Towards combining Model Matchers for
Transformation Development

Konrad Voigt

SAP Research CEC Dresden, Chemnitzer Str. 48, 01187 Dresden, Germany

Abstract. The theory of model transformation has been studied extensively dur-
ing the last decade and is now well understood. Several transformation languages
have been developed and implemented. Recently, model matching has been pro-
posed to offer support for transformation development. The task of model match-
ing aims at finding semantic correspondences between model elements, thus fa-
cilitating semi-automatic mapping generation.

However, current model matching approaches mostly concentrate on label-based
model similarity and are isolated. Further, they show deficits with respect to qual-
ity, performance and language independence.

We tackle these issues by proposing a novel approach using a combination of
matchers in a common framework. Thereby, schema matching techniques are
adapted and extended to suit our needs. Complementing our approach, we pro-
pose model specific matchers addressing new aspects of similarity. Our config-
urable framework allows an interpretation of combined matching results, thus
increasing the number and quality of mappings found.

1 Introduction

Model transformation in the context of Model Driven Development (MDD) has been
widely studied in the past. During the last years several transformation languages have
been proposed resulting in different engines. According to [1], a model transformation
in context of MDD is "the process of converting one model to another model of the same
system”. This process is performed according to a transformation definition, which we
also refer to asnapping. A mapping describes the way a source model is transformed
to a target model. Transformation languages are supported by tools like smart editors
and debuggers. However, the languages face the problem of their complexity. They are
powerful in expressiveness but lack simplicity.

Considering a set of models which have to be transformed, the following steps are
part of developing a transformation. First, a mapping has to be identified, then it has
to be specified in a transformation language, which is finally executed. Mappings con-
sist mostly of one-to-one relations and common patterns, such as nesting or concate-
nation of elements. Applying proposal generation for mappings accelerates the task of
transformation development and reduces errors and effort in implementing transforma-
tions [2]. In the last two yeamsiodel matching (also named metamodel alignment) has
been proposed as an approach for supporting mapping specification. The term model
matching refers to an identification of semantic correspondences between metamodel

Voigt K. (2009).

Towards combining Model Matchers for Transformation Development.

In Proceedings of the 1st International Workshop on Future Trends of Model-Driven Development, pages 3-12
DOI: 10.5220/0002175900030012

Copyright © SciTePress

elements and originates from the fields of database- and Xdflema matching [3-5].
Since schemas and metamodels share similarities, modehimgtievers the concepts
to metamodels. It can be applied by generating proposaieémpings based on match-
ing results [6, 2, 7].

Despite their feasibility today’s model matching appraeteave room for im-
provement in terms of quality and performance (executioe}iof the matching pro-
cess. Furthermore, the proposed generation of transfamnsais specific to one lan-
guage, thus constituting no generic approach. The gemratesformations also lack
an optimization in order to increase readability and ugglitr a transformation devel-
oper.

In this paper we demonstrate a novel approach on model magtdizised on a frame-
work combining different matching techniques, also caftedchers. Additionally, we
propose combining several matchers for an improved majeksult. These techniques
differ from existing ones in taking additional informatiomo account, like instances,
existing mappings, graph structures etc., thus allowingfoincreased match quality
for an automatic approach. Therefore, we position our worthé middle, shifting the
approach closer to an automatic model mapping than exisgipgoaches as can be
seen in Figure 1. It depicts today’s approaches on mappinigish are manual. The
semi-automatic way is illustrated by the diamond in the radd/hich we address to
shift more towards the automatic way.

Current

Today Matching Our work

K> ~5 '
! 1

manual semi-automatic automatic

Fig. 1. Degree of manual involvement in mapping specification.

We structure our paper as follows; in section 2 we show twavatihg examples
for model matching for model transformation. The subsetgention 3 deals with
the issues in current model matching addressing the relatek; followed by a de-
scription of our approach proposing a matcher combinatiaméwork for matching
improvement (section 4). We finally summarize and conclugepaper in section 5.

2 Motivating Examples

In the following we will show two motivating examples for meldransformation and
matching-based support in model transformation developme

2.1 Service Engineering

Our example is positioned in the area of model driven ser@iggineering and service
marketplaces [8]. Consider two parties offering servieepdtential customers. For

example the company SARNd IBM?. Both use a proprietary approach of describing
a service. Assuming each of these approaches is model Haseck the companies
use their own tools and metamodels for offering and desagibervices. This setting is
depicted in Figure 2, illustrating the two parties, a padiescription of a service and
the services themselves (instances of the description).

