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Abstract: The ACOS project seeks to improve and develop novel robot guidance and control systems integrating 
Novel Potential Field autonomous navigation techniques, multi-classifier design with direct hardware 
implementation. The project development brings together a number of complementary technologies to form 
an overall enhanced system. The work is aimed at guidance and collision avoidance control systems for 
applications in air, land and water based vehicles for passengers and freight. Specifically, the paper 
addresses the generic nature of the previously presented novel Potential Field Algorithm based on the 
combination of the associated rule based mathematical algorithm and the concept of potential field. The 
generic nature of the algorithm allows it to be efficient, not only when applied to multi-autonomous robots, 
but also when applied to collision avoidance between a single autonomous agent and an obstacle displaying 
random velocity. In addition, the mathematical complexity, which is inherent when a large number of 
autonomous vehicles and dynamic obstacles are present, is reduced via the incorporation of an intelligent 
weightless multi-classifier system which is also presented. 

1 INTRODUCTION 

This paper presents additional novel algorithms, 
methods and technologies adapted by the ACOS 
automated guidance system (Statheros, 2006) for 
collision free autonomous navigation, not only in a 
single autonomous manner, as initially presented in 
(Statheros et. al., 2006), but also for multi-
autonomous vehicles in the presence of independent 
dynamic obstacles.. The technologies employed fall 
into three major categories: Novel Potential Field 
autonomous navigation techniques, multi-classifier 
design and direct hardware implementation. This 
paper presents an overview, further development and 
ideas regarding the integration of these technologies 
within the ACOS system. The paper presents the 
novel features of the Potential Field methodology 
described in (Statheros 2007), and also the new 
concept of Trajectory Equilibrium State (TES) 
between a potential field autonomous vehicle and a 

dynamic obstacle. In addition, we propose the 
combination of the multi-classifier with the novel 
potential field algorithm in a new hybrid navigation 
system. This is followed by a description of the 
multi-classifier framework employed by ACOS 
which utilises weightless neural network technology 
allowing a rapid adaptable learning environment and 
facilitating efficient direct hardware implementation. 
The multi-classifier additionally possesses the 
desirable properties of 1) a capacity to implicitly 
adapt to the relative discriminant abilities of its 
component classifiers and 2) be able to accept both 
absolute and probability based classifications from 
its component classifiers.  
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2 NOVEL POTENTIAL FIELD 
METHOD FOR  
MULTI-AUTONOMOUS 
VEHICLE NAVIGATION 

A major part of ACOS work for autonomous 
navigation is based on novel potential field 
algorithmic methodology improving both single and 
multi-autonomous vehicle navigation (Statheros 
2007). The generic concept of “artificial potential 
fields” originates from (Khatib, 1985). This study 
introduces the potential field method (PFM) for real-
time obstacle avoidance for both manipulators and 
mobile robots. In later years PFM quickly gained 
popularity for autonomous vehicle navigation 
because of its elegance and simplicity. A Widely 
used PFM for mobile robot real-time obstacle 
avoidance is termed Virtual Force Field (VFF) 
(Borenstein, 1989, 1990). The VFF method has also 
been utilised in complex hybrid systems for air, land 
and water based autonomous navigation. A number 
of VFF algorithms specialised in water based 
navigation are briefly explained in (Statheros, 2008).  

However, Artificial potential field based 
algorithms experience local minima traps,  which 
cause autonomous vehicle’s trajectory deadlocks 
and/or oscillations (Koren 1991). This problem can 
be resolved by PFM in integration with intelligent 
methods and/or mathematical navigational 
algorithms. 

In recent years potential field algorithms have 
also gained popularity in the field of multi-
autonomous navigation (Pradhan 2006, Masoud 
2007). In (Statheros 2007) a novel multi-
autonomous navigation algorithm enables a simple 
VFF algorithm to navigate local multi-autonomous 
independent vehicles exceptionally efficient in terms 
of trajectory length, trajectory smoothness and time 
of arrival. This approach uses a novel rule-based 
mathematical algorithm and the newly defined 
concept of trajectory equilibrium state (TES). 

