
SIMULATION OF AN IDENTITY-BASED CRYPTOGRAPHY
SCHEME FOR AD HOC NETWORKS

Pura Mihai-Lică, Patriciu Victor-Valeriu and Bica Ion
Department of Military Informatics and Mathematics, Military Technical Academy

81-83 George Coşbuc Boulevard, Bucharest, Romania

Keywords: Ad hoc network, Identity-based cryptography, Ns2, MIRACL.

Abstract: Ad hoc networks are a promising technology especially from the point of view of its aim: assuring
connectivity. But communication cannot be separated from security without loosing a lot of its benefits.
That is why research has to focus on security aspects of the ad hoc network too. The paper presents an
implementation of a security scheme for ad hoc networks based on identity-based cryptography. This
implementation was made in ns2, using MIRACL library to implement identity-based encryption. The
solution focuses only on assuring confidentiality, but can be further developed to assure also authentication,
integrity and non-repudiation. For the start, an ns2 implementation was developed to provide a simulation
environment where different possible scenarios can be tested and the scheme can be improved according to
the results, before the real implementation.

1 INTRODUCTION

Mobile ad hoc networks are self-managing networks
formed of mobile routers that interconnect through
wireless links and have an arbitrary topology. The
routers are permitted to randomly move and to
arbitrary organize themselves. The topology of such
a network can rapidly change in an unpredictable
way. The main purpose of such networks and of ad
hoc networks in general is assuring connectivity
between all the nodes. From this point of view, the
routing algorithm is the heart of an ad hoc network.
But, when it comes to communications, security is
another factor that has to be taken into consideration,
because it has become a constant demand. The
proposed objective was to implement a security
scheme for such networks that would correspond to
their special characteristics.

The security schemes used in wired networks
were designed to take advantage of all the benefits
of this kind of networks: high speed, low cost,
reliability, superior performance and others. That is
why they cannot be applied in ad hoc networks
without any change. But it would be easier to
develop security solutions specially designed for the
needs of ad hoc networks. Of course, these kinds of
solutions have to focus on the special characteristics
of wireless ad hoc networks: decentralized network

architecture, transient node behavior, heterogeneity
of network node resources and the self healing and
managing ability of the network.

With these considerations in mind, let us take a
look at the concept of identity-based cryptography.
Identity-based cryptography is a particular case of
public key cryptography; its main characteristic is
the fact that the public key is chosen to be a string of
characters that represents in a unique way the
identity of the key holder (for instance name and
address, e-mail address, telephone number or IP
address). The private key is computed based on the
public key. The computation of the private key is the
job of a specialized network node called key
generation center. This node also makes available to
all the nodes the parameters required for the
cryptographic operations, depending on the
algorithm used. The main advantage of this scheme
is that certificates are not needed; each node can
compute the public key of the node it wants to
communicate with, without being able to compute
the private key too. Because there is no need to
check the validity of the certificates, the key
generation center is no longer involved in the
communication, after it has provided the nodes with
their private keys.

Comparing the characteristics of identity-based
cryptography with the properties of an ad hoc

135
Mihai-Licǎ P., Victor Valeriu P. and Ion B. (2009).
SIMULATION OF AN IDENTITY-BASED CRYPTOGRAPHY SCHEME FOR AD HOC NETWORKS.
In Proceedings of the International Conference on Security and Cryptography, pages 135-139
DOI: 10.5220/0002183701350139
Copyright c© SciTePress

network it is obvious that identity-based encryption
suits ad hoc networks’ needs very well. It is like they
were made for each other. Using identity-based
cryptography for securing ad hoc networks is a
lately preoccupation of researchers. An example can
be found in Oliveira L.B.et al., 2007. A team from
The University of Brazil had successfully
implemented and tested a secure communication
scheme for sensor networks based on Tate pairing
and named TinyTate. The protocol developed
focuses on the needs of resource constrained nodes,
but this does not affect the generality of the
implementation.

What our team proposed was to develop a
simulation environment where the use of identity-
based cryptography in ad hoc networks can be
simulated and tested. The simulation of ad hoc
routing protocols is very easy with the use of
network simulators (like ns2), because ad hoc
routing protocols implementations already exists.
But simulating secure ad hoc networks is not as
easy. This was the motivation of our work that tried
to answer this issue.

