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Abstract: Research on workflow activity patterns recently emerged in order to increase the reuse of recurring business 
functions (e.g., notification, approval, and decision). One important aspect is to identify pattern co-
occurrences and to utilize respective information for creating modeling recommendations regarding the 
most suited activity patterns to be combined with an already used one. Activity patterns as well as their co-
occurrences can be identified through the analysis of process models rather than event logs. Related to this 
problem, this paper proposes a method for discovering and analyzing activity pattern co-occurrences in 
business process models. Our results are used for developing a BPM tool which fosters the modeling of 
business processes based on the reuse of activity patterns. Our tool includes an inference engine which 
considers the patterns co-occurrences to give design time recommendations for pattern usage. 

1 INTRODUCTION 

Process-aware information systems (PAIS) prove to 
be efficient tools for the design and automation of 
business processes. Business process is a set of 
(structured) activities which jointly perform a 
particular business goal. Such activities are related 
to specific business functions or process fragments 
(e.g., notification, approval) having a well defined 
semantics (Thom, 2006a, Thom, 2006b). In 
particular, a certain process fragment or business 
function (e.g., enabling document approval) may 
occur several times within one or different process 
models. That means multiple logical copies of the 
same process fragment may be used with same or 
different parameterization (e.g. approval by a single 
actor or by multiple actors). In (Thom, 2009) such 
fragments are represented as workflow activity 
patterns: Request for Activity Execution without 
Answer, Request for Activity Execution with Answer, 
Approval, Notification, Decision-making and 
Information Request.  

An example of activity pattern is the 
unidirectional performative pattern. This pattern 
represents a unidirectional message as described in 

(zur Muehlen, 2002). A sender uses unidirectional 
performative messages to request the execution of a 
particular activity from a receiver (e.g., human or 
software agent) involved in the process. The sender 
continues execution of his part of the process 
immediately after having sent the request. The 
complete set of activity patterns on which this work 
is based is described in (Thom, 2006b, Thom, 2009). 

Generally, multiple activity patterns can be 
composed to a process model using workflow 
patterns (e.g., Sequence, AND-Split, AND-Join, 
XOR-Split). Through an empirical study, in which 
214 real-world process models were analyzed, the 
existence of seven activity patterns has been 
confirmed (cf. Thom 2008a, Thom, 2008b, Thom, 
2009). In that approach it was shown that the 
analyzed process models can be completely 
designed based on the aforementioned patterns; i.e., 
the set of identified activity patterns has been 
necessary as well as sufficient to design the 214 
process models, at least at a certain level of 
granularity. This pattern set is closer to the 
vocabulary abstraction level which business 
processes are usually described by domain experts. 

Though it is known that pattern utilization 
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improves the quality and performance of process 
modeling, contemporary BPM tools like Intalio, 
ARIS Toolset and WBI Modeler do not support 
process designers in defining, querying and reusing 
activity patterns as building blocks for business 
process modelling (OASIS, 2006).  

In this paper we present preliminary results 
concerning the discovery and analyses of the co-
occurrences of the activity patterns in real-world 
process models. Our goal is to use the results of this 
analysis for developing a BPM tool, which fosters 
the modeling of business processes based on the 
reuse of activity patterns. The results of our analysis 
can be further used by this tool to suggest a ranking 
of the activity patterns best suited to succeed the last 
applied pattern in a process design, facilitating the 
modeling phase and leading to more standardized 
and less error prone process models.  

In order to perform the analysis we apply a 
knowledge discovery on databases (KDD) process. 
It is a process which involves theories and tools to 
help humans to extract knowledge from large, 
growing digital datasets. Its main purpose is to 
identify valid patterns, potentially useful and 
understandable from a set of data. In this context, 
data constitute a set of facts; and patterns are 
expressions in some language describing a subset of 
the data or a model applicable to them. It can be split 
into 5 main phases: 1) data selection; 2) data pre-
processing; 3) data transformation; 4) data mining, 
and 5) result validation (Fayyad, 1996).  

