
Towards combining Model Matchers for
Transformation Development

Konrad Voigt

SAP Research CEC Dresden, Chemnitzer Str. 48, 01187 Dresden, Germany

Abstract. The theory of model transformation has been studied extensively dur-
ing the last decade and is now well understood. Several transformation languages
have been developed and implemented. Recently, model matching has been pro-
posed to offer support for transformation development. The task of model match-
ing aims at finding semantic correspondences between model elements, thus fa-
cilitating semi-automatic mapping generation.
However, current model matching approaches mostly concentrate on label-based
model similarity and are isolated. Further, they show deficits with respect to qual-
ity, performance and language independence.
We tackle these issues by proposing a novel approach using a combination of
matchers in a common framework. Thereby, schema matching techniques are
adapted and extended to suit our needs. Complementing our approach, we pro-
pose model specific matchers addressing new aspects of similarity. Our config-
urable framework allows an interpretation of combined matching results, thus
increasing the number and quality of mappings found.

1 Introduction

Model transformation in the context of Model Driven Development (MDD) has been
widely studied in the past. During the last years several transformation languages have
been proposed resulting in different engines. According to [1], a model transformation
in context of MDD is ”the process of converting one model to another model of the same
system”. This process is performed according to a transformation definition, which we
also refer to asmapping. A mapping describes the way a source model is transformed
to a target model. Transformation languages are supported by tools like smart editors
and debuggers. However, the languages face the problem of their complexity. They are
powerful in expressiveness but lack simplicity.

Considering a set of models which have to be transformed, the following steps are
part of developing a transformation. First, a mapping has to be identified, then it has
to be specified in a transformation language, which is finally executed. Mappings con-
sist mostly of one-to-one relations and common patterns, such as nesting or concate-
nation of elements. Applying proposal generation for mappings accelerates the task of
transformation development and reduces errors and effort in implementing transforma-
tions [2]. In the last two yearsmodel matching (also named metamodel alignment) has
been proposed as an approach for supporting mapping specification. The term model
matching refers to an identification of semantic correspondences between metamodel

Voigt K. (2009).
Towards combining Model Matchers for Transformation Development.
In Proceedings of the 1st International Workshop on Future Trends of Model-Driven Development, pages 3-12
DOI: 10.5220/0002175900030012
Copyright c© SciTePress



elements and originates from the fields of database- and XML-schema matching [3–5].
Since schemas and metamodels share similarities, model matching levers the concepts
to metamodels. It can be applied by generating proposals formappings based on match-
ing results [6, 2, 7].

Despite their feasibility today’s model matching approaches leave room for im-
provement in terms of quality and performance (execution time) of the matching pro-
cess. Furthermore, the proposed generation of transformations is specific to one lan-
guage, thus constituting no generic approach. The generated transformations also lack
an optimization in order to increase readability and usability for a transformation devel-
oper.

In this paper we demonstrate a novel approach on model matching-based on a frame-
work combining different matching techniques, also calledmatchers. Additionally, we
propose combining several matchers for an improved matching result. These techniques
differ from existing ones in taking additional informationinto account, like instances,
existing mappings, graph structures etc., thus allowing for an increased match quality
for an automatic approach. Therefore, we position our work in the middle, shifting the
approach closer to an automatic model mapping than existingapproaches as can be
seen in Figure 1. It depicts today’s approaches on mappings,which are manual. The
semi-automatic way is illustrated by the diamond in the middle, which we address to
shift more towards the automatic way.

������ ��������	
������������	

��� �������	

������
�	�����

Fig. 1. Degree of manual involvement in mapping specification.

We structure our paper as follows; in section 2 we show two motivating examples
for model matching for model transformation. The subsequent section 3 deals with
the issues in current model matching addressing the relatedwork; followed by a de-
scription of our approach proposing a matcher combination framework for matching
improvement (section 4). We finally summarize and conclude our paper in section 5.

2 Motivating Examples

In the following we will show two motivating examples for model transformation and
matching-based support in model transformation development.

2.1 Service Engineering

Our example is positioned in the area of model driven serviceengineering and service
marketplaces [8]. Consider two parties offering services to potential customers. For

4



example the company SAP1 and IBM2. Both use a proprietary approach of describing
a service. Assuming each of these approaches is model based,hence the companies
use their own tools and metamodels for offering and describing services. This setting is
depicted in Figure 2, illustrating the two parties, a partial description of a service and
the services themselves (instances of the description).