SAP IBM
| Bundle Pricing | | Price | BundleType |

D D Model Transformation
D D D D

Fig. 2. Example of model transformation as integration of différgarvice descriptions.

Since both companies are part of a competitive market, theyotlagree on a com-
mon description language nor adjust their tools to extedeatriptions. One can see,
that the same entity of information is described — a serViibere are common attributes
of a service like bundling and pricing. However, the ded@iys are slightly different
in name, structure, type etc. In order to enable SAP to offergice in IBM’s market-
place, a service’s description needs to be transformed.ddn be done using a model
transformation based on metamodels. Hereby model transtayn development can
be supported by model matching, because the metamodelsstmaii@rities in name,
structure, type etc. While finding similarities between thetamodels, transformation
proposals can be generated and ease the development adribfotmations. For each
new marketplace the recurring challenge of integratingiserdescriptions arises. To
summarize, the example is constituted of the following oin

1. Different metamodels of the same domain represent icldnitiformation (e.g. ser-
vice descriptions)

2. Thereis a need for synchronization of information

3. Models are isolated and not changeable, so there is ndbpibg$or an integrated
model

4. Model transformation is used for synchronization

5. Models potentially include similar structures, simitemes, similar concepts, thus
model matching can support the transformation development

Thttp://ww. sap. com
Zhttp://ww. i bm com

2.2 Metamodel Evolution

Another example for matching-based support of model t@nsdtion is the area of
metamodel evolution. Consider a metamodel with corresiponidistances, which is
subject of change. This includes actions like removing elets) restructuring, renam-
ing, adding elements etc. For example removing a metamdsiakat could lead to in-
valid instances, since the corresponding metamodel elefoeald instances has been
removed. A model transformation can be used to transfornolthénstances into new
ones with respect to the new metamodel version. This sdagiagperfect situation for
model matching, because two metamodel versions are veiilagigince both are of
the same domain. Again model matching can be applied forrgéng transformation
proposals.

Both examples for model matching in model transformatiovettjpment demon-
strate, that model matching supports the recurring taskagfpimg specification. Sub-
sequently we will describe model matching approaches araht¢heir issues.

3 Issuesin Current Model Matching

Nowadays model matching approaches are in an early stagee e several works
addressing support of model transformation developmemitiwcan be separated into
metamodel- and example (instance)-based approaches.

Metamodel-based Approaches. Model matching has been done first by Lopes etal.
[6,9]. They apply a fix-point computation based approachdieiermining similarity
between metamodels. Based on this information they projmogenerate transforma-
tions. According to [6] their approach seems to be labektak uses information from
names, data types and enumerations, to propagate computkdity through contain-
ment child elements. In addition they identify the problehoptimizing the generated
transformation code, because of its complexity.

Fabro and Valduriez [2] tackled the problem of model matghising a similarity
flooding approach. Again they use label-based similaritieieh are propagated. Their
results lead to a verbose generation of concrete mappings: Work shows a promis-
ing approach on proposal generation, which again raiseseée for optimization.

According to the approach proposed by Falleri [7] metamotiebe matched are
converted into directed labelled graphs. These graphs sad to apply a similarity
flooding algorithm, whereby the similarity computation &ne via label-based similar-
ity. This similarity is propagated through the encoded graptil a fix-point is reached.
This approach lacks an evaluation and is label-based.

Example-based Approaches. Wimmer etal. [10] follow an example-based approach
for transformation generation. They consider label-basedarity of instance values in
order to determine and generate a transformation betwetamodels. They consider
only linguistic aspects and concentrate on instance valeigh raises the need for
instances to cover all possible mappings. Finally they geedransformations.

Varro and Balogh [11] use a similar approach as Wimmer ettay apply induc-
tive logic in order to derive mappings based on instance déay explicitly state their
assumptions including a complete coverage of mappingséingtance data.

All of the current model matching approaches rely on latsdeal similarity. Con-
sidering internationalized metamodels in different laauges, like English and Chinese,
these approaches will fail. The published approaches lac&valuation, but experi-
ments have shown that the number of found matches is belovif afhall matches,
relative to a complete mapping specification. Thereforey tteem to leave room for
improvement. Additionally, the approaches do not condideperformance (execution
time) of the matching algorithms implemented. This leadsdecution times for match-
ing in ranges of minutes considering models with more thahdl@ments. This is not
feasible for using matching techniques for an acceleraifanodel transformation de-
velopment. Today’s model matching approaches are basedeematching algorithm
that is performed sequentially without a reuse or combamatif matching results. For
a generation of transformation proposals they considgramé specific transformation
language. Thus removing flexibility and the choice for a laauge one is most familiar
with.

