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Abstract. Organizations that maintain and evolve software would benefit from 
being able to measure productivity in an easy and reliable way. This could al-
low them to determine if new or improved practices are needed, and to evaluate 
improvement efforts. We propose and evaluate indicators of productivity trends 
that are based on the premise that productivity during software evolution is 
closely related to the effort required to complete change tasks. Three indicators 
use data about change tasks from change management systems, while a fourth 
compares effort estimates of benchmarking tasks. We evaluated the indicators 
using data from 18 months of evolution in two commercial software projects. 
The productivity trend in the two projects had opposite directions according to 
the indicators. The evaluation showed that productivity trends can be quantified 
with little measurement overhead. We expect the methodology to be a step to-
wards making quantitative self-assessment practices feasible even in low cere-
mony projects.  

1 Introduction 

1.1 Background 

The productivity of a software organization that maintains and evolves software can 
decrease over time due to factors like code decay [1] and difficulties in preserving 
and developing the required expertise [2]. Refactoring [3] and collaborative pro-
gramming [4] are practices that can counteract negative trends. A development organ-
ization might have expectations and gut feelings about the total effect of such factors 
and accept a moderate decrease in productivity as the system grows bigger and more 
complex. However, with the ability to quantify changes in productivity with reasona-
ble accuracy, organizations could make informed decisions about the need for im-
provement actions. The effects of new software practices are context dependent, and 
so it would be useful to subsequently evaluate whether the negative trend was broken. 

The overall aim for the collaboration between our research group and two com-
mercial software projects (henceforth referred to as MT and RCN) was to understand 
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and manage evolution costs for object-oriented software. This paper was motivated 
by the need to answer the following practical question in a reliable way: 

 
Did the productivity in the two projects change between the baseline period P0 (Jan-
July 2007) and the subsequent period P1 (Jan-July 2008)? 

 
The project RCN performed a major restructuring of their system during the fall of 

2007. It was important to evaluate whether the project benefitted as expected from the 
restructuring effort. The project MT added a substantial set of new features since the 
start of P0 and queried whether actions that could ease further development were 
needed. The methodology used to answer this question was designed to become part 
of the projects’ periodic self-assessments, and aimed to be a practical methodology in 
other contexts as well. 

1.2 Approaches to Measuring Productivity 

In a business or industrial context, productivity refers to the ratio of output production 
to input effort [5]. In software engineering processes, inputs and outputs are multidi-
mensional and often difficult to measure. In most cases, development effort measured 
in man-hours is a reasonable measure of input effort. In their book on software mea-
surement, Fenton and Pfleeger [6] discussed measures of productivity based on the 
following definition of software productivity: 

effort
sizetyproductivi =  

(1) 

Measures of developed size include lines of code, affected components [7], func-
tion points [8-10] and specification weight metrics [11]. By plotting the productivity 
measure, say, every month, projects can examine trends in productivity. Ramil and 
Lehman used a statistical test (CUSUM) to detect statistically significant changes 
over time [12]. The same authors proposed to model development effort as a function 
of size:  

sizeeffort 10 ⋅β+β= . (2) 

They suggested collecting data on effort and size periodically, e.g., monthly, and 
to interpret changes in the regression coefficients as changes in evolvability. Number 
of changed modules was proposed as a measure of size. The main problem with these 
approaches is to define a size measure that is both meaningful and easy to collect. 
This is particularly difficult when software is changed rather than developed from 
scratch. 

An alternative approach, corresponding to this paper’s proposal, is to focus on the 
completed change task as the fundamental unit of output production. A change task is 
the development activity that transforms a change request into a set of modifications 
to the source components of the system. When software evolution is organized 
around a queue of change requests, the completed change task is a more intuitive 
measure of output production than traditional size measures, because it has more 
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direct value to complete a change task than to produce another n lines of code. A 
corresponding input measure is the development effort required to complete the 
change task, referred to as change effort. 