��� ���

��������	
����	���


���	
��

����� ��
�
�

���	
��

��
�� ���������

Fig. 2. Example of model transformation as integration of different service descriptions.

Since both companies are part of a competitive market, they do not agree on a com-
mon description language nor adjust their tools to externaldescriptions. One can see,
that the same entity of information is described – a service.There are common attributes
of a service like bundling and pricing. However, the descriptions are slightly different
in name, structure, type etc. In order to enable SAP to offer aservice in IBM’s market-
place, a service’s description needs to be transformed. This can be done using a model
transformation based on metamodels. Hereby model transformation development can
be supported by model matching, because the metamodels havesimilarities in name,
structure, type etc. While finding similarities between themetamodels, transformation
proposals can be generated and ease the development of the transformations. For each
new marketplace the recurring challenge of integrating service descriptions arises. To
summarize, the example is constituted of the following points:

1. Different metamodels of the same domain represent identical information (e.g. ser-
vice descriptions)

2. There is a need for synchronization of information
3. Models are isolated and not changeable, so there is no possibility for an integrated

model
4. Model transformation is used for synchronization
5. Models potentially include similar structures, similarnames, similar concepts, thus

model matching can support the transformation development

1 http://www.sap.com.
2 http://www.ibm.com.

5



2.2 Metamodel Evolution

Another example for matching-based support of model transformation is the area of
metamodel evolution. Consider a metamodel with corresponding instances, which is
subject of change. This includes actions like removing elements, restructuring, renam-
ing, adding elements etc. For example removing a metamodel element could lead to in-
valid instances, since the corresponding metamodel element for old instances has been
removed. A model transformation can be used to transform theold instances into new
ones with respect to the new metamodel version. This settingis a perfect situation for
model matching, because two metamodel versions are very similar, since both are of
the same domain. Again model matching can be applied for generating transformation
proposals.

Both examples for model matching in model transformation development demon-
strate, that model matching supports the recurring task of mapping specification. Sub-
sequently we will describe model matching approaches and reveal their issues.

3 Issues in Current Model Matching

Nowadays model matching approaches are in an early stage. There are several works
addressing support of model transformation development, which can be separated into
metamodel- and example (instance)-based approaches.

Metamodel-based Approaches. Model matching has been done first by Lopes et al.
[6, 9]. They apply a fix-point computation based approach fordetermining similarity
between metamodels. Based on this information they proposeto generate transforma-
tions. According to [6] their approach seems to be label-based. It uses information from
names, data types and enumerations, to propagate computed similarity through contain-
ment child elements. In addition they identify the problem of optimizing the generated
transformation code, because of its complexity.

Fabro and Valduriez [2] tackled the problem of model matching using a similarity
flooding approach. Again they use label-based similaritieswhich are propagated. Their
results lead to a verbose generation of concrete mappings. Their work shows a promis-
ing approach on proposal generation, which again raises theneed for optimization.

According to the approach proposed by Falleri [7] metamodels to be matched are
converted into directed labelled graphs. These graphs are used to apply a similarity
flooding algorithm, whereby the similarity computation is done via label-based similar-
ity. This similarity is propagated through the encoded graph until a fix-point is reached.
This approach lacks an evaluation and is label-based.

Example-based Approaches. Wimmer et al. [10] follow an example-based approach
for transformation generation. They consider label-basedsimilarity of instance values in
order to determine and generate a transformation between metamodels. They consider
only linguistic aspects and concentrate on instance values, which raises the need for
instances to cover all possible mappings. Finally they generate transformations.

6



Varro and Balogh [11] use a similar approach as Wimmer et. al.They apply induc-
tive logic in order to derive mappings based on instance data. They explicitly state their
assumptions including a complete coverage of mappings by the instance data.

All of the current model matching approaches rely on label-based similarity. Con-
sidering internationalized metamodels in different languages, like English and Chinese,
these approaches will fail. The published approaches lack an evaluation, but experi-
ments have shown that the number of found matches is below a half of all matches,
relative to a complete mapping specification. Therefore, they seem to leave room for
improvement. Additionally, the approaches do not considerthe performance (execution
time) of the matching algorithms implemented. This leads toexecution times for match-
ing in ranges of minutes considering models with more than 100 elements. This is not
feasible for using matching techniques for an accelerationof model transformation de-
velopment. Today’s model matching approaches are based on one matching algorithm
that is performed sequentially without a reuse or combination of matching results. For
a generation of transformation proposals they consider only one specific transformation
language. Thus removing flexibility and the choice for a language one is most familiar
with.

