
SPECIFYING AND COMPILING HIGH LEVEL FINANCIAL
FRAUD POLICIES INTO STREAMSQL

Michael Edward Edge, Pedro R. Falcone Sampaio
Manchester Business School, University of Manchester, Booth Street East, Manchester, M16 6PB, U.K.

Oliver Philpott
School of Computer Science, University of Manchester, Oxford Road, Manchester, M13 9PL, U.K.

Mohammad Choudhary
Sparta Technologies Ltd, Northern Incubation Unit, Sackville Street, Manchester, M60 1QD, U.K.

Keywords: Fraud Management, Internet Fraud, Policy-Based Languages, Data Stream Processors, Compilers.

Abstract: Fraud detection within financial platforms remains a challenging area in which criminals continue to thrive,
breaching security mechanisms with increasingly innovative and sophisticated system attacks. Following
the migration from reactive to proactive screening of transactional data to reduce an organisations fraud
detection latency, fraud analysts now find themselves responsible for the maintenance of extensive fraud
policy sets and their implementation as complex data stream processing procedures. This paper presents a
Financial Fraud Modelling Language and policy mapping tool for high level expression and implementation
of proactive fraud policies using stream processors. A key aspect of the approach is reduction of the
complexity and implementation latency associated with proactive fraud policy management through
abstraction of policy functionality using a conceptual level modelling language and innovative policy
mapping tool. This paper focuses upon the rule based language model for high level expression of financial
fraud policies and the associated compiler tool for specifying and mapping policies into StreamSQL.

1 INTRODUCTION

Banking institutions have a strong interest in
increasing the speed at which fraudulent activity can
be detected due to its direct relation to financial loss,
customer service and the organisations status as
reputable financial provider. Existing research into
fraud detection mechanisms based upon data mining
has a limited capability to address the expanding
number of ubiquitous electronic delivery channels
for financial services due to the alerting latency
incurred through post transactional analysis over a
finite data store (reactive fraud management) (Kou,
Lu et al. 2004; Phua, Lee et al. 2005). Accordingly,
emerging technologies are employing real-time
processing models for continuous monitoring of
streaming service channel data and triggering of a
preventive response prior to transaction completion,
minimising the potential fraud deficit (proactive

fraud management) (Entrust 2008; Fair Isaac 2008;
StreamBase 2008). Despite the successful shift of
fraud analytics from ‘post’ to ‘pre’ data storage,
many current proactive solutions are capable of
fraud management only upon a single channel, with
no support for fraud analysis over multiple incoming
data delivery channels. More crucially, few
systematic methods exist for assisting fraud analysts
in the modelling and enforcement of anti-fraud
policies using stream processors, with many
solutions based upon code implementation for low
level stream application programming interfaces
(Chandrasekaran 2003; Arasu, Babu et al. 2006) and
other low level imperative event languages
(Luckham 2005).

This paper outlines the development of a
Financial Fraud Modelling Language (FFML) and
policy mapping architecture for the conceptual level
modelling and implementation of fraud policies
using StreamSQL, an emerging standard for

194 Edward Edge M., R. Falcone Sampaio P., Philpott O. and Choudhary M. (2009).
SPECIFYING AND COMPILING HIGH LEVEL FINANCIAL FRAUD POLICIES INTO STREAMSQL.
In Proceedings of the 11th International Conference on Enterprise Information Systems - Information Systems Analysis and Specification, pages
194-199
DOI: 10.5220/0002001501940199
Copyright c© SciTePress

processing real-time data streams. Specifically it
details the development and implementation of a
compiler component for the automated parsing of
FFML policy definitions and generation of the
required stream processing representation. A key
element of the work is abstraction of low level
stream processing syntax through conceptual level
Event-Condition-Action policies to reduce the
complexity and implementation latency associated
with proactive fraud policy enforcement.