Furthermore, the code generated is not suitable for fuptteressing by a developer,
since a lot of rules (more than 100 compared to 4 manuallyldped [2]) are generated.
Additionally, these rules lack of readability and usabilfthe subsequent section deals
with our approach to address the issues described.

To summarize, we have identified the following issues, itigating the state-of-
the-art:

1. Current model matching approaches make use of labelsranideaxefore restricted
to natural language (e.g. English or Chinese)

2. Current model matching approaches have to be increasqdaiity and perfor-
mance

3. Current code generation targets only model transfoonatind is limited to one
programming language

4. Generated transformation code is not developer-friend!

4 Improving Model Matching for Model Transformation
Development

We identified the issues and needs for improving model magcand transformation
generation. To address these issues we propose an apprdapkmndent from a specific
transformation language, in order to provide a generid&widor model transformation

development. This section describes our approach; firsiggan overview followed by

detailed descriptions of our main ideas:

1. Improved model matching based on a matcher combinationdwork
2. Model matching by additional metamodel specific matchers
3. Model transformation generation and optimization

Model matching is used to create mapping proposals baseleémeet similarity of
metamodels to be mapped. We propose to apply a matcher catiobiframework and
additional metamodel specific matchers. We represent tergted proposals in a pivot
model for model transformation, which serves as a base fenamtion of executable
model transformations.

Figure 3 depicts an overview of our matching-based approdue metamodels to
be mapped (and their instances) are passed onto the matadmmgonent (1). After
the matchers have been applied, generated proposals aentwe to a model trans-
formation developer (2). This developer edits the promoaal afterwards executable
transformations are generated of them (3) and finally opgtchi

Metamodels

ATL
Matching }7 ,‘ Mapping Transformation -
Component Editor Generator m Optimizer

instanceOf

Models

Fig. 3. Process of matching-based support for model transformdgwelopment.

4.1 Combining Matcher Framework and Metamodel Matchers

In order to increase the matching result quality we propessé a matcher combination
framework. This framework provides a base for combiningitssof model matchers.
For this purpose, we adopted the COMA++ approach proposdoobst. al. [4, 5] as
outlined in [12]; thus taking advantage of their resultgufe 4 shows the concept of
this combining framework; it receives metamodels (withiiddal models) as an input
producing mapping proposals as an output. The processiting @fiven metamodels is
done by applying different matchers each leading to a speuifitching result.

These results are placed in a matrix having the source agdttatements on the
axis and the similarity values as content. Arranging thericed along the elements
being matched leads to a similarity cube containing all lgirity values. These values
are combined in the similarity cube using heuristics antedéht matching strategies.
Optionally matchers can be applied again and finally theltiagumatch is created. This
approach allows for a combination of matching results froffeent approaches and
even grants a possibility for importing matching resultsrother tools.

Metamodels Mappings
% | Matcher X I—il Result X ’\‘

| Matcher Y]—il ResultY |—> Result X — ?ﬂ:—’:l
% | Matcher Z]—'I ResultZ i/v
Similarity Cube Combination

Fig. 4. Overview of our model matcher combination framework.

Nowadays model matching approaches rely on the similantydihg algorithm,
which uses fix-point calculation for similarity calculatioThe result is computed by
only one matcher with a fixed order of matching algorithmspkmg our approach al-
lows a combination of matchers and matching results whitbicay intermediate results.
Both results can be reused across different matchers andtdwane to be computed
again. This is one argument for an increased performancthdtmore, we propose to
design the matchers themselves with respect to performance

Model Matching

T

Metamodel-based Instance-based Reuse-oriented
Element Structure Element Structure Metamodel Mapping

| |

I Constraint- i

Linguistic —— . ‘e Constraint-
Linguistic

based 14 based

! y

Dictionary | —» Datatype | [instance | [Frequency] [Pattern] Transformation
Reuse

Name | Parent |
Name path | —DI Leaf |

Fig. 5. Classification of model matching techniques.