2.1 VFF Trajectory Equilibrium State 

In a multi-mobile robot environment where the 
robots are guided by the VFF method, in which the 
virtual repulsive force is described in (Statheros 
2007), we can observe the Trajectory Equilibrium 
State (TES) as shown in Figure 1. Here, we observe 
that the robot trajectories cross at point C to reach 
their target destinations in straight line trajectories. 
However, with VFF, the trajectory diversion leads to 
autonomous navigational deadlock and both robots 

stop at points D and E without reaching their target 
destinations T1 and T2. We can define the distance 

DE as SaturationD , the minimum distance they may 
have between them. The robots will only stop 
without reaching their target destination in Absolute 
TES. Where equation (2) is not fully satisfied but 
equation (1) is satisfied, we define the state as Close 
TES. 

 
Saturation EfficiencyD D D≤ <                (1) 

AC BC=  and 1 2V V=            (2)  
In equation 1, EfficiencyD is the minimum distance 

between the two robots so the non-linear effect of 
the equation 1 is not apparent. Where V1 is the 
speed of mobile robot 1 and V2 is the speed of 
mobile robot 2. 

As stated above, the TES causes trajectory 
inefficiencies such as long and curved power 
consuming trajectories for all the guided robots. In 
the most extreme case, absolute TES, both robots 
divert from their target destination and the distance 
between them decreases to the point where the 
resultant force vectors are equal to zero. The 
Absolute TES has been identified utilizing two 
mobile robots in (Statheros 2007).  

 
Figure 1: Two mobile robots at Absolute Trajectory 
Equilibrium State (TES). 

2.2 TES Detection and Avoidance  

The TES detection and avoidance algorithm predicts 
and prevents Absolute and Close TES. This 
algorithm maintains close to straight line efficient 
trajectories for the robots in cases of possible 
collision by adjusting separately their speeds. The 
performance of this algorithm is demonstrated in 
Figure 2. 
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Figure 2: Two mobile robots close-optimum trajectories 
due to TES Detection and Avoidance algorithm in case of 
Absolute TES.   

The above has introduced the concept of guiding 
independently multi-autonomous robots or vehicles 
with identical algorithmic principle with exceptional 
efficiency. However, in this paper, we have 
identified that the above algorithm is more generic 
in nature, as it may also be applied to dynamic 
obstacles. For example, in Figure 3, a collision 
scenario is presented between a dynamic obstacle 
and a standard potential field guided robot. In this 
case, we can consider a new concept of TES 
between a potential field robot and a dynamic 
obstacle. This TES forces the potential field guided 
robot to divert from its target destination and follow 
the inefficient trajectory shown in figure 3. The TES 
detection and avoidance algorithm can also be 
applied in this case. The algorithm incorporates a 
velocity variation of the autonomous guided robot 
based on the potential field algorithm dynamics. The 
effectiveness of the algorithm is displayed in Figure 
4, where the autonomous vehicle follows a near 
optimum straight line trajectory.  

 
Figure 3: Standard Potential Field robot with dynamic 
obstacle. 

 
Figure 4: The effect of TES Detection and Avoidance 
algorithm when a Potential Field robot is in TES with a 
dynamic obstacle. 

The processing requirements of the above 
algorithm increase in a presence of a large number 
of autonomous vehicles and/or dynamic obstacles. 
We can reduce its processing load by focusing the 
algorithm onto a group of similarly behaving 
dynamic vehicles and/or obstacles that are 
recognised by an intelligent multi-classifier, which 
we present in the next section. This is possible due 
to the patterns of location, direction, speed and 
potential field algorithm dynamics, which are 
generated from the autonomous vehicles and/or 
dynamic obstacle in the same local navigation 
environment). 