In particular, we implement a process model 
mining tool (BPM mining tool for short) to be used 
for identifying activity patterns co-occurrences. Our 
miner allows analysing process models instead of 
event logs as proposed in literature (Günther, 2008), 
(Aalst, 2003). This can be considered as a very 
important functionality to automatically identify 
activity patterns co-occurrences in real-world 
process models. 

The remainder of this paper is organized as 
follows: In section 2 we discuss related work. 
Section 3 presents the data mining technique as well 
as the algorithm used to perform the mining of the 
activity patterns co-occurrences in real process 
models. Section 4 applies the KDD process for 
mining the process models. In this section we also 
introduce the BPM mining tool we are developing 
and some results generated by this tool when being 
applied to real process models. Finally, Section 5 
concludes the paper with a summary outlook. 

 

2 RELATED WORK 

Recently, a variety of workflow patterns was 
suggested for capturing different aspects in PAISs 
including control and data flow, resources, process 
change, and exception handling (Aalst, 2003), 
(Weber, 2007). However, there has not yet been a 
mapping of activity patterns onto process (meta) 
models and process modeling tools respectively. 

Concerning workflow patterns, tool support is 
provided by YAWL (Aalst, 2005), which uses 
extended workflow nets as building blocks for 
workflow specifications. Multiple extended 
workflow nets involved in a workflow specification 
can be connected to each other by composite tasks. 

The PICTURE approach proposes a set of 37 
domain specific process building blocks (Becker, 
2007). More precisely, these building blocks are 
used by end users in Public Administrations to 
capture the process landscape and are also specific 
to this domain). Finally, ProCycle presents an 
approach implementing process change patterns in 
ADEPT2 (Weber, 2009). 

3 SELECTING A DATA MINING 
METHOD AND ALGORITHM 

If the goal of a KDD process is to predict the 
behaviour of some variables, utilization of models, 
which only describe or group the data, will not be 
useful. Besides that the kind of learning, the task to 
be done, the type of repository to be mined, and 
knowledge representation must be considered during 
the selection of the data mining technique (Brand, 
1998), (Goebel, 1999), (Han, 2001). Table 1 
presents these aspects and respective values which 
were considered in the selection of the data mining 
algorithms used in our approach. 

Table 1: Aspects which were considered in the selection of 
the data mining method. 

Data mining aspect Value 
Model Type Predictive 
Learning Type Unsupervised/Batch 
Task to be done Association Analysis 
Repository to be mined Process models database 
Knowledge Representation White box 

 
Based on Table 1 we have studied the algorithms 

for association rules discovery. This technique is 
best suited for association analysis and is a 
predictive one. This choice was made, because what 
we are looking for is a future prediction based on 
already occurred facts. In our case, the occurred 
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facts are represented by process models partially 
designed, while the goal is to discover (or to predict) 
the next activity pattern to be used in the modeling 
of these process models. 

The technique is also based on 
unsupervised/batch learning, i.e., it allows to prepare 
a set of processes in a file and send this file to the 
data mining algorithm in a batch mode. 

Besides that, the white box concept guarantees 
that the results when applying this technique are 
easily understandable by humans so that we can 
make some manual inferences with the mined 
information (Agrawal, 1993). 

Given a set of transactions, where each 
transaction is a set of items, an association rule is an 
expression A (antecedent) => C (consequent), where 
A and C are sets of items. The intuitive meaning of 
such a rule is that transactions in the database, which 
contain the items in A, tend to contain the items in C 
as well. (Agrawal, 1993). 

The main advantages of association rules that 
motivate their use in our approach are as follows: (a) 
they are easily understood by humans; (b) they are 
used to represent empirical associations; (c) through 
special measures (support and confidence) it 
becomes possible to evidence how useful mining 
results are (Han, 2001).  