Furthermore, the code generated is not suitable for furtherprocessing by a developer,
since a lot of rules (more than 100 compared to 4 manually developed [2]) are generated.
Additionally, these rules lack of readability and usability. The subsequent section deals
with our approach to address the issues described.

To summarize, we have identified the following issues, investigating the state-of-
the-art:

1. Current model matching approaches make use of labels and are therefore restricted
to natural language (e.g. English or Chinese)

2. Current model matching approaches have to be increased inquality and perfor-
mance

3. Current code generation targets only model transformation and is limited to one
programming language

4. Generated transformation code is not developer-friendly

4 Improving Model Matching for Model Transformation
Development

We identified the issues and needs for improving model matching and transformation
generation. To address these issues we propose an approach independent from a specific
transformation language, in order to provide a generic solution for model transformation
development. This section describes our approach; first giving an overview followed by
detailed descriptions of our main ideas:

1. Improved model matching based on a matcher combination framework
2. Model matching by additional metamodel specific matchers
3. Model transformation generation and optimization

7



Model matching is used to create mapping proposals based on element similarity of
metamodels to be mapped. We propose to apply a matcher combination framework and
additional metamodel specific matchers. We represent the generated proposals in a pivot
model for model transformation, which serves as a base for a generation of executable
model transformations.

Figure 3 depicts an overview of our matching-based approach. The metamodels to
be mapped (and their instances) are passed onto the matchingcomponent (1). After
the matchers have been applied, generated proposals are presented to a model trans-
formation developer (2). This developer edits the proposals and afterwards executable
transformations are generated of them (3) and finally optimized.

������������	

�����	

�
������
���������

���
�����	 
� �� �

��
�	����
����
�����
���

�
������
������ ���������

���

�

Fig. 3. Process of matching-based support for model transformation development.

4.1 Combining Matcher Framework and Metamodel Matchers

In order to increase the matching result quality we propose to use a matcher combination
framework. This framework provides a base for combining results of model matchers.
For this purpose, we adopted the COMA++ approach proposed byDo et. al. [4, 5] as
outlined in [12]; thus taking advantage of their results. Figure 4 shows the concept of
this combining framework; it receives metamodels (with additional models) as an input
producing mapping proposals as an output. The processing ofthe given metamodels is
done by applying different matchers each leading to a specific matching result.

These results are placed in a matrix having the source and target elements on the
axis and the similarity values as content. Arranging the matrices along the elements
being matched leads to a similarity cube containing all similarity values. These values
are combined in the similarity cube using heuristics and different matching strategies.
Optionally matchers can be applied again and finally the resulting match is created. This
approach allows for a combination of matching results from different approaches and
even grants a possibility for importing matching results from other tools.

���������	 ��

��	
���������

���������

���������
����������	
��

��	�����

��	�����

��	�����

��	�������	�������	�����


����������

Fig. 4. Overview of our model matcher combination framework.

8



Nowadays model matching approaches rely on the similarity flooding algorithm,
which uses fix-point calculation for similarity calculation. The result is computed by
only one matcher with a fixed order of matching algorithms. Applying our approach al-
lows a combination of matchers and matching results while caching intermediate results.
Both results can be reused across different matchers and do not have to be computed
again. This is one argument for an increased performance. Furthermore, we propose to
design the matchers themselves with respect to performance.

�������

�����	
������
 �����������
 �����	������


��������� ������� ��������� �����	
�� �������

��������� �	��������
���
 ��������� �	��������

���


����
���������

���������
������
����

�����	���� �������

 ����
!��	����	�

"��#����� $����	�����	��
����

�������

�	
�����������

Fig. 5. Classification of model matching techniques.