The remainder of this paper is organised as
follows: Section 2 presents a background on
proactive fraud management and the FFML policy
management framework. Section 3 describes the
FFML policy definition language. Section 4
presents the design and implementation of the FFML
compiler tool. Section 5 illustrates a sample FFML
to StreamSQL mapping. Section 6 details the key
contributions of the work. Section 7 presents a
summary of the work and outlines future research.

2 BACKGROUND

Financial Fraud Modelling Language (FFML)
provides a conceptual level modelling and fraud
prevention architecture using a rule based modelling
syntax to assist fraud analysts in the expression and
assembly of proactive fraud policy sets prior to
representation within target stream processing
solutions (Edge, Sampaio et al. 2007).

Figure 1: FFML Policy Mapping Approach.

Figure 1 illustrates the FFML policy mapping
approach for translation of fraud policies into the
required stream processing syntax. Fraud policy set
definition is undertaken through a front end GUI
component for the conceptual level management of
complete fraud policy sets using FFML. Automated
parsing validates assembled policy sets against the
FFML language specification to ensure defined
policies are well formed from which the
corresponding stream processing syntax is generated
using the required target platform code generation
component. Target platform adaptors are
implemented in a plug and play architecture
facilitating the mapping of FFML policies into
multiple stream processing implementations,

leveraging a dynamic and extensible policy
management architecture.

3 FRAUD POLICY
SPECIFICATION USING FFML

FFML provides a domain specific language of
constructs and operators to facilitate the expression
of rule-based financial fraud policies which may
span multiple service channels, time windows and
transaction event types, without the restrictions and
extensive programming requirements of the
employed target platform. FFML policies are
assembled as Event-Condition-Action (ECA)
definitions using a domain specific language of
constructs and operators to support the conceptual
level expression and management of proactive fraud
policy controls (Table 1).

Table 1: FFML Policy Structure.

Operator Parameter
POLICYID policy reference
ON event statement
IF condition statement
THEN action statement

3.1 Event Statement

Policy event triggers define the click stream data
patterns to which policies continually monitor
incoming transaction service channels for invocation
of defined evaluative functionality. Table 2
illustrates the expressiveness of the FFML event
model using the following sample fraud policy
definition: “if there is an online banking session
containing a password change event followed by
funds transfer, or a session containing a failed
logon phase 1 attempt, a failed logon phase 2
attempt and a funds transfer, require two factor
authentication for transaction completion”.
Channel selectors are first declared specifying the
incoming data stream to which the policy applies,
followed by the event, or event sequence upon
which evaluation of defined conditions should be
performed. Event sequences support the matching
of chronological data stream events using the FFML
“SEQ” operator for specifying time window
durations during which defined behaviour will be
matched following occurrence of the initial sequence
event. The policy definition in Table 2 illustrates
the use of 5 minute time windows (300 seconds) for
matching of the specified online user behaviour.

SPECIFYING AND COMPILING HIGH LEVEL FINANCIAL FRAUD POLICIES INTO STREAMSQL

195

Table 2: Simple Online Fraud Policy.

Online Fraud Policy
POLICYID ONL01234
ON ONL SEQ(300)[passwordchange, transfer]

 OR ONL SEQ(300) [failed_logonphase1,
 failed_ logonphase2, transfer]

THEN TWOFACTOR(transid, sortcode,
accountnumber);

In the specification of event statements and
sequences, the following principle is applied: the
occurrence of particular events implicitly assumes
the occurrence of any prerequisite events. This
achieves syntax reductions by eliminating the need
for definition of events which maybe implicitly
assumed based upon preceding sequence events.
For example, in Table 2 “passwordchange”
implicitly assumes the user has completed a
successful logon process. Similarly, definition of
the “transfer” event following “failed_logonphase2”
also assumes that a successful logon has taken place
between these two event occurrences. Table 2 also
illustrates how multiple event trigger specification is
supported using the disjunctive “OR” operator
providing that a common final channel event exists,
eliminating the need for multiple policy definitions
which require the same evaluative functionality.