A workflow process model can be understood as 
a graph with a predefined semantics. In this context, 
patterns are identified in recurrent subgraphs within 
a set of graphs (e.g., a set of processes models). 
Given a set of graphs, a graph mining algorithm 
searches for substructures which satisfy some 
criteria (e.g., minimum frequency of patterns and 
minimum confidence). Based on recurrent 
substructures, association rules can be derived. In 
this context, we have selected the Frequent 
SubGraph (FSG) algorithm to be used in our 
approach (Kuramochi, 2004). We choose FSG due 
to its good performance results, scalability, good 
documentation and simple and well defined I/O. 

4 APPLYING KDD FOR MINING 
PROCESS MODELS 

In the data selection step of our KDD process we 
analyzed 190 process models. Most analyzed models 
had been created with the Oracle tool or an UML 
based process modeling tool. Altogether, the 
considered process models stem from 12 different 
organizations and are related to different application 
domains. Note that the mining is performed 

considering the process models and not their 
execution logs as done in other approaches (see 
(Tristão, 2008), (Aalst, 2003)). 

 

UP  NP 

NP BP

BP –  Bi-directional 
NP –  Notification  
UP –  Unidirectional

 
Figure 1: Example of activity patterns identification. 

To mine process models, first of all we need to 
transform the model such that the mining algorithm 
can extract the needed information. In this pre-
processing phase the 190 process models were 
analyzed and the activity patterns they use were 
identified. Each activity or partial order of activities 
was labelled as activity pattern. 

t # Example – 1 – Approval process for a marketing
campaign of a new product
v 0 S
v 1 N
v 2 B
v 3 N
v 4 U
v 5 E0
u 0 1 N
u 1 2 N
u 2 3 N
u 3 4 N
u 4 5 N

t – transaction 
v – graph node (activity pattern)
u – edge
S – start node
N – notification
B – bi-direcional pattern
U – unidirectional pattern
E0 – end node
# - comment sign

t # Example – 1 – Approval process for a marketing
campaign of a new product
v 0 S
v 1 N
v 2 B
v 3 N
v 4 U
v 5 E0
u 0 1 N
u 1 2 N
u 2 3 N
u 3 4 N
u 4 5 N

t – transaction 
v – graph node (activity pattern)
u – edge
S – start node
N – notification
B – bi-direcional pattern
U – unidirectional pattern
E0 – end node
# - comment sign

 
Figure 2: Example of process transformation. 

In the data transformation phase we mapped 
each process model together with the identified 
activity patterns, to the format required by the FSG 
algorithm (cf. Section 3). For example, the process 
model shown in Fig. 1 was transformed to the 
format depicted in Fig. 2. Each node has an 
incremental index and a label which indicates the 
activity pattern this node represents. Edges refer to 
the nodes they connect and have a label. All edges 
have the N (Normal) label since we are not making 
any differentiation between them.  

In the mining phase the FSG algorithm is 
executed. As a result of the mining, the frequent sub-
graphs in the analyzed process models are identified 
as well as the support value of each sub-graph within 
the set of process models and their parent-child 
relation. This information is stored in a file similar 
to the input file, since the frequent patterns are 
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graphs as the input process models are. 

4.1 On a Process Model Mining Tool 

In order to analyze the results from the mining phase 
we developed a BPM mining tool which allows to 
automatically execute specific parts of the data 
mining and the evaluation steps of the KDD process. 
The tool receives a set of normalized activity 
patterns as input and then simulates their 
construction with the use of the mined co-
occurrences patterns. In this context co-occurrence is 
a recurrent construction of activity patterns within 
process models (e.g., the pattern pair DECISION  
NOTIFICATION). 

To evaluate the usefulness of the activity patterns 
co-occurrence, the tool simulates a user modeling 
the input processes. In this modeling all processes 
are re-constructed activity by activity. For each 
activity insertion, the tool generates a 
recommendation list. This list is composed by rules 
describing how the process can evolve according to 
the partial model designed so far and the co-
occurrences found on the data mining phase. These 
rules have on their antecedent and consequent parts 
of process models. Fig. 3 shows two examples of 
rules (see item b).  