2 IDEA

Imagine the scenario of a conference. When a
conference is organized, several discussion topics
are established, and for every one of the themes a
separate room is assigned. People joining the
conference can participate at discussions in all the
rooms. This means that someone can arrive at the
beginning and join discussion topic in room A. After
an half an hour, say he or she gets bored and goes to
room B. Then, after fifteen minutes, decides to go
back to room A. And so on and so forth. A mobile
ad hoc network would be the best solution to assure
the communication between the laptops or the PDAs
of the participants. But how can someone assure
security? What are the characteristics of such a
scenario? First of all, before the actual
communication starts all the participants had arrived
and all had checked in. After the conference began
no one can check in anymore. Second, the security
of communications has to be provided only for the
duration of the conference, witch is a relative small
time (several hours maybe). Third, once a person
was selected for this conference, he of she cannot be
excluded during the conference.

The following security scheme can be proposed
for such scenarios, based on the utilization of
identity-based cryptography. At checking in, every

attendant of the conference is provided with an IP, in
order to access the ad hoc network of the
conference. At the reception there is also the key
generation center. After the IP is assigned to the
participant’s device, it can ask the key generation
center for the public variables needed for identity-
based computations. After it receives them, it can
ask for its private key. The key generation center
computes the participant’s private key based on the
IP assigned to it and returns it. The private key is
exchanged on a secure channel (for example
Bluetooth) and the authentication of the requestor is
made by physical contact. The participant will also
receive a list of all the participants of the conference
and their IP numbers. After all the participants check
in, the key generation center, the only one that can
generate the private keys is shutdown. So the
participants can interchange secure messages based
only on their IPs.

3 IMPLEMENTATION

When implementing all these in ns2, the work was
divided in several steps. The first step was to
determine how this security scheme can be
implemented in ns2. The second step was to find an
identity-based cryptography library that can be use
with ns2 (this means that it had to be written in C or
C++). The next step was the implementation of the
objects involved (the key generation centre, the
communicating nodes) through the implementation
of the five needed algorithms (Boyen X., Martin L.,
2007): initialization of the key generation centre,
generation of the private keys, generation of the
public keys, and encryption of a message and
decryption of a message. The last step was to test the
implementation and to conclude future development
directions.

3.1 Security Scheme Implementation
and Library Utilization

With ns2, ad hoc networks can be simulated using
specific objects that represent the nodes of the
network. For these nodes, among other things, the
name of the ad hoc routing protocol needs to be
specified. Of course, ns2 does not contain an
implementation for all the routing protocols known,
but only for the most important ones like AODV,
DSR, and TORA. To simulate traffic in ns2, an
agent object must be attached to the nodes. The
agent object can act as a source or as a destination
for the communication packets. New agents can be

SECRYPT 2009 - International Conference on Security and Cryptography

136

implemented and added to ns2 in order to simulate
new protocols. The implementation of the proposed
secure communication scheme is based on such an
agent (Leiming Xu, 2001, Ros F.J., Ruiz P.M.,
2004).

The choice for the identity-based cryptography
library was MIRACL (Multiprecision Integer and
Rational Arithmetic C/C++ Library) from Shamus
Software. MIRACL is an open-source Big Number
Library who implements all the primitives necessary
to design Big Number Cryptography into real-world
application, and is free for educational use. This
library already contains an implementation of the
Boneh-Franklin identity-based encryption algorithm
(Boyen X., Martin L., 2007). The implementation
works with files, so code needed to be modified, but
it was a good starting point.

3.2 Algorithms’ Implementation

Next, the objects that were implemented in ns2 in
order to create the proposed security scheme are
presented. The code and the elements used are
briefly discussed.
class KGCAgent : public Agent {
private:
 Big *p, *q, *xP, *yP, *xPpub,
*yPpub, *xcube, *ycube;
 Big *s;
 bool Set_KGC(void);
public:
 KGCAgent();
 virtual int command(int argc, const
char*const* argv);
 virtual void recv(Packet*,
Handler*);
};

As one can see from the KGCAgent presented
above, a unitary approach was taken. This means
that this agent can be used for the key generation
centre node and for the communicating nodes also.
The only difference is that for the key generation
centre the Set_KGC() method must be called to set
up the environment, prior to anything else. The s
attribute represents the private key (of the KGC or of
the communicating nodes, depending of the type of
node that the agent is attached to). Attributes p, q,
xP, yP, xPpub, yPpub, xcube, ycube represent the
public parameters of the identity-based cryptography
environment. One can observe the data type Big that
was used to store the private key and also the public
parameters. This is a data type specific to MIRACL
and it is use to store very large numbers.

3.2.1 Key Generation Centre Initialization

Initialization of the identity-based cryptography
environment consists in setting the private key for
the key generation centre and constructing the public
parameters needed in calculations. This is done only
once, after the construction of the key generation
centre node, by calling the method named
Set_KGC(). The private key of the key generation
center remains secret. No one can steal it from the
key generation node: it is a private attribute of the
KGCAgent class. This, of course, is valid also for
the private keys of the communicating nodes that are
stored in the same attribute.