Figure 5 depicts our classification of matching approaches,which is based on the
schema matching classification of Rahm and Bernstein [13]. We adapted and extended
it to suit model matching, finally we classified our matchers.The lowest level, high-
lighted by boxes, shows the proposed matching techniques, the other nodes (classes)
are described in the following. The top-level classmetamodel-based describes match-
ers based on the information provided by metamodels. It is divided intoelement- and
structure- based matchers. The element-based matchers uselinguistic similarity com-
puted from the names of elements, whereas the structure-based ones useconstraint-
based information like types, cardinalities etc. Theinstance-based matchers rely on
information given by the metamodel instances (models), which is again structured like
the metamodel-based matchers. Finally thereuse-oriented matchers takes advantage of
available information from existing metamodels (e.g. shared elements) or former map-
pings, this knowledge is used for similarity computation.

Adopting the XML-schema based COMA++ we selected a set of matchers. The se-
lection is based on the classification, and coverage of all classes and the schema match-
ing experiences, opting for matchers with best results. Furthermore, we propose addi-
tional matchers to take advantage of the greater expressiveness of metamodels (com-
pared to XML-schema). The matchers are as follows:
Dictionary Matcher. Using a dictionary allows for matching-based on synonyms or
translations. This matcher uses a given database of words tocompute a linguistic simi-
larity.

9



Name Matcher. This matcher targets the linguistic similarity of metamodel elements.
It splits given labels into tokens following a camel case approach. Afterwards a token
similarity based on a string similarity is computed.
Name Path Matcher. This matcher performs a name matching on the containment path
of an element. This supports to distinguish sublevel-domains in a structured contain-
ment tree even if leaf nodes do have equal names.
Data Type Matcher. In contrast to the type system provided by XML, metamodels and
in particular EMF allows a broader range of types. For example EMF allows defining
data types based on Java classes. An extended data type matcher uses these concepts
allowing an improved matching result.
Parent Matcher.Based on similar containment parents this matcher determines a simi-
larity between children. It follows the rational that having similar parents, indicates a
similarity of elements.
Leaf Matcher.This matcher computes a similarity based on similar containment children.
If metamodel elements have similar children, then a similarity of these elements can be
derived.
Graph Matcher. This matcher applies graph similarity algorithms in order to derive a
similarity for elements being part of a matching graph structure. Hereby it takes ad-
vantage of typed relationships between elements like inheritance, aggregation, etc. It
follows the rational of computing the biggest common sub-graph of two given graphs.
Annotation Matcher. Annotation of metamodel elements can also be used for similarity
computation. In contrast to schema matching this does not only address documentation
but specific aspects, like mapping descriptions. For example EMF3 makes use of an-
notations for describing customization of automatic schema mapping generation. This
specific information can be used for a better matching result.
Instance Matcher. This matcher uses instance data (models) for computing an element
similarity. The matcher examines a set of instances of the metamodels to be matched. If
instance values are similar, an element similarity can be concluded.
Frequency Matcher. This matcher examines the distribution of instantiated elements of
metamodels to be matched by using instance data. A similarity based on the frequency
of instances can be computed.
Pattern Matcher. To reduce metamodel heterogeneity and redundancy of metamodel
elements, patterns of these are reused across different metamodels. This includes ele-
ments like data types, constraints, etc. This matcher uses these common elements for
similarity computation.
Transformation Reuse Matcher. Based on a central mapping repository and associated
metamodels this matcher evaluates an existing knowledge base of mappings. The match-
ing is performed by looking up elements in the repository similar to elements being
matched. If there is an existing relation between them, a similarity is derived for the
matching elements.

First experiments with model matching have shown, that the matching quality de-
pends on the type of metamodels and the matcher configuration. For example consider
two metamodels to be matched which are defined on the same level of abstraction con-
taining different representation of the same information,so they are very similar in

3 Eclipe Modeling Framework –http://www.eclipse.org/emf/

10



their names. Here a name matcher has significant weight, because the names for the
same concept are similar. In contrast consider two metamodels in different languages;
here a name-based matcher will fail. Classifying the type ofmodel transformation in-
tended allows a derivation of a specific weighting and matcher configuration for the
matching framework. This covers the configuration and specific selection of matchers
to be applied.

4.2 Model Transformation Generation

Today’s approaches use simple mapping models which serve asa base for code gen-
eration. However, the mapping models capture only static information, because they
allow only links between model elements. We propose to investigate several transfor-
mation languages in order to define a non-executable pivot metamodel based on their
commonalities. This metamodel is the foundation for transformations being generated
and optimized with respect to a developer. For validation and acceptance purposes we
propose to start with QVT [14] for transformation generation.