Several authors compared average change effort between time periods to assess 
trends in the maintenance process [13-15]. Variations of this indicator include aver-
age change effort per maintenance type (e.g., corrective, adaptive or enhancive main-
tenance). One of the proposed indicators uses direct analysis of change effort. How-
ever, characteristics of change tasks may change over time, so focusing solely on 
change effort might give an incomplete picture of productivity trends.  

Arisholm and Sjøberg argued that changeability may be evaluated with respect to 
the same change task, and defined that changeability had decayed with respect to a 
given change task c if the effort to complete c (including the consequential change 
propagation) increased between two points in time [16]. We consider productivity to 
be closely related to changeability, and we will adapt their definition of changeability 
decay to productivity change.  

In practice, comparing the same change tasks over time is not straightforward, be-
cause change tasks rarely re-occur. To overcome this practical difficulty, developers 
could perform a set of “representative” tasks in periodic benchmarking sessions. One 
of the proposed indicators is based on benchmarking identical change tasks. For prac-
tical reasons, the tasks are only estimated (in terms of expected change effort) but are 
not completed by the developers. 

An alternative to benchmarking sessions is using naturally occurring data about 
change tasks and adjusting for differences between them when assessing trends in 
productivity. Graves and Mockus retrieved data on 2794 change tasks completed over 
45 months from the version control system for a large telecommunication system 
[17]. A regression model with the following structure was fitted on this data: 

)date,size,type,developer(feffortChange =  (3) 

The resulting regression coefficient for date was used to assess whether there was 
a time trend in the effort required to complete change tasks, while controlling for 
variations in other variables. One of our proposed indicators is an adaption of this 
approach. 

A conceptually appealing way to think about productivity change is to compare 
change effort for a set of completed change tasks to the hypothetical change effort 
had the same changes been completed at an earlier point in time. One indicator ope-
rationalizes this approach by comparing change effort for completed change tasks to 
the corresponding effort estimates from statistical models. This is inspired by Kit-
chenham and Mendes’ approach to measuring the productivity of finalized projects 
by comparing actual project effort to model-based effort estimates [18]. 

The contribution of this paper is i) to define the indicators within a framework that 
allows for a common and straightforward interpretation, and ii) to evaluate the validi-
ty of the indicators in the context of two commercial software projects. The evalua-
tion procedures are important, because the validity of the indicators depends on the 
data at hand. 
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The remainder of this paper is structured as follows: Section 2 describes the design 
of the study, Section 3 presents the results and the evaluation of the indicators and 
Section 4 discusses the potential for using the indicators. Section 5 concludes. 

2 Design of the Study 

2.1 Context for Data Collection 

The overall goal of the research collaboration with the projects RCN and MT was to 
better understand lifecycle development costs for object-oriented software. The 
projects’ incentive for participating was the prospect of improving development prac-
tices by participating in empirical studies.  

The system developed by MT is owned by a public transport operator, and enables 
passengers to purchase tickets on-board. The system developed by RCN is owned by 
the Research Council of Norway, and is used by applicants and officials at the council 
to manage the lifecycle of research grants. MT is mostly written in Java, but uses C++ 
for low-level control of hardware. RCN is based on Java-technology, and uses a 
workflow engine, a JEE application server, and a UML-based code generation tool. 
Both projects use management principles from Scrum [19]. Incoming change requests 
are scheduled for the monthly releases by the development group and the product 
owner. Typically, 10-20 percent of the development effort was expended on correc-
tive change tasks. The projects worked under time-and-material contracts, although 
fixed-price contracts were used in some cases. The staffing in the projects was almost 
completely stable in the measurement period.  

Project RCN had planned for a major restructuring in their system during the 
summer and early fall of 2007 (between P0 and P1), and was interested in evaluating 
whether the system was easier to maintain after this effort. Project MT added a sub-
stantial set of new features over the two preceding years and needed to know if ac-
tions easing further development were now needed.  

Data collection is described in more detail below and is summarized in Table 1. 

Table 1. Summary of data collection. 