Conjunction between event instances has been
restricted due to the window based processing model
of underlying stream processing technologies.
Matching of event/event sequences between user
transaction sessions would open extensive time
windows spanning several hours, or even days for
matching of specified event instances, which is
clearly unfeasible in a global user service and would
have significant performance ramifications within
the supporting business platform. For example,
Table 3 specifies the following sample fraud policy
definition: “if there is over £500 of Card Not Present
transactions in the last 24 hours, followed by an
online banking session containing a failed logon
phase 1 attempt, a failed logon phase 2 attempt and
a transfer with value greater than or equal to £1500,
trigger an alert”.

Table 3: FFML Online Policy Definition.

Online Fraud Policy Definition
POLICYID ONL01234
ON ONL SEQ(300)[failed_logonphase1,

failed_logonphase2, transfer]
IF QUERY TOTALDEBIT(CNP, sortcode,

accountnumber) >= 500
AND
value >= 1500

THEN ALERT(transid, sortcode, accountnumber);

Preceding transactional account behaviour is
traced through implementation of stored data

operators within the defined condition, using the
latter policy event for triggering of condition
evaluation. Accordingly, policy evaluation is only
performed upon matching of the specified transfer
transaction, rather than opening of extensive time
windows following each CNP transaction for
detection of the subsequent online event sequence.
Table 3 illustrates the use of the ‘TOTALDEBIT’
query for retrieval of all CNP transactions within the
last 24 hour period.

Table 3 also illustrates how the developed
modelling language supports multi-channel risk
models through policy triggering in response to
events within one streaming data channel, while
supporting condition evaluation over account
transactions performed through other service
channel provisions. FFML therefore facilitates
definition of sophisticated policies which encompass
fraud evaluation over all delivery service channels
towards the deployment of increasingly integrated
and holistic fraud detection frameworks.

3.2 Condition Statement

Condition functionality is defined as a series of
Boolean logic statements assembled using
disjunctive (“OR”) and conjunctive (“AND”)
operators for evaluation of system transactions
which satisfy defined event triggers using incoming
event data, stored data functions and arithmetic
operators.

A key element of the FFML language is the
ability to define policies which evaluate streaming
values against post-transactional data from both
current and past financial trading (Table 4), enabling
a fraud decision to be made based upon examination
of preceding account behaviour rather than through
isolated queries on streaming transactional data
alone. Table 5 illustrates how the developed
approach maybe used to express the following
sample fraud policy scenario: “If there is an ATM
withdrawal that reaches the total daily £250
withdrawal limit, and the daily limit has been
reached 3 times within the last 5 days, stop the
transaction, raise alert and block account”.

Data parameters utilised within Boolean
functions and stored data operations are associated
with the last declared event in each event trigger to
achieve syntax reductions within condition
specification. While this principle restricts the use
of the parameters associated with preceding non-
transactional event instances, it is emphasised that
such instances are used only to assist in the
identification of suspicious transactions, and alone
are unbeneficial for fraud policy definition.

ICEIS 2009 - International Conference on Enterprise Information Systems

196

Accordingly, event sequence specifications shall
always feature one or more non-transactional events,
followed by a concluding transactional instance for
triggering of condition evaluation.

Table 4: Stored Data Retrieval Operators.

Function Database Query
Syntax QUERY
Parameters QUERY_NAME(parameters) ||

(SELECT….FROM….WHERE)
Description Issue pre-defined queries against stored

transactional data for the current financial day
or cumulatively over multiple financial days if
a day parameter is provided. Standard SQL
maybe utilised for custom data evaluation
functions. Result must return a single value to
be used within a Boolean condition.
(Note: Day parameters not compatible with
HISTORY function – see below.)

Function History Operator
Syntax HISTORY
Parameters (days)[condition]
Description Evaluates complete conditions over multiple

financial days returning an integer indicating
the number of days on which the query
evaluated to true. Condition contains one or
more QUERY components. HISTORY
functions are therefore use for issuing complete
conditions over each financial day, while
QUERY operators simply return a cumulative
figure for the specified preceding period.