Figure 5 depicts our classification of matching approaciwsgh is based on the
schema matching classification of Rahm and Bernstein [18]adapted and extended
it to suit model matching, finally we classified our matchdrse lowest level, high-
lighted by boxes, shows the proposed matching technighesther nodes (classes)
are described in the following. The top-level clamsstamodel-based describes match-
ers based on the information provided by metamodels. Inigled intoelement- and
structure- based matchers. The element-based matcherBnggestic similarity com-
puted from the names of elements, whereas the structussltzases useonstraint-
based information like types, cardinalities etc. Thestance-based matchers rely on
information given by the metamodel instances (models)¢clvis again structured like
the metamodel-based matchers. Finallyréaese-oriented matchers takes advantage of
available information from existing metamodels (e.g. edalements) or former map-
pings, this knowledge is used for similarity computation.

Adopting the XML-schema based COMA++ we selected a set ofheais. The se-
lection is based on the classification, and coverage ofadkels and the schema match-
ing experiences, opting for matchers with best resultstiiéamore, we propose addi-
tional matchers to take advantage of the greater expreesgeof metamodels (com-
pared to XML-schema). The matchers are as follows:

Dictionary Matcher. Using a dictionary allows for matching-based on synonyms or
translations. This matcher uses a given database of worsnpute a linguistic simi-
larity.

10

Name Matcher. This matcher targets the linguistic similarity of metamloelements.

It splits given labels into tokens following a camel caserapph. Afterwards a token
similarity based on a string similarity is computed.

Name Path Matcher. This matcher performs a name matching on the containmeht pat
of an element. This supports to distinguish sublevel-domai a structured contain-
ment tree even if leaf nodes do have equal names.

Data Type Matcher. In contrast to the type system provided by XML, metamodets an
in particular EMF allows a broader range of types. For exangMF allows defining
data types based on Java classes. An extended data typeemagels these concepts
allowing an improved matching result.

Parent Matcher.Based on similar containment parents this matcher detesrarsimi-
larity between children. It follows the rational that hayisimilar parents, indicates a
similarity of elements.

Leaf Matcher.This matcher computes a similarity based on similar contaimt children.

If metamodel elements have similar children, then a sintylaf these elements can be
derived.

Graph Matcher. This matcher applies graph similarity algorithms in ordederive a
similarity for elements being part of a matching graph stitee Hereby it takes ad-
vantage of typed relationships between elements like itamee, aggregation, etc. It
follows the rational of computing the biggest common sudpgrof two given graphs.
Annotation Matcher. Annotation of metamodel elements can also be used for sityila
computation. In contrast to schema matching this does rgtagliress documentation
but specific aspects, like mapping descriptions. For exarBMF makes use of an-
notations for describing customization of automatic schenapping generation. This
specific information can be used for a better matching result

Instance Matcher. This matcher uses instance data (models) for computingesmegit
similarity. The matcher examines a set of instances of theamedels to be matched. If
instance values are similar, an element similarity can ineloaled.

Frequency Matcher. This matcher examines the distribution of instantiatedhelets of
metamodels to be matched by using instance data. A sirjilaated on the frequency
of instances can be computed.

Pattern Matcher. To reduce metamodel heterogeneity and redundancy of mediimo
elements, patterns of these are reused across differeatmodels. This includes ele-
ments like data types, constraints, etc. This matcher tgsetcommon elements for
similarity computation.

Transformation Reuse Matcher. Based on a central mapping repository and associated
metamodels this matcher evaluates an existing knowledggedfanappings. The match-
ing is performed by looking up elements in the repositoryilsimto elements being
matched. If there is an existing relation between them, dlasity is derived for the
matching elements.

First experiments with model matching have shown, that thé&ching quality de-
pends on the type of metamodels and the matcher configur&iiorexample consider
two metamodels to be matched which are defined on the samefelastraction con-
taining different representation of the same informatiem they are very similar in

% Eclipe Modeling Framework ht t p: / / www. ecl i pse. or g/ enf/

11

their names. Here a name matcher has significant weightubedhe names for the
same concept are similar. In contrast consider two metalsauedifferent languages;
here a name-based matcher will fail. Classifying the typeotiel transformation in-
tended allows a derivation of a specific weighting and matcloafiguration for the
matching framework. This covers the configuration and djges¢lection of matchers
to be applied.

4.2 Model Transformation Generation

Today’s approaches use simple mapping models which seraebase for code gen-
eration. However, the mapping models capture only stafmrmmation, because they

allow only links between model elements. We propose to iityate several transfor-

mation languages in order to define a non-executable pivtamadel based on their

commonalities. This metamodel is the foundation for trarsfations being generated
and optimized with respect to a developer. For validatioth arceptance purposes we
propose to start with QVT [14] for transformation generatio

5 Summary and Conclusions

We proposed an approach on improving model matching for itoalesformation de-
velopment. This is implemented by a matcher combinatiomé&aork, metamodel spe-
cific matchers and model transformation generation. Weepttesl a classification and
concepts for metamodel specific matchers. Namely they arénstance matcher, a
graph matcher, an annotation matcher, a data type matcfieguency matcher, a pat-
tern matcher, a transformation reuse matcher, and a matoméiguration based on
model transformation type classification. We proposed ahextand framework de-
sign dedicated to improved performance and scalability adehmatching.