 RCN MT 
Period P0 Jan 01 2007 - Jun 30 2007 Aug 30 2006 - Jun 30 2007 
Period P1 Jan 30 2008 - Jun 30 2008 Jan 30 2008 - Jun 30 2008 
Change tasks in P0/P1 136/137 200/28 
Total change effort in P0/P1 1425/1165 hours 1115/234 hours 
Benchmarking sessions Mar 12 2007, Apr 14 2008 Mar 12 2007, Apr 14 2008 
Benchmark tasks  16  16  
Developers  4  (3 in benchmark) 4 

2.2 Data on Real Change Tasks 

The first three proposed indicators use data about change tasks completed in the two 
periods under comparison. It was crucial for the planned analysis that data on change 
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effort was recorded by the developers, and that source code changes could be traced 
back to the originating change request. Although procedures that would fulfil these 
requirements were already defined by the projects, we offered an economic compen-
sation for extra effort required to follow the procedures consistently. 

We retrieved data about the completed change tasks from the projects’ change 
trackers and version control systems by the end of the baseline period (P0) and by the 
end of the second period (P1). From this data, we constructed measures of change 
tasks that covered requirements, developers’ experience, size and complexity of the 
change task and affected components, and the type of task (corrective vs. non-
corrective). The following measures are used in the definitions of the productivity 
indicators in this paper:  

− crTracks and crWords are the number of updates and words for the change request 
in the change tracker. They attempt to capture the volatility of requirements for a 
change task. 

− components is the number of source components modified as part of a change task. 
It attempts to capture the dispersion of the change task. 

− isCorrective is 1 if the developers had classified the change task as corrective, or if 
the description for the change task in the change tracker contained strings such as 
bug, fail and crash. In all other cases, the value of isCorrective is 0.  

− addCC is the number of control flow statements added to the system as part of a 
change task. It attempts to capture the control-flow complexity of the change task. 

− systExp is the number of earlier version control check-ins by the developer of a 
change task. 

−  chLoc is the number of code lines that are modified in the change task. 

A complete description of measures that were hypothesized to affect or correlate 
with change effort is provided in [20]. 

2.3 Data on Benchmark Tasks 

The fourth indicator compares developers’ effort estimates for benchmark change 
tasks between two benchmarking sessions. The 16 benchmark tasks for each project 
were collaboratively designed by the first author of this paper and the project manag-
ers. The project manager’s role was to ensure that the benchmark tasks were repre-
sentative of real change tasks. This meant that the change tasks should not be per-
ceived as artificial by the developers, and they should cross-cut the main architectural 
units and functional areas of the systems. 

The sessions were organized approximately in the midst of P0 and P1. All devel-
opers in the two projects participated, except for one who joined RCN during P0. We 
provided the developers with the same material and instructions in the two sessions. 
The developers worked independently, and had access to their normal development 
environment. They were instructed to identify and record affected methods and 
classes before they recorded the estimate of most likely effort for a benchmark task. 
They also recorded estimates of uncertainty, the time spent to estimate each task, and 
an assessment of their knowledge about the task. Because our interest was in the 
productivity of the project, the developers were instructed to assume a normal as-
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signment of tasks to developers in the project, rather than estimating on one’s own 
behalf.  

2.4 Design of Productivity Indicators 

We introduce the term productivity ratio (PR) to capture the change in productivity 
between period P0 and a subsequent period P1.  

The productivity ratio with respect to a single change task c is the ratio between 
the effort required to complete c in P1 and the effort required to complete c in P0: 

)0P,c(effort
)1P,c(effort)c(PR =  

(4) 

The productivity ratio with respect to a set of change tasks C is defined as the set 
of individual values for PR(c): 

}Cc|
)0P,c(effort
)1P,c(effort{)C(PR ∈=  

(5) 

The central tendency of values in PR(C), CPR(C), is a useful single-valued statistic 
to assess the typical productivity ratio for change tasks in C: 

}Cc|
)0P,c(effort
)1P,c(effort{central)C(CPR ∈=  

(6) 

The purpose of the above definition is to link practical indicators to a common 
theoretical definition of productivity change. This enables us to define scale-free, 
comparable indicators with a straightforward interpretation. For example, a value of 
1.2 indicates a 20% increase in effort from P0 to P1 to complete the same change 
tasks. A value of 1 indicates no change in productivity, whereas a value of 0.75 indi-
cates that only 75% of the effort in P0 is required in P1. Formal definitions of the 
indicators are provided in Section 2.4.1 to 2.4.4.  