Table 5: ATM Fraud Policy.

ATM Fraud Policy
ON ATM[withdrawal]
IF QUERY TOTALDEBIT(ATM, sortcode,

accountnumber) + value >= 250.00
AND
HISTORY(4)
[QUERY TOTALDEBIT(ATM, sortcode,
accountnumber) >= 250.00] >=2

THEN BLOCK(sortcode, accountnumber)
AND
ALERT(transid,sortcode, accountnumber);

3.3 Action Statement

Actions specify the preventive response to be
triggered within the supporting business platform
upon successful triggering and evaluation of the
defined policy instance. FFML actions are
categorised into two distinct categories; active and
passive. Passive actions are regarded as those
actions which do not alter the current transaction
path and enable the transaction to complete as
normal, for example if an ‘ALERT’ or ‘FLAG’ is
applied for post-transaction examination of the
account by the fraud analyst. Active actions are
those which cause transactions to deviate from their
normal execution path, for example if a ‘BLOCK’
request is issued against a particular account or two

factor authentication is initiated for confirming the
identity of the initiating account holder. All active
actions are implicitly assumed to apply the
“DOINSTEAD” principle for transaction execution,
as described in (Stonebraker, Jhingran et al. 1990).
Multiple actions are applied using the conjunction
operator which are mapped onto the required output
stream for examination by fraud personnel and
triggering of the specified preventive operations.

4 FFML GUI AND POLICY
COMPILATION TOOL

The FFML tool provides fraud analysts with a suite
of tools for the construction, manipulation and
compilation of FFML policy sets. The developed
graphical front-end component comprises a source
code editor, parser, compiler and file management
system, for rapid policy set construction and
management of an organisations fraud policy
deployment from a single point of control (Figure 2).

Figure 2: FFML GUI Tool.

4.1 Compiler Architecture

FFML policy statements are translated into the target
syntax model using an automated compiler
component, implemented using the JavaCC parser
generator. More specifically, the compiler is
specified using JJTree (a pre-processor for JavaCC),
enabling the insertion of tree-building actions into
the JavaCC grammar for generation of Abstract
Syntax Tree (AST) definitions utilised in the
validation of FFML policies and generation of target
implementation code. Figure 3 demonstrates how
the developed components are used for validation

SPECIFYING AND COMPILING HIGH LEVEL FINANCIAL FRAUD POLICIES INTO STREAMSQL

197

and mapping of FFML statements into the target
syntax model.

Figure 3: FFML Compiler Architecture.

4.2 Code Generation

Stream processing implementations such as
StreamSQL implement computational functionality
through the assembly of data functions and internal
streams within a data processing network. A clear
requirement for mapping of policies onto stream
processing language models is the need to maintain
a state between node visits to facilitate the exchange
of internal stream references between generated data
functions. The utilised visitor design pattern
addresses this requirement through the logical
grouping of visit methods using a “syntax separate
from interpretation” programming model for all
syntax tree nodes, facilitating the use of collections
and other programming data structures within each
interface implementation for internal reference
storage.

The visitor design pattern also supports the
mapping from conceptual level policy definitions
into multiple target language implementations
without extensive re-engineering of the supporting
compiler component. New target language
implementations are supported through development
and integration of the necessary visitor module for
expressing the mappings from FFML grammar
productions to the corresponding stream based
operations. Run-time binding of target platform
adaptors therefore creates a highly dynamic and
extensible architecture for fraud policy management
in fragmented and multiple disparate fraud
management environments.

5 POLICY MAPPING EXAMPLE

Table 3 (Section 3.1) presents a sample FFML
policy definition for an online banking channel.
Translation of the policy statement requires
construction of several StreamSQL target operators
and associated internal streams for the feeding of
information through the data processing network.
Appendix A illustrates how implementation of the
sample fraud policy scenario therefore requires a

total of 52 lines of StreamSQL code. Table 3
expresses the same policy functionality using just 6
lines of FFML, resulting in over an 80% reduction in
the required syntax compared to direct
implementation within the target stream processing
model. This is seen as a significant advancement for
assisting fraud analysts in the definition and
maintenance of proactive fraud policy controls using
stream processors.