3 THE INTELLIGENT 
FAST-LEARNING 
MULTI-CLASSIFIER SYSTEM 

Modern intelligent Robotic Guidance systems are 
being employed in practical application domains 
where the required performance level often exceeds 
that achievable from a single guidance paradigm 
typically because the complexity of the problem is 
such that too many potential outcomes are present, 
equivalent to the number of pattern classes when the 
system is viewed as a pattern recognition problem. 
To address this issue, current systems often 
concurrently employ a number of distinct classifiers, 
where the component classifiers are trained on a 
subset of situation which the robotic system may 
encounter in practice. Therefore, the component 
classifiers will possess the ability to distinguish well 
between certain situations but will be unable to offer 
the same distinguishing pattern classification 
performance over the entire range of scenarios 
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specific to the problem domain because they are 
unaware of all possible situations. In such 
circumstances, engineering a solution to a practical 
problem is reduced to a selection process of 
available classifiers where the combination of the 
classifiers chosen is able to distinguish the entire set 
of pattern classes present within the problem 
domain. A combiner classifier is required in addition 
which is trained on the outputs of the component, or 
base, classifiers and makes an overall decision. 

The ACOS system utilises an intelligent multi-
classifier combiner system which is able to 
automatically assimilate outputs of component 
system classifiers which are inaccurate due to their 
restricted training knowledge and produce a single 
classification for a given classification instance The 
system possesses the following significant 
properties:- 

• All base classifiers and the combiner classifier 
follow a generic architecture based on the 
Probabilistic Convergent Network (PCN) 
(Howells 2000, Lorrentz 2007). 

• The significance of the classification decision of 
a given classifier is varied according to the likely 
pattern classes under consideration. Therefore, a 
classifier which possesses good knowledge of the 
scenario in question is able to provide a strong 
weighted decision which is utilised by the 
combiner network. Conversely, when an 
unfamiliar scenario is encountered, a low 
weighted incorrect decision is produced due to 
the unfamiliarity of the classifier with the true 
scenario.  

• The multi-classifier system possesses fast 
learning properties so that the significance of 
class distinguishing properties are immediately 
accepted by the system 

• The system is problem domain independent and 
may be adapted to a large number of automated 
navigation based scenarios. 

• The system uses simple logic operations to guide 
its decision making process and it is thus suitable 
for fast direct hardware based implementation 

As stated, the proposed technique employs a type 
of weightless artificial neural system known as the 
Probabilistic Convergent Network (PCN) to 
assimilate the classification potential of each of the 
component classifiers employed in a given situation.  
The PCN network architecture (Howells 2000, 
Lorrentz 2007). is designed to provide an extended 
recognition information base to the user whilst 
retaining the training and performance potential 

achieved with previous Weightless architectures 
(Austin 1998). An example PCN architecture is 
illustrated in Figure 5.  

 
Figure 5: PCN Network Architecture. 

The following are significant points regarding the 
architecture:- 

• The neurons comprising the network are 
arranged in x × y matrices or layers where x and 
y are the dimensions of the input sensor data 
under consideration. 

• Each element within the sensor data is therefore 
associated with a corresponding neuron within 
each layer. 

• The layers comprising the network are arranged 
in two groups, termed the Pre group and the 
Main group. A Merge layer exists after each 
group whose function is to combine the outputs 
of the constituent layers of the group. The 
connectivity of the neurons comprising a Merge 
layer is equal to the number of layers within the 
group to which it pertains. 

• The merged output of the Main Group is fed 
back, unmodified, to the inputs of each layer 
comprising the group. 

• The number of layers within each group may be 
varied depending on the recognition performance 
required from the network. 

• The constituent layers of a group differ in the 
selection of sensor data elements attached to the 
inputs of their constituent neurons (termed the 
connectivity pattern).  
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• Neurons within a given layer possess the same 
connectivity pattern relative to their position 
within the matrix. 

