.r.t.
the execution of a certain model transformation. The corresponding models may con-
form to the same or different metamodels. Trace links have a manifold application do-
main [1], [2]: System analysis to understand system complexity by navigating via trace
links along model transformation chains;Coverage analysis to determine whether all
requirements were covered by test cases in the development life cycle;Change impact
analysis to analyze how changing one model would effect other related models;Orphan
analysis to find orphaned model elements with respect to a specified trace link;Model-
based debugging, i.e. mapping the stepwise execution of an implementation back to its
high-level model andModel transformation debugging.

In this paper, we propose a generic traceability framework for augmenting arbitrary
model transformation approaches with a traceability mechanism. To achieve this goal,
we advocate two research directions: a) the augmentation of the generator logic, for the

1 Std 610.12-1990

Grammel B. (2009).
Towards a Generic Traceability Framework for Model-driven Software Engineering.
In Proceedings of the 1st International Workshop on Future Trends of Model-Driven Development, pages 44-47
DOI: 10.5220/0002185400440047
Copyright c© SciTePress



sake of trace link generation b) the augmentation of input models with model mark-
ers, serving as a reference for trace link generation. Both approaches are based on a
domain-specific language for traceability, presenting theformalization on all adequate
conditions and measures needed for implementing traceability in the context of MDSD.

The content of the following sections are structured as follows. First, we reflect on
challenges for traceability and give an overview on relatedwork. In section 3 an outline
of our approach is proposed. Finally, section 4 concludes this paper and gives an outlook
on future work.

2 Challenges for Traceability in MDSD

MDSD raises the need for traceability to understand model transformation complexity
and overall to improve the quality of MDSD. Introducing model transformations, to
generate trace links automatically, eases the task of creating and maintaining trace links,
as opposed to when done manually, entailing high development costs. [3]

According to [2], [4] transformation approaches either generate trace links implic-
itly or explicitly, that is, in the former case, either provide an integrated support for
traceability or in the latter one, rely on a developer to encode traceability as a regu-
lar output model. The main advantage of implicit generation(e.g. QVT2, MOFScript3)
is, that no additional effort is necessary to generate tracelinks, as this is done auto-
matically in parallel to the actual transformation. A disadvantage is, that the traceabil-
ity metamodel is fixed. Since most transformation approaches have differently defined
metamodels, standardization among different approaches is aggravated. Furthermore,
the level of granularity of trace links may differ form one traceability scenario to an-
other. Setting the granularity of trace links has been identified as a challenge [5]. When
tracing all model element references, this might lead to thefollowing issues:incompre-
hensibility of trace link data and hence be less useful to developers;performance, when
handling large and complex transformations andsecurity, when not all model informa-
tion is allowed to be traced for security reasons, mandated for instance by customer
needs.

Alternatively, the case of explicit generation necessitates the incorporation of addi-
tional transformation rules to generate trace links. (e.g.ATL4, oAW5) The metamodel
definition is not predefined and transformation engine independent. Hence, the trace
link granularity is adaptable. Yet, the drawback is that additional effort is required to
add traceability-specific transformation rules, which mayalso pollute the implementa-
tion. An approach that partly solves these issues in ATL by automatically generating
traceability-specific transformation rules was proposed in [6].

Another challenge concerns the semantics of trace links [5]. It is often necessary to
distinguish between different kinds of links, e.g. a link between a textual requirement
and a model element has a different semantic, than a refinement relationship within a
model. Fixing the kinds of semantic links, has the consequence of less flexibility for

2 Query View Transformation, http://www.omg.org/docs/ptc/07-07-07.pdf
3 http://www.modelbased.net/mofscript/
4 ATLAS Transformation Language, http://www.eclipse.org/m2m/atl/
5 openArchitectureWare, http://www.openarchitectureware.org/

45



user-defined links that might be necessary to meet differentproject needs [7]. On the
other hand, since the choice of semantic, attributed to a link, is guided by the reasoning
about what the user will perform with the link [1], not predefining the link semantics,
may result in failure of reasoning, due to misuse of the semantics.