6 KEY CONTRIBUTIONS

Conceptual Level Specification of Proactive Fraud
Policies - Poor declarative specification of complex
policies often results in unorganised distribution of
policy code throughout target platform
implementation code, which requires significant re-
engineering in subsequent development phases at a
substantially escalated cost. FFML provides a
domain specific language for the expression and
management of proactive fraud policies over
multiple streaming channels and differing time
windows from a single modelling perspective.
Complexity is therefore abstracted from low level
implementation of fraud controls to enable
conceptual level construction of complete fraud
policy sets usable by both expert and non-expert
users.

Automated Policy Set Implementation in a
Stream Based Language – Plug and play target
platform adaptors encapsulate the semantic
knowledge for mapping of FFML policies to
simplify the complexities associated with direct
implementation of large scale policy sets within
explicit low level programming formalisms. FFML
therefore provides an innovative policy management
architecture supporting the mapping of policies to
multiple disparate target implementations and future
changes to underpinning fraud technologies through
simple re-mapping of an organisations fraud policy
set to new target syntax models.

Improved Responsiveness and Policy Set
Realignment– FFML significantly enhances an
organisations responsiveness to fraud threats through
reduction of the implementation latency associated
with future maintenance operations to existing fraud
policy sets. New policies and modifications to
existing policies may be rapidly implemented
through the developed GUI environment using the
FFML toolset for abstraction of the complexity
associated with management of policies directly
within low level target language models.
Furthermore, expression of fraud policies within a
common conceptual level language supports the

ICEIS 2009 - International Conference on Enterprise Information Systems

198

active sharing of fraud policy data between financial
sector organisations using a service oriented
architecture, significantly reducing the latency
associated with discovery and deployment of fraud
policies in response to emerging industry threats
(Edge, Sampaio et al. 2008).

7 SUMMARY

This paper presents a financial fraud policy
specification language and policy mapping
technology for simplifying the challenges associated
with proactive fraud policy management using
stream processors. Fraud policies are defined using
a domain specific modelling language (FFML) and
translated into a StreamSQL representation using the
developed compiler component. A key element of
the framework is the application of an Event-
Condition-Action model for specification of
proactive fraud policies which span multiple
channels, time windows and events, and mapping
into the required stream processing implementation.
It is also illustrated using a simple example how the
expression of fraud policies using FFML can result
in significant syntax reductions over direct
implementation within the underlying stream
processing language model. Future work will
include the development of a real-time customer
profiling mechanism using signature-based models
(Edge and Sampaio 2009) and a component for
optimisation of generated StreamSQL code.

REFERENCES

Arasu, A., S. Babu, et al. (2006). "The CQL continuous
query language: semantic foundations and query
execution." The VLDB Journal 15(2): 121-142.

Chandrasekaran, S. (2003). TelegraphCQ: Continuous
Dataflow Processing for an Uncertain World. CIDR

Edge, M. E. and P. R. F. Sampaio (2009). "A Survey of
Signature Based Methods for Fraud Detection."
Computers and Security [To appear].

Edge, M. E., P. R. F. Sampaio, et al. (2007). Towards a
Proactive Fraud Management Framework for
Financial Data Streams. The 3rd IEEE International
Symposium on Dependable, Autonomic and Secure
Computing (DASC'07), Loyola College Graduate
Center, Columbia, MD, USA., IEEE.

Edge, M. E., P. R. F. Sampaio, et al. (2008). A Policy
Distribution Service for Proactive Fraud Management
over Financial Data Streams. IEEE International
Conference on Services Computing, 2008. (SCC '08),
Honolulu, Hawaii, USA.

Entrust. (2008). "www.entrust.com."