The PCN architecture utilises highly efficient 
training and recognition algorithms which are 
detailed in (Lorrentz 2007). These allow the network 
to produce weighted decisions on their output giving 
a confidence level associated with the decision. 
Specifically:- 

• Symbols within the PCN architecture are taken 
from an extended compound set.  

• A given symbol is designed to contain a 
component for each of the possible pattern 
classes on which the network has been trained. 

• Each component itself is constructed from a pre-
determined number of sub-symbols. This number 
represents the number of divisions available for 
each pattern class where each divisional symbol 
represents a probability approximation that the 
given sample pattern belongs to the given pattern 
class. 

The neurons comprising the network differ 
between the Pre and Main groups. The Pre group 
neurons take their inputs from the binary sensor 
values comprising the network input data. The 
contents of the memory locations of the neurons are 
taken from the extended compound set of symbols 
described above. The main group neurons take their 
inputs and memory contents from the compound set 
of symbols.  

Due to the weightless nature of PCN it lends 
itself to straightforward hardware implementation 
that requires mainly standard memory to realise the 
network structure and some limited arithmetic 
resources. An enhanced version of the PCN 
architecture has been prototyped and forms a 
hardware fabric the for the systems implementation 
(Lorrentz 2008). 

The ACOS system consists of several base PCN 
base classifiers based on separate scenarios which a 
robot may encounter. It is infeasible to train a single 
PCN classifier with a large number of scenarios due 
to the exponential increase in memory required as 
each neuron memory will increase in size for each 
new scenario. The PCN architecture naturally lends 
itself to employment as an intelligent multi-classifier 
however. To achieve this end, the output 
classifications of the selection of base classifiers 
employed, form the input to a given combiner PCN 
classifier. The outputs of the combiner PCN will 
then represent a weighed classification for the 
problem at hand based on the combined wisdom of  

the component classifiers as illustrated in Figure 6. 

 
Figure 6: Schematic of the PCN based Multi-Classifier. 

As stated, in order to employ the PCN 
architecture as a basis for a multi-classifier system, it 
is necessary to combine the outputs of the 
component classifiers to form a single input which 
may be considered as a classification image for the 
particular problem in question. The general strategy 
requires the following steps to be taken:- 
• Outputs of component classifiers are interpreted 

as binary numbers, either indicting a single 
preferred pattern class or representing a 
combination of classed with associated 
probabilities.  

• The combiner PCN overloads the meanings of 
the outputs of the component classifier in order 
to address the memory scale issue associated 
with the requirement that it be able to distinguish 
between a large number of component decisions. 
So, for example, the meaning of class decision 1 
for base classifier 1 will differ from the same 
output for classifier 2. However, the combiner 
PCN sees a compound input pattern which 
essentially represents a compressed 
representation of all possible decision scenarios 
with associated weightings and is able to 
efficiently reach a conclusion. 

• Suitable training examples must be compiled 
which will allow the PCN system to distinguish 
between the various scenarios. To this effect it is 
a supervised learning environment.  

Examples    of    classifications    may   now   be  
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presented to the PCN architecture according to the 
training algorithm in (Howells 2000, Lorrentz 2007). 
The system effectively relies of the fact that if a base 
classifier encounters a situation with which it is 
familiar (i.e. it has encountered in training), it will 
produce a decision with high confidence. 
Conversely, if a base classifier encounters a scenario 
with which it is not familiar, it will produce a 
classification from one of the scenarios which it is 
familiar but with low confidence. i.e. it will produce 
an erroneous but low weighted result. The combiner 
PCN is able to sift these decisions and produce the 
desired decisions based on their confidence rating. 

4 CONCLUSIONS 

The ACOS project has been successful in producing 
an integrated, automated, robotic guidance system 
which is highly flexible and capable of fast 
autonomous learning.  It has achieved its primary 
aim of providing state-of-the-art knowledge on 
autonomous navigation techniques and technologies 
as well as a novel autonomous navigation techniques 
architecture which constitutes design and 
implementation suitable for industrial exploitation.  
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