3 Traceability Approach

The main idea of our approach is to rely on work and solutions already available and
not to implement yet another transformation language. Nevertheless, is the aim to fo-
cus on current traceability solutions, consolidate benefits of implicit and explicit trace
link generation and tackle the above-mentioned challengesto derive the necessary re-
quirements for a generic traceability framework. In essence, our approach follows two
research directions both based on a commonly used conceptional layer. The main moti-
vation for such a conceptional layer is based on the idea, proposed in [7], that the kind
of traceability data to be collected is dependent on the actual traceability goal, that is,
which traceability question is expected to be answered. To formalize this traceability
concern, a system of rules and regulations is necessary, on when to trace, what kind of
traceability data; additionally, to specify, the granularity level and what kind of trace
links are allowed between certain artefact types, given a certain traceability goal. This
formalization will be defined w.r.t a domain specific language for traceability, which
is called Trace-DSL in the following. The Trace-DSL logic encompasses all heuris-
tics on how to manifest traceability-specific rules for arbitrary model transformation
approaches, providing explicit knowledge to the developeron their integration.

To create a traceability model we discussed two classes of transformation approaches
in section 2. Explicit trace link generation requires the incorporation of additional trans-
formation rules to generate trace links. As this task is generally done manually, it is
likely to be error-prone and time consuming. Although work has been done on the au-
tomation, e.g. [6], still every transformation template needs to be adapted individually,
for the explicit generation. For generators, that already provide a dedicated traceability
support, e.g. QVT, this effort would theoretically not be necessary, yet there is a need
to tune the level of granularity of trace links, as motivatedin section 2. Native tracing
without a clear rule system on the conditions and measures oftracing, may lead to an
unnecessary overkill of traceability information, performance issues and violation of
security measures. The guidance, to trace only relevant information is provided by the
Trace-DSL.

Hence, the following two research directions are investigated, showing different
approaches on how to achieve the population of a traceability metamodel. The first re-
search direction (Fig.1a) is proposed to enhance the generator logic itself for the purpose
of traceability functionality. a)Augmentation of the generator logic: One way to pop-
ulate a traceability metamodel is to provide a generic interface and trace engine for arbi-
trary generators. In this case the interface supplies the engineer with an API to connect
his generator to the trace engine. As a result, the generatoris featured with traceability
functionality. The interface is based on the Trace-DSL, to account for a formalized rule
system on traceability. The second approach (Fig.1b) to be examined follows the idea
of high order transformations and in contrast to the first approach does not focus on the

46



level of the generator logic. b)Augmentation of input and output models: Prior to the
actual transformation the input model is augmented via model transformations with cer-
tain markers such as identifiers or properties. This enhanced model is then transformed
by the generator into an enhanced output model. In essence, both models are compared
automatically w.r.t. the correlation of before and after markers. Querying of traceability
information is then coupled to these methods of auto-correlation. The Trace-DSL or-
chestrates the model augmentation to again only trace relevant information for a certain
underlying traceability question.

Output ModelsInput ModelsInput
Models

Generic
Interface Trace EngineTrace-DSL

Output
Models Transformation Engine

Model Marker Correlation

Transformation Engine

a) b)

Fig. 1. Traceability research approaches.

4 Conclusions and Future Work

The two research directions run orthogonally to each other w.r.t. their target points,
being the generator logic level versus the model level. By comparing their complexities,
advantages and disadvantages, we wish to develop a generic traceability framework for
arbitrary transformation approaches.

Future work is directed at the generation of traceability-specific rules based on the
principles of metamodel matching [8]. It is to be investigated, how to use the resulting
alignment of metamodel matching, to generate the code of traceability-specific rules,
automatically.

References

1. Ramesh, B., Jarke, M.: Towards reference models for requirements traceability. In: IEEE
Transactions on Software Engineering. Volume 21. (2001)

2. Czarnecki, K., Helsen, S.: Feature-based survey of modeltransformation approaches. IBM
Systems Journal, Vol 45, No 3 (2006)

3. Aizenbud-Reshef, N., et al.: Model traceability. IBM Systems Journal, Vol 45, No 3 (2006)
4. Vanhooff, B., Baelen, S.V., Joosen, W., Berbers, Y.: Traceability as input for model transfor-

mations. In: Proceedings of the ECMDA Traceability Workshop. (2007)
5. Antoniol, G., et al.: Problem statement and grand challenges in traceability. Center of Excel-

lence for Traceability (2006)
6. Jouault, F., Kurtev, I.: Transforming models with ATL. In: Proceedings of the Model Trans-

formations in Practice Workshop at MoDELS 2005. (2005)
7. Knethen, A., Paech, B.: A survey on tracing approaches in practice and research. Technical

report, Frauenhofer IESE (2002)
8. Falleri, J., Huchard, M., Lafourcade, M., Nebut, C.: Metamodel matching for automatic model

transformation generation. In: Proceedings of MoDELS. (2008)

47