As the tool receives as input the complete 
process, it knows all intermediary stages of the 
modeling phase as well as how process elements 
must be added to completely design it. The order in 
which elements are added to the process is obtained 
from the order they appear in the input file. 
Therefore, the tool knows what would be the user’s 
choice on the recommendation list if he was 
modeling the process with the help of it since the 
order of elements insertion is specified. For instance, 
the process shown in Fig. 2 could be part of an input 
for the BPM mining tool. With that description the 
tool simulates a user which models that process by 
first adding an edge between the start node and the 
notification pattern. Then, it adds an edge 
connecting this notification pattern to a bi-
directional performative one. After that, the bi-
directional pattern is connected to other notification 
pattern, which is then connected to a unidirectional 
performative pattern, which is finally connected to 
an end node. 

The output of the BPM mining tool is a summary 
containing calculations regarding the simulation of 
the input models designed. It can be used to analyze 
how useful the information on the co-occurrence of 
activity patterns can be to predict and thus to foster 
the design of process models. Sample outputs are: 

 the total number of co-occurrence rules found 
in the data mining phase;  
 the number of steps of user’s rule selection 

simulated, i.e., number of times that a 
recommendation list was created and the 
appropriate rule was searched on it;  
 a ranking with the total number of steps where 

the rule on position n th of the recommendation 
list would be chosen by the user, i.e., the total 
times that the rule on first (and second, …, n th) 
position of the recommendation list would be 
selected by a user when modeling the process; 
 the total number of rules of size i that were 

chosen in the simulation (in this analysis the size 
of a rule is the number of edges that its 
antecedent model has). 

4.2 Implementation of a Process Model 
Mining Tool 

Based on the recurrent activity patterns found in the 
mining phase, our BPM mining tool creates all rules 
of interest with their respective support and 
confidence. In future, we intend to implement some 
filters within this class, or in a new class called by, 
in order to filter the created rules according to 
specific criteria. This filtering contributes to avoid 
the creation of too many rules and improves the 
performance of the algorithm. Currently, the used 
filtering creates only one step rules. Item b of Fig. 3 
shows two rules of this type. These rules have a 
partial process model as antecedent and have on the 
consequent the same process model with one more 
edge and eventually a node. It is assumed that each 
process model may evolve only by adding new edge 
in each design step. When adding a new edge we 
have two situations: a) the new edge closes a cycle 
on the process, so that no new nodes are added; or b) 
the new edge connects a node of the partial model 
designed to a new activity pattern (node). In case of 
b a new node is added to the model as well. By 
doing so, we assure that all created rules represent 
an evolution of the model of one step. Note that this 
approach is easier for a user to understand when 
comparing to rules which may present greater 
modifications of the partial model designed so far. If 
we allow to create rules which introduce greater 
changes of the process they will hardly match all 
user intentions. Besides that, this is not our purpose, 
i.e., we do not want to present an almost complete 
process to the user. Instead, we want to interactively 
help on each pattern insertion to the process model, 
so the rules are kept simple and easily readable.   

Our tool also simulates the design of the input 
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process models. It has an inference engine which 
receives a partially modelled process as input and 
then tries to match the complete process, or part of 
it, with the antecedent of the rules as created in the 
data mining phase. All matching rules are returned 
in the ranking list of activity pattern co-occurrences, 
so they represent a possible evolution for the design 
of the partial model. Currently, the rules are ordered 
by their size and confidence. Thus, rules which 
match the largest part of the partial model are 
presented first. If the rules have same size, the one 
presenting the greatest confidence will be shown 
first. 

Fig. 3 shows a fragment of the process model we 
introduced in Fig. 1, (see a). Fig. 3 also presents a 
recommendation list with two rules to continue the 
modeling of the process from the model fragment 
designed so far (see b). The partial process model is 
considered to construct this recommendation list. It 
contains all rules that match entirely or partially the 
model presented in a.  

 

 
Figure 3: Modeling evolution. 

