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Abstract: The paper considers a suboptimal solution to the dual control problem for discrete-time stochastic systems un-
der the amplitude-constrained control signal. The objective of the control is to minimize the two-step quadratic
cost function for the problem of tracking the given reference sequence. The presented approach is based on
the MIDC (Modified Innovation Dual Controller) derived from an IDC (Innovation Dual Controller) and the
TSDSC (Two-stage Dual Suboptimal Control. As a result, a new algorithm, i.e. the two-stage innovation
dual control (TSIDC) algorithm is proposed. The standard Kalman filter equations are applied for estimation
of the unknown system parameters. Example of second order system is simulated in order to compare the
performance of proposed control algorithms. Conclusions yielded from simulation study are given.

1 INTRODUCTION

The problem of the optimal control of stochastic sys-
tems with uncertain parameters is inherently related
with the dual control problem where the learning
and control processes should be considered simulta-
neously in order to minimize the cost function. In
general, learning and controlling have contradictory
goals, particularly for the finite horizon control prob-
lems. The concept of duality has inspired the devel-
opment of many control techniques which involve the
dual effect of the control signal. They can be sepa-
rated in two classes: explicit dual and implicit dual
(Bayard and Eslami, 1985). Unfortunately, the dual
approach does not result in computationally feasible
optimal algorithms. A variety of suboptimal solutions
has been proposed, for example: the innovation dual
controller (IDC) (R. Milito and Cadorin, 1982) and its
modification (MIDC) (Królikowski and Horla, 2007),
the two-stage dual suboptimal controller (TSDSC)
(Maitelli and Yoneyama, 1994) or the pole-placement
(PP) dual control (N.M. Filatov and Keuchel, 1993).

Other controllers like minimax controllers (Se-
bald, 1979), Bayes controllers (Sworder, 1966),
MRAC (Model Reference Adaptive Controller)

(Åström and Wittenmark, 1989), LQG controller
where unknown system parameters belong to a finite
set (D. Li and Fu, ) or Iteration in Policy Space (IPS)
(Bayard, 1991) are also possible.

The IPS algorithm and its reduced complexity
version were proposed by Bayard (Bayard, 1991)
for a general nonlinear system. In this algorithm
the stochastic dynamic programming equations are
solved forward in time ,using a nested stochastic ap-
proximation technique. The method is based on a spe-
cific computational architecture denoted as a H block.
The method needs a filter propagating the state and
parameter estimates with associated covariance ma-
trices.

In (Królikowski, 2000), some modifications in-
cluding input constraint have been introduced into the
original version of the IPS algorithm and its perfor-
mance has been compared with MIDC algorithm.

In this paper, a new algorithm, i.e. the two-stage
innovation dual control (TSIDC) algorithm is pro-
posed which is the combination of the IDC approach
and the TSDSC approach. Additionally, the ampli-
tude constraint of control input is taken into consider-
ation for algorithm derivation.

Performance of the considered algorithms is il-
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lustrated by simulation study of second-order system
with control signal constrained in amplitude.

2 CONTROL PROBLEM
FORMULATION

Consider a discrete-time linear single-input single-
output system described by ARX model

A(q−1)yk = B(q−1)uk +wk, (1)

where A(q−1) = 1 + a1,kq−1 + · · · + ana,kq−na,
B(q−1) = b1,kq−1 + · · ·+ bnb,kq−nb, yk is the output
available for measurement,uk is the control sig-
nal, {wk} is a sequence of independent identically
distributed gaussian variables with zero mean and
varianceσ2

w. Process noisewk is statistically inde-
pendent of the initial conditiony0. The system (1)
is parametrized by a vectorθk containingna + nb
unknown parameters{ai,k} and {bi,k} which in
general can be assumed to vary according to the
equation

θk+1 = Φθk + ek (2)

whereΦ is a known matrix and{ek} is a sequence
of independent identically distributed gaussian vector
variables with zero mean and variance matrixRe. Par-
ticularly, for the constant parameters we have

θk+1 = θk = θ = (b1, · · · ,bnb,a1, · · ·ana)
T , (3)

and thenΦ = I, ek = 0 in (2).
The control signal is subjected to an amplitude

constraint
| uk |≤ α (4)

and the information stateIk at time k is defined by

Ik = [yk, ...,y1,uk−1, ...,u0, I0] (5)

whereI0 denotes the initial conditions.
An admissible control policyΠ is defined by a se-

quence of controlsΠ = [u0, ...,uN−1] where each con-
trol uk is a function ofIk and satisfies the constraint
(4). The control objective is to find a control policy
Π which minimizes the following expected cost func-
tion

J = E[
N−1

∑
k=0

(yk+1− rk+1)
2] (6)

where{rk} is a given reference sequence. An admis-
sible control policy minimizing (6) can be labelled by
CCLO (Constrained Closed-Loop Optimal) in keep-
ing with the standard nomenclature, i.e.ΠCCLO =
[uCCLO

0 , ...,uCCLO
N−1 ]. This control policy has no closed

form, and control policies presented in the following
section can be viewed as a suboptimal approach to the
ΠCCLO.