2.4.1 Simple Comparison of Change Effort 

The first indicator requires collecting only change effort data. A straightforward way 
to compare two series of unpaired effort data is to compare their arithmetic means: 

)0P0c|)0c(effort(mean
)1P1c|)1c(effort(mean

1ICPR
∈
∈

=  
(7) 

The Wilcoxon rank-sum test determines whether there is a statistically significant 
difference in change effort values between P0 and P1. One interpretation of this test 
is that it assesses whether the median of all possible differences between change ef-
fort in P0 and P1 is different from 0: 

)0P0c,1P1c|)0c(effort)1c(effort(medianHL ∈∈−=  (8) 
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This statistic, known as the Hodges-Lehmann estimate of the difference between 
values in two data sets, can be used to complement ICPR1. The actual value for this 
statistic is provided with the evaluation of ICPR1, in Section 3.1. 

ICPR1 assumes that the change tasks in P0 and P1 are comparable, i.e. that there 
are no systematic differences in the properties of the change tasks between the pe-
riods. We checked this assumption by using descriptive statistics and statistical tests 
to compare measures that we assumed (and verified) to be correlated with change 
effort in the projects (see Section 3.2). These measures were defined in Section 2.2. 

2.4.2 Controlled Comparison of Change Effort 

ICPR2  also compares change effort between P0 and P1, but uses a statistical model to 
control for differences in properties of the change tasks between the periods. Regres-
sion models with the following structure for respectively RCN and MT are used:  

.1inPisCorrfiletypeschLoccrWords)effortlog( 543210 ⋅β+⋅β+⋅β+⋅β+⋅β+β=  (9) 

.1inP
systExpcomponentsaddCCcrTracks)effortlog(

5

43210

⋅β
+⋅β+⋅β+⋅β+⋅β+β=

 
(10) 

The models (9) and (10) are project specific models that we found best explained 
variability in change effort, c.f. [20]. The dependent variable effort is the reported 
change effort for a change task. The variable inP1 is 1 if the change task c was com-
pleted in P1 and is zero otherwise. The other variables were explained in Section 2.2. 
When all explanatory variables except inP1 are held constant, which would be the 
case if one applies the model on the same change tasks but in the two, different time 
periods P0 and P1, the ratio between change effort in P1 and P0 becomes 

.5e0ß5Var4ß4Var3ß3Var2ß2Var1 ß1ß0e

1ß5Var4ß4Var3ß3Var2ß2Var1 ß1ß0e

)01inP,4Var..1Var(effort
)11inP,4Var..1Var(effort

2ICPR

β=⋅+⋅+⋅+⋅+⋅+

⋅+⋅+⋅+⋅+⋅+
=

=
=

=
 

(11) 

Hence, the value of the indicator can be obtained by looking at the regression coef-
ficient for inP1, β5. Furthermore, the p-value for β5 is used to assess whether β5 is 
significantly different from 0, i.e. that the indicator is different from 1 (e0=1). 

Corresponding project specific models must be constructed to apply the indicator 
in other contexts. The statistical framework used was Generalized Linear Models 
assuming Gamma-distributed responses (change effort) and a log link-function. 

2.4.3 Comparison between Actual and Hypothetical Change Effort 

ICPR3 compares change effort for tasks in P1 with the hypothetical change effort had 
the same tasks been performed in P0. These hypothetical change effort values are 
generated with a project-specific prediction model built on data from change tasks in 
P0. The model structure is identical to (9) and (10), but without the variable inP1. 
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Having generated this paired data on change effort, the definition (6) can be used 
directly to define ICPR3. To avoid over-influence of outliers, the median is used as a 
measure of central tendency.  