The main goal of our idea is to lower the effortin model tramsfation development
and to reduce possible errors. Our proposal of using a cantpmatcher framework
with additional matchers leads to:

1. Metamodel language independent matching by applyingiaddl matchers

2. Increased quality of matching results by applying a metaombination frame-
work, additional matchers and a reuse of matching results

3. A combination of isolated matchers and even an import dEhiag results of ex-
ternal approaches (as a virtual matcher)

4. Increased matching performance by applying a matchebuwtion framework
and designing performant matchers

A first prototypical implementation using an existing frameek and combining
the instance matcher and data type matcher indicate théifégsof our approach,
which has to be refined and evaluated further. The proposadksfivork can also serve
as a basis for integrating existing matching approachesdardo improve matching
quality.

The evaluation and development of both will be based on jpedatise cases of
model transformation in the area of service engineeringaodel evolution. This will

12

allow for an evaluation of feasibility as well as quality afrgproposals using common
measurements like precision, recall and F-measurementbiét is worth to investi-
gate a benchmark for model matching consisting of a suitamfsde data. A study of
criteria influencing the quality of matching results, whadlows for reliable statements
regarding the matching quality, e.g. a complete automatiegation of transformations
is part of the future work as well. This also includes modehsformation scenario clas-
sification for matcher configuration. Furthermore, it is thao explore model matching
in other areas like trace development, model search andllimaderoposal generation
as promising future work.

Acknowledgements

The work was funded by means of the German Federal MinistBcohomy and Tech-
nology under the promotional reference "01MQO07012". Thihautakes the responsi-
bility for the contents.

References

1. Object Management Group (OMG): MDA Guide Version 1.02003) OMG document
omg/2003-06-01.

2. Fabro, M.D.D., Valduriez, P.: Semi-automatic modelgnétion using matching transforma-
tions and weaving models. Proceedings of SAC '07 (2007) 983—

3. Madhavan, J., Bernstein, P.A., Rahm, E.: Generic scheatahing with cupid. In: The
VLDB Journal. (2001) 49-58

4. Do, H.H.: Schema Matching and Mapping-based Data IntiegraVDM Verlag Dr. Mueller
e.K. (2006)

5. Aumueller, D., Do, H.H., Massmann, S., Rahm, E.: Schengaamtology matching with
COMA++. In: Proceedings of SIGMOD ’05. (2005) 906—-908

6. Lopes, D., Hammoudi, S., Abdelouahab, Z.: Schema majchithe context of model driven
engineering: From theory to practice. In: Proceedings d3S@5. (2006) 219-227

7. Falleri, J.R., Huchard, M., Lafourcade, M., Nebut, C.: tMeodel matching for automatic
model transformation generation. In: Proceedings of MoBH8. (2008) 326—-340

8. Cardoso, J., Voigt, K., Winkler, M.: Service engineerifiog the internet of services. In:
Enterprise Information Systems X, Springer (2008)

9. Lopes, D., Hammoudi, S., de Souza, J., Bontempo, A.: MedgiMatching: Experiments
and Comparison. In: Proceedings of the International Genfee on Software Engineering
Advances (ICSEA06), Tahiti, French Polynesia, IEEE P(2€896)

10. Wimmer, M., Strommer, M., Kargl, H., Kramler, G.: Towanthodel transformation genera-
tion by-example. In: Proceedings of HICSS '07. (2007) 285b

11. Varrd, D., Balogh, Z.: Automating model transformatimy example using inductive logic
programming. In: Proceedings of SAC '07. (2007) 978984

12. \Voigt, K.: Generation of language-specific transfoioratules based on metamodels. In:
Proceedings of the 1st 10S PhD Symposium 2008 at I-ESAGREP

13. Rahm, E., Bernstein, P.A.: A survey of approaches tomaatic schema matching. The
VLDB Journal10 (2001) 334—-350

14. OMG: Meta Object Facility (MOF) 2.0 Query/View/Transfeation Specification. Object
Management Group (2007) ptc/07-07-07.