3 SUBOPTIMAL DUAL
CONTROL ALGORITHMS

In this section, we shall briefly describe algorithms
being an approximate solution to the problem formu-
lated in Section 2. To this end, the method for estima-
tion of system parametersθk is needed.

3.1 Estimation Method

The system (1) can be expressed as

yk+1 = sT
k θk+1+wk+1 (7)

where

sk = (uk,uk−1, . . . ,uk−nb+1,−yk, . . . ,−yk−na+1)
T =

= (uk,s
∗T

k )T . (8)

The estimateŝθk needed to implement dual control
algorithms can be obtained in many ways. A common
way is to use the standard Kalman filter in a form of
suitable recursive procedure for parameter estimation,
i.e.

θ̂k+1 = Φθ̂k + kkεk (9)

kk = ΦPksk−1[s
T
k−1Pksk−1+σ2

w]
−1 (10)

Pk+1 = [Φ− kksT
k−1]PkΦT +Re, (11)

εk = yk − sT
k−1θ̂k, (12)

whereεk+1 is the innovation which will be used later
on to construct the suboptimal dual control algorithm.

The following partitioning is introduced for pa-
rameter covariance matrixPk

Pk =

[
pb1,k pT

b1θ∗,k
p

b1θ∗,k Pθ∗,k

]
(13)

corresponding to the partition ofθk

θk = (b1,k,θ∗T
k )T (14)

with

θ∗k = (b2,k, . . . ,bnb,k,a1,k, . . . ,ana,k)
T . (15)

3.2 Two-stage Dual Suboptimal Control
(TSDSC) Algorithm

The TSDSC method proposed in (Maitelli and
Yoneyama, 1994) has been derived for system (1)
with stochastic parameters (2). Below this method
is extended for the input-constrained case. The cost
function considered for TSDSC is given by

J =
1
2

E[(yk+1− r)2+(yk+2− r)2|Ik] (16)
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and according to (Maitelli and Yoneyama, 1994) can
be obtained as a quadratic form inuk anduk+1, i.e.

J =
1
2
[auk +buk+1+ cukuk+1+du2

k + eu2
k+1] (17)

wherea,b,c,d,e are expressions depending on cur-
rent datas∗k , reference signalr and parameter esti-
matesθ̂k (Maitelli and Yoneyama, 1994). Solving a
necessary optimality condition the unconstrained con-
trol signal is

uTSDSC,un
k =

bc−2ae
4de− c2 . (18)

This control law has been taken for simulation anal-
ysis in (Maitelli and Yoneyama, 1994). Imposing the
cutoff the constrained control signal is

uTSDSC,co
k = sat(uTSDSC,un

k ;α). (19)

The cost function (27) can be represented as a
quadratic form

J =
1
2
[uT

k Auk +bT uk] (20)

whereuk = (uk,uk+1)
T , and

A =

[
d 1

2c
1
2c e

]
,b =

[
a
b

]
. (21)

The condition 4de− c2 > 0 together withd > 0 im-
plies positive definitness and guarantees convexity.
Minimization of (30) under constraint (4) is a stan-
dard QP problem resulting inuTSDSC,qp

k . The con-

strained controluTSDSC,qp
k is then applied to the sys-

tem in receding horizon framework.

3.3 Two-stage Innovation Dual
Suboptimal Control (TSIDSC)
Algorithm

A modified version of the TSDSC algorithm is given
below where innovation term is included to the cost
function

J =
1
2

E[(yk+1− r)2+(yk+2− r)2−λk+1ε2
k+1|Ik]

(22)
where λk+1 ≥ 0 is the learning weight, andεk+1
is the innovation, see (16). Incorporating the term
−λk+1ε2

k+1 in the cost function makes the parameter
estimation process to accelerate and consequently to
improve the future control performance. Taking (2)
and (7) into account it can be seen that