Based on the complete process model (cf. Fig. 
1), our tool knows that, in this case, if the user is 
assisted by the recommendation list when designing 
the process, he will choose rule number two, since it 
represents an evolution of the partial model by 
adding a new bi-directional performative pattern 
connected to the already existing notification 
pattern. 

4.3 Evaluating the Discovered Patterns 

To evaluate the patterns discovered with the KDD 
process we have done a randomly stratified 
partitioning of the available processes. We reserved 
1/3 to pass to the Tester class once the co-
occurrences patterns are mined over the other 2/3 of 
the processes. It was considered a minimum support 
of 3, i.e., if three process models contain the same 
co-occurrence of activity patterns it will be, then, 
considered a pattern in our data mining step. Doing 

so we assure that the co-occurrences found during 
data mining step are not obtained from processes we 
use to verify our approach. Thus, we can check 
whether they are predictive enough for ‘never seen’ 
process models.  

In our experiment we had observed that the 470 
steps of rule selection were simulated, i.e., 470 times 
a co-occurrence ranking of activity pattern was 
generated and the appropriate rule which describes 
the model evolution was searched. This ranking has 
an average size of 26 rules. We can observe that on 
almost 20% of the simulated steps, the rule which 
correctly predicts the evolution of the model is on 
the first three positions of the ranking. Accumulating 
the values until the 10th position we have a correct 
prediction in more than 35% of the simulated steps. 
Considering that we have 6 activity patterns, the 
probability of correctly predict the next activity 
pattern, without additional information, is around 
16.67%. Further, we need to predict where this new 
activity pattern will be inserted. For instance, in a 
model with 2 nodes, this probability decreases to the 
half. In a model with 10 nodes, this probability is ten 
times lower. 

We can also see that the majority of the rules that 
correctly predicts the model evolution are rules of 
size 1, 2 or 3. This conclusion can further be used to 
filter the generated rules to return rules of only these 
sizes and reduce the amount of rules on the ranking. 
We expect that this filter will improve the prediction 
rate of the inference engine. 

After evaluating the mined patterns we have re-
executed the process using all the available process 
models. At this time, we used the complete set of 
models to execute the data mining step and then 
simulated their construction. 1425 simulation steps 
were executed. On the first three positions of the 
ranking we had a correct prediction rate of more 
than 30% while on the 10th first positions this rate 
goes to more than 50%. The percentage of 
unmatched rules has decreased from 41% on before 
execution to 20.5%. Considering the average size of 
11 nodes in the processes models analysed, we have 
around 1.52% of chances to correctly predict the 
next pattern to be inserted in a model and where to 
insert it if no prior information is used. With three 
chances, i.e., creating a list of three possible next 
patterns, we have 4.55% of chances to get a match. 
Increasing from 4.55% to 30% is a great gain and 
this illustrates the power of using mined information 
to predict the future on our experiments. 
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5 SUMMARY 

This paper reports on the use of KDD in the 
development of a BPM mining tool, which allows 
mining process models based on activity patterns as 
highly relevant. The functionalities of this tool can 
be considered very important: a) after having 
identified the activity patterns in the process models 
the tool can count the recurrences of each pattern as 
well as their co-occurrences; b) the inference engine 
of our BPM mining tool can give design time 
recommendations for any new processes being 
modelled, which ease process modelling based on 
already mined information; c) we can use our tool 
for conducting a series of experiments in which we 
compare process modeling with and without activity 
pattern support as well as investigate different 
process classes and their most recurrent co-
occurrences and; d) finally, the basic concepts 
behind this tool (e.g., the inference engine) can be 
added as extensions to existing BPM tools. 

As future work, we aim at extending our tool 
with a module to update the frequency of activity 
patterns co-occurrences and corresponding raking of 
recommendations based on the user modeling. This 
update will be done on-the-fly as new models are 
developed aided by the inference engine. Thus, we 
aim at increasing the accuracy of the 
recommendations for each pattern co-occurrence. 

In addition we intend to investigate methods 
which allow the automatic identification of activity 
patterns in real process models.   
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