5 Summary and Conclusions

We proposed an approach on improving model matching for model transformation de-
velopment. This is implemented by a matcher combination framework, metamodel spe-
cific matchers and model transformation generation. We presented a classification and
concepts for metamodel specific matchers. Namely they are: an instance matcher, a
graph matcher, an annotation matcher, a data type matcher, afrequency matcher, a pat-
tern matcher, a transformation reuse matcher, and a matcherconfiguration based on
model transformation type classification. We proposed a matcher and framework de-
sign dedicated to improved performance and scalability of model matching.

The main goal of our idea is to lower the effort in model transformation development
and to reduce possible errors. Our proposal of using a combining matcher framework
with additional matchers leads to:

1. Metamodel language independent matching by applying additional matchers
2. Increased quality of matching results by applying a matcher combination frame-

work, additional matchers and a reuse of matching results
3. A combination of isolated matchers and even an import of matching results of ex-

ternal approaches (as a virtual matcher)
4. Increased matching performance by applying a matcher combination framework

and designing performant matchers

A first prototypical implementation using an existing framework and combining
the instance matcher and data type matcher indicate the feasibility of our approach,
which has to be refined and evaluated further. The proposed framework can also serve
as a basis for integrating existing matching approaches in order to improve matching
quality.

The evaluation and development of both will be based on practical use cases of
model transformation in the area of service engineering andmodel evolution. This will

11



allow for an evaluation of feasibility as well as quality of our proposals using common
measurements like precision, recall and F-measurement. Hereby it is worth to investi-
gate a benchmark for model matching consisting of a suite of sample data. A study of
criteria influencing the quality of matching results, whichallows for reliable statements
regarding the matching quality, e.g. a complete automatic generation of transformations
is part of the future work as well. This also includes model transformation scenario clas-
sification for matcher configuration. Furthermore, it is worth to explore model matching
in other areas like trace development, model search and modelling proposal generation
as promising future work.

Acknowledgements

The work was funded by means of the German Federal Ministry ofEconomy and Tech-
nology under the promotional reference ”01MQ07012”. The author takes the responsi-
bility for the contents.

References

1. Object Management Group (OMG): MDA Guide Version 1.0.1. (2003) OMG document
omg/2003-06-01.

2. Fabro, M.D.D., Valduriez, P.: Semi-automatic model integration using matching transforma-
tions and weaving models. Proceedings of SAC ’07 (2007) 963–970

3. Madhavan, J., Bernstein, P.A., Rahm, E.: Generic schema matching with cupid. In: The
VLDB Journal. (2001) 49–58

4. Do, H.H.: Schema Matching and Mapping-based Data Integration. VDM Verlag Dr. Mueller
e.K. (2006)

5. Aumueller, D., Do, H.H., Massmann, S., Rahm, E.: Schema and ontology matching with
COMA++. In: Proceedings of SIGMOD ’05. (2005) 906–908

6. Lopes, D., Hammoudi, S., Abdelouahab, Z.: Schema matching in the context of model driven
engineering: From theory to practice. In: Proceedings of SCSS05. (2006) 219–227

7. Falleri, J.R., Huchard, M., Lafourcade, M., Nebut, C.: Metamodel matching for automatic
model transformation generation. In: Proceedings of MoDELS ’08. (2008) 326–340

8. Cardoso, J., Voigt, K., Winkler, M.: Service engineeringfor the internet of services. In:
Enterprise Information Systems X, Springer (2008)

9. Lopes, D., Hammoudi, S., de Souza, J., Bontempo, A.: Metamodel Matching: Experiments
and Comparison. In: Proceedings of the International Conference on Software Engineering
Advances (ICSEA’06), Tahiti, French Polynesia, IEEE Press(2006)

10. Wimmer, M., Strommer, M., Kargl, H., Kramler, G.: Towards model transformation genera-
tion by-example. In: Proceedings of HICSS ’07. (2007) 285b

11. Varró, D., Balogh, Z.: Automating model transformation by example using inductive logic
programming. In: Proceedings of SAC ’07. (2007) 978–984

12. Voigt, K.: Generation of language-specific transformation rules based on metamodels. In:
Proceedings of the 1st IoS PhD Symposium 2008 at I-ESA’08. (2008)

13. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. The
VLDB Journal10 (2001) 334–350

14. OMG: Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification. Object
Management Group (2007) ptc/07-07-07.

12