εk+1 = sT
k [Φ(θk − θ̂k)+ (Φ− I)θ̂k]+ sT

k ek +wk+1,
(23)

and consequently

E[ε2
k+1|Ik] = sT

k ΦPkΦT sk + sT
k (Φ− I)θ̂kθ̂T

k (Φ− I)T+

+sT
k Resk +σ2

w =

= sT
k [ΦPkΦT +(Φ− I)θ̂kθ̂T

k (Φ− I)T +Re]sk +σ2
w =

= sT
k Σksk +σ2

w. (24)

Introducing the partitioning for matrixΣk

Σk =

[
σ11,k σT

1,k
σ1,k Σk

∗

]
. (25)

Keeping (8) in mind we have

E[ε2
k+1|Ik] = f u2

k +guk +h, (26)

where f = σ11,k, g = σT
1,ks∗k , h = s∗T

k Σk
∗s∗k +σ2

w are
expressions known at the current time instantk.

Finally, the cost functionJ including terms de-
pending only onuk anduk+1 takes the form

J =
1
2
[auk +buk+1+ cukuk+1+du2

k + eu2
k+1−

−λk+1( f u2
k +guk)] (27)

Solving a necessary optimality condition the uncon-
strained control signal is

uTSIDSC,un
k =

bc−2ae−2eg
4de− c2−4e f λk+1

. (28)

Imposing the cutoff the constrained control signal is

uTSIDSC,co
k = sat(uTSIDSC,un

k ;α). (29)

The cost function (27) can again be represented as a
quadratic form

J =
1
2
[uT

k Auk +bT uk] (30)

whereuk = (uk,uk+1)
T , and correspondingly to (21)

A =

[
d−λk+1 f 1

2c
1
2c e

]
,b =

[
a−λk+1g

b

]
. (31)

The weightλk+1 has influence on positive definitness
of the quadratic form. Minimization of (30) under
constraint (4) is again the QP problem resulting in
uTSIDSC,qp

k . The constrained controluTSIDSC,qp
k is then

applied to the system in receding horizon framework.

4 SIMULATION TESTS

Performance of the described control methods is illus-
trated through the example of a second-order system
with the following true values:a1 = −1.8, a2 = 0.9,
b1 = 1.0, b2 = 0.5, where the Kalman filter algorithm
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(9)-(12) was applied for estimation. The initial pa-
rameter estimates were taken half their true values
with P0 = 10I. The reference signal was a square
wave±3, and then the minimal value of constraint
α ensuring the tracking isαmin = 3 |A(1)|

|B(1)| = 0.2. Fig.
1 shows the reference, output and input signals dur-
ing tracking process under the constraintα = 1 for
both TSDSC and TSIDSC control policies. The con-
trols uTSDSC,qp

k anduTSIDSC,qp
k were obtained solving

the minimization of quadratic forms (20), (31) using
MATLAB function quadprog. The performance of
these control algorithms is surprisingly essentially in-
ferior with respect touTSDSC,co

k anduTSIDSC,co
k . On the

other hand, as expected, the controluTSIDSC,co
k per-

forms better thanuTSDSC,co
k .
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Figure 1: Reference, output and control signals for TSDSC,
TSIDSC;α = 1; constant parameters.

For the control policyΠTSIDSC the constant learning
weight wasλk = λ = 0.98.

The performance index

J̄ =
N−1

∑
k=0

(yk+1− rk+1)
2

was considered for simulations. The plots ofJ̄ versus
the constraintα are shown in Fig.2 forσ2

w = 0.05, and
N = 1000.
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Figure 2: Plots of performance indices for TSDSC,
TSIDSC.

In the case of varying parameters (2),Φ = I and
Re = 0.05I have been taken. Fig.3 shows the perfor-
mance of the tracking process under the constraint
α = 1 for both TSDSC and TSIDSC control poli-
cies. An examplary run of parameter estimates is
shown in Figs.4,5 for control policies TSIDSC,co and
TSIDSC,qp, respectively.
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Figure 3: Reference, output and control signals for TSDSC,
TSIDSC;α = 1; varying parameters.
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Figure 4: Parameter estimates for TSIDSC,co.
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Figure 5: Parameter estimates for TSIDSC,qp.

5 CONCLUSIONS

This paper presents a problem of discrete-time dual
control under the amplitude-constrained control sig-
nal. A simulation example of second-order system is
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given and the performance of the presented two con-
trol policies is compared by means of the simulated
performance index.

A new control policy TSIDSC was proposed as
suboptimal dual control approach. The method ex-
hibits good tracking properties for both constant and
time-varying unknown system parameters.

It was found that both control policiesuTSDSC,qp
k

and uTSIDSC,qp
k derived via QP optimization do not

yield a tracking improvement compared to the cut-off
controlsuTSDSC,co

k anduTSIDSC,co
k .

REFERENCES
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