3.2.2 Private Keys Generation

Generation of the private keys is made by the key
generation centre only, based on its private key and
on the public parameters and, of course, on the
public key of the requestor. It is the time to mention
that the public key selected to be used was the IP
address of the nodes. A node requests the private
key from the key generation centre node, and the
key generation centre node computes is starting from
its IP address and sends it back. The node stores its
private key in the s attribute.

3.2.3 Public Key Generation

Each node can compute its public key or the public
key of any other node in the network using the
public parameters of the identity-based cryptography
environment and the IP of the node. Public key
computation is necessary for the generation of the
private key for a node by the key generation centre
node and for the encryption of a message for a
certain node.

3.2.4 Message Encryption

When node A envisages sending an encrypted
message to node B, it first randomly generates an
AES symmetric key. This key is then used to
encrypt the message for the node B. Then node A
generates the public key of the node B based on its
IP. The B’s public key is then used to encrypt the
AES key (Cooks Clifford, 2001). The encrypted
AES key and the encrypted message are then sent to
node B.

3.2.5 Message Decryption

When node B receives an encrypted message it first
decrypts the AES key using its private key. Then,

SIMULATION OF AN IDENTITY-BASED CRYPTOGRAPHY SCHEME FOR AD HOC NETWORKS

137

using this AES key it decrypts the actual message.
Because the AES key was encrypted with its pubic
key, node B is the only node that can decrypt the
symmetric key and, consequently, the message.

3.3 Communications

Communications taking place in the network can be
grouped in three categories: private key request
messages, public parameters request messages and
text message delivering messages. The structure
created to support all these messages is presented
below:
struct hdr_kgc {
 char ret;
 char priv_key[400];
 char V[HASH_LEN],W[HASH_LEN];
 char msg[100];
 unsigned int msg_length;

 static int offset_;
 inline static hdr_kgc* access(const
Packet* p)
 {
 return
 (hdr_kgc*) p->access(offset_);
 }
};

3.3.1 Private Key Request Messages

This kind of message can only originate from a
communicating node and can only be sent to the key
generation centre node. The ret attribute of the
message must have the value ‘0’. Using the IP of the
source node and the parameters of the environment,
the key generation centre computes the private key
and sends it back in the priv_key attribute of the
message, setting also ret attribute to the value ‘1’.
The node that requested the private key extracts it
from the corresponding attribute and stores it in the s
attribute.

3.3.2 Public Parameters Request Messages

After the initialization phase takes place in the key
generation centre node, the public parameters (that
are 8 in number) are available to all the nodes in the
network. Each one of these parameters must be
requested separately from the key generation centre
only, by setting the ret attribute of the message to
one of the values: ‘2’ for the first parameter, ‘4’ for
the second, ‘6’ for the third and so one to ‘16’ for
the eight. When receiving such a message, the key
generation centre node puts in the priv_key attribute
of the message the corresponding parameter and

change the ret attribute to a value of: ‘3’ for
returning the first parameter, ‘5’ for returning the
second parameter, ‘7’ for returning the third
parameter and so on to ‘17’ for returning the eight
parameter. The node that made the request extracts
the parameter from the priv_key attribute and stores
its value in its corresponding attribute.

3.3.3 Text Message Delivery Messages

After a node has requested and received the public
parameters, it can now send and receive text
messages to and from the nodes of the network. If
node A wants to send the message “Hello” to the
node B, it encrypts the message as shown at 2.2.4.
Then it puts the encrypted message in the msg
attribute of the message and the message length in
the msg_length attribute of the message and the
encrypted AES key in the attributes V and W. The
ret attribute is set to the value ‘18’. The message is
then sent to the destination. Here, in order to view
the actual message received, the node must apply the
decryption algorithm from 2.2.5.

4 SIMULATION

Let’s now see the implemented agent at work. Only
the part of a tcl script where our agent is used, is
presented. First, let’s consider the general simulation
scenario. Because its purpose is the presentation of
the usage of the KGCAgent object, it is a very
simple one. The simulation has three nodes. One of
them is the key generation centre. The other two are
communicating nodes. After creating the three
nodes, then the agent for the key generation centre
node, the Set_KGC method is called, in order to set
up the environment and it is attached to the first
node.
set p0 [new Agent/KGC]
$p0 call-setkgc
$ns_ attach-agent $node_(0) $p0

Then the two agents for the communicating
nodes are created and attached to the second and to
the third node, respectively.
set p1 [new Agent/KGC]
$ns_ attach-agent $node_(1) $p1
set p2 [new Agent/KGC]
$ns_ attach-agent $node_(2) $p2

Subsequently, the key generation center agent
and the agent of the second node are connected.
Then the second node requests its private key and
the eight public parameters.