Fair Isaac. (2008). "www.fairisaac.com."
Kou, Y., C.-T. Lu, et al. (2004). Survey of fraud detection

techniques. IEEE International Conference on
Networking, Sensing and Control.

Luckham, D. (2005). The RAPIDE Pattern Language. The
Power of Events: An Introduction to Complex Event
Processing in Distributed Enterprise Systems, Pearson
Education: 145 - 174.

Phua, C., V. Lee, et al. (2005). "A Comprehensive Survey
of Data Mining-based Fraud Detection Research."

Stonebraker, M., A. Jhingran, et al. (1990). "On Rules,
Procedures, Caching and Views in Data Base
Systems." Proceedings of the 1990 ACM SIGMOD:
281 - 290.

StreamBase. (2008). "www.streambase.co.uk."

APPENDIX

CREATE INPUT STREAM ONL_failed_logonphase1(
transid string(10), sortcode string(6),
accountnumber string(8), datetime timestamp,
onlineid string(20), ipnumb string(25),
sessionid string(25), password1_entered
string(25));

CREATE INPUT STREAM ONL_failed_logonphase2(
transid string(10), sortcode string(6),
accountnumber string(8), datetime timestamp,
onlineid string(20), ipnumb string(25),
sessionid string(25), password2_entered
string(25), password3_entered string(25));

CREATE INPUT STREAM ONL_transfer(
transid string(10), sortcode string(6),
accountnumber string(8), datetime timestamp,
onlineid string(20), ipnumb string(25),
sessionid string(25), currency string(3),
amount double, dest_sortcode string(6),
dest_accountnumber string(8), dest_transferdate
string(10));

CREATE STREAM out__Pattern_1;
SELECT ONL_transfer.transid AS transid,
ONL_transfer.sortcode AS sortcode,
ONL_transfer.accountnumber AS accountnumber,
ONL_transfer.onlineid AS onlineid,
ONL_transfer.ipnumb AS ipnumber,
ONL_transfer.sessionid AS sessionID,
ONL_transfer.currency AS currency,
ONL_transfer.amount AS amount,
ONL_transfer.dest_sortcode AS dest_sortcode,
ONL_transfer.dest_accountnumber AS
dest_accountnumber,
ONL_transfer.dest_transferdate AS
dest_transferdate
FROM PATTERN ((ONL_failed_logonphase1 THEN
ONL_failed_logonphase2)
THEN ONL_transfer) WITHIN 300 TIME
WHERE ONL_failed_logonphase1.transid =
ONL_failed_logonphase2.transid
AND ONL_failed_logonphase2.transid =
ONL_transfer.transid INTO out__Pattern_1;

CREATE STREAM out__TOTALDEBIT_2;
APPLY JDBC accountdata
"SELECT sum(amount) AS currentdaytotal FROM
transactions
WHERE (channel = 'CNP')
AND sortcode = {sortcode} AND accountnumber =
{accountnumber}
AND type = 'deb'
AND transdate >=
CONVERT(datetime,(FLOOR(CONVERT(float(GETDATE()
)))
AND transdate <
CONVERT(datetime,FLOOR(CONVERT(float,DATEADD(dd
,1,CURRENT_TIMESTAMP))));" FROM out__Pattern_1
INTO out__TOTALDEBIT_2;

CREATE STREAM out__Filter_3;
SELECT * FROM out__TOTALDEBIT_2
WHERE currentdaytotal >= 500 INTO
out__Filter_3;

CREATE STREAM out__Filter_4;
SELECT * FROM out__Filter_3
WHERE value >= 1500 INTO out__Filter_4;

CREATE OUTPUT STREAM ALERT;
SELECT transid AS transid,
sortcode AS sortcode ,
accountnumber AS accountnumber
FROM out__Filter_4 INTO ALERT;

SPECIFYING AND COMPILING HIGH LEVEL FINANCIAL FRAUD POLICIES INTO STREAMSQL

199