SECRYPT 2009 - International Conference on Security and Cryptography

138

$ns_ connect $p0 $p1
$ns_ at 0.30 "$p1 getk"
$ns_ at 0.32 "$p1 getp"
$ns_ at 0.34 "$p1 getq"
$ns_ at 0.36 "$p1 getxP"
$ns_ at 0.38 "$p1 getyP"
$ns_ at 0.40 "$p1 getxPpub"
$ns_ at 0.42 "$p1 getyPpub"
$ns_ at 0.44 "$p1 getxcube"
$ns_ at 0.46 "$p1 getycube"

The same thing is done for the third node.
$ns_ at 0.60 "$ns_ connect $p0 $p2"
$ns_ at 0.62 "$p2 getk"
$ns_ at 0.64 "$p2 getp"
$ns_ at 0.66 "$p2 getq"
$ns_ at 0.68 "$p2 getxP"
$ns_ at 0.70 "$p2 getyP"
$ns_ at 0.72 "$p2 getxPpub"
$ns_ at 0.74 "$p2 getyPpub"
$ns_ at 0.76 "$p2 getxcube"
$ns_ at 0.78 "$p2 getycube"

The agents of the communicating nodes are
connected together. Then the nodes are moved.
During their movement, the nodes exchange text
messages.
$ns_ at 1.0 "$ns_ connect $p1 $p2"
$ns_ at 1.0 "$node_(1) setdest 105.0
200.0 60.0"
$ns_ at 1.0 "$node_(2) setdest 200.0
105.0 60.0"
$ns_ at 2.0 "$p1 send Question?"
$ns_ at 3.0 "$p2 send Answer!"

Note also that the commands use for all these
actions (call-setkgc, getk, getp, getq, getxP, getyP,
getxPpub, getyPpub, getxcube, getycube, send
some_text_message) are implemented in the
command method of KGCAgent class, as discussed
in the presentation of the possible messages types.
The recv method of the same class deals with the
possible responses to all these commands in the way
discussed also in 2.3.

5 CONCLUSIONS

The presented implementation allows simulating the
actual use of identity-based cryptography in ad hoc
networks. The implementation is very simple, but it
is also very powerful. The nodes can communicate
without exchanging certificates, without the need to
verify the validity of a certificate (time validity,
issuer validity, revocation status) and thus without
the presence of the CA (or in our case, the key
generation center) (Shamir Adi, 1998). The fact that

the key generation center can be and is turned off
when the actual communication begins is another
advantage, because in the network it would be a
single point of failure. A drawback of this
implementation is that it only assures message
confidentiality. That is because when a node
receives an encrypted message it can be sure that
only itself and the expeditor know its content. But
the expeditor’s identity is proven only by the source
IP address and this is unreliable. However,
authentication can also be implemented through the
presented agent by imaging a challenge-response
mechanism: before node A and B will communicate
they will identify each other. Node A will send to
node B an encrypted message with the public key of
B and will wait for B to send him back the same
message, but encrypted for himself, witch means
that B successfully decrypted the message, so B is
who it pretends to be. Then, node B will do the same
thing for node A. After these two steps, the nodes
can safely communicate to one another. The man-in-
the-middle attack is not possible when this
authentication is used, because the node who would
play this role would need the private key of one of
the nodes, witch is very unlikely because it was
stated that the private keys are distributed through a
secure channel and with physical authentication.
This is another disadvantage of this implementation:
the private key issuance through a secure channel is
not covered.

Still, it remains a good start that can be
developed in the future by adding the authentication
facility mentioned above, and also a no-repudiation
mechanism.

REFERENCES

Boyen X., Martin L., 2007, Identity-Based Cryptography
Standard (IBCS) #1: Supersingular Curve
Implementations of the BF and BB1 Cryptosystems,
Network Working Group, Request for Comments:
5091.

Cooks Clifford, 2001, An Identity Based Encryption
Scheme based on Quadratic Residues, UK Crown.

Leiming Xu, 2001, How to Add a New Protocol in NS2.
Oliveira L.B., Aranha D., Morais E., Daguano F., Lopez

J., Dahab R., 2007, TinyTate: Identity-Based
Encryption for Sensor Networks, University of
Campinas

Ros F.J., Ruiz P.M., 2004, Implement a New Manet
Unicast Routing Protocol in NS2.

Shamir Adi, 1998, Identity Based Cryptosystems and
Signature Schemes, Springer-Verlang.

SIMULATION OF AN IDENTITY-BASED CRYPTOGRAPHY SCHEME FOR AD HOC NETWORKS

139