}1Pc|
)c(ffortpredictedE

)c(effort{medianICPR 3 ∈=  
(12) 

A two-sided sign test is used to assess whether actual change effort is higher (or 
lower) than the hypothetical change effort in more cases than expected from chance. 
This corresponds to testing whether the indicator is statistically different from 1. 

2.4.4 Benchmarking 

ICPR4 compares developers’ estimates for 16 benchmark change tasks between P0 
and P1. Assuming the developers’ estimation accuracy does not change between the 
periods, a systematic change in the estimates for the same change tasks would mean 
that the productivity with respect to these change tasks had changed. Effort estimates 
made by developers D for benchmarking tasks Cb in periods P1 and P0 therefore give 
rise to the following indicator: 

}Dd,bCc|
)c,d,0P(estEffort
)c,d,1P(estEffort{medianICPR 4 ∈∈=  

(13) 

A two-sided sign test determines whether estimates in P0 were higher (or lower) 
than the estimates in P1 in more cases than expected from chance. This corresponds 
to testing whether the indicator is statistically different from 1. 

Controlled studies show that judgement-based estimates can be unreliable, i.e. that 
there can be large random variations in estimates by the same developer [21]. Collect-
ing more estimates reduces the threat implied by random variation. The available time 
for the benchmarking session allowed us to collect 48 (RCN – three developers) and 
64 (MT – four developers) pairs of estimates. 

One source of change in estimation accuracy over time is that developers may be-
come more experienced, and hence provide more realistic estimates. For project 
RCN, it was possible to evaluate this threat by comparing the estimation bias for 
actual changes between the periods. For project MT, we did not have enough data 
about estimated change effort for real change tasks, and we could not evaluate this 
threat. 

Other sources of change in estimation accuracy between the sessions are the con-
text for the estimation, the exact instructions and procedures, and the mental state of 
the developers. While impossible to control perfectly, we attempted to make the two 
benchmarking sessions as identical as possible, using the same, precise instructions 
and material. The developers were led to a consistent (bottom-up) approach by our 
instructions to identify and record affected parts of the system before they made each 
estimate. 

Estimates made in P1 could be influenced by estimates in P0 if developers remem-
bered their previous estimates. After the session in P1, the feedback from all develop-
ers was that they did not remember their estimates or any of the tasks. 
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An alternative benchmarking approach is comparing change effort for benchmark 
tasks that were actually completed by the developers. Although intuitively appealing, 
the analysis would still have to control for random variation in change effort, out-
comes beyond change effort, representativeness of change tasks, and also possible 
learning effects between benchmarking sessions.  

In certain situations, it would even be possible to compare change effort for change 
tasks that recur naturally during maintenance and evolution (e.g., adding a new data 
provider to a price aggregation service). Most of the threats mentioned above would 
have to be considered in this case, as well. We did not have the opportunities to use 
these indicators in our study. 

2.5 Accounting for Changes in Quality 

Productivity analysis could be misleading if it does not control for other outcomes of 
change tasks, such as the change task’s effect on system qualities. For example, if 
more time pressure is put on developers, change effort could decrease at the expense 
of correctness. We limit this validation to a comparison of the amount of corrective 
and non-corrective work between the periods. The evaluation assumes that the change 
task that introduced a fault was completed within the same period as the task that 
corrected the fault. Due to the short release-cycle and half-year leap between the end 
of P0 and the start of P1, we are confident that change tasks in P0 did not trigger 
fault corrections in P1, a situation that would have precluded this evaluation. 

3 Results and Validation 

The indicator values with associated p-values are given in Table 2.  

Table 2. Results for the indicators. 

 RCN MT 
Indicator  Value p-value Value p-value 
ICPR1  0.81 0.92 1.50 0.21 
ICPR2  0.90 0.44 1.50 0.054 
ICPR3  0.78 <0.0001 1.18 0.85 
ICPR4  1.00 0.52 1.33 0.0448 

 
For project RCN, the analysis of real change tasks indicate that productivity in-

creased, since between 10 and 22% less effort was required to complete change tasks 
in P1. ICPR4 indicates no change in productivity between the periods. The project had 
refactored the system throughout the fall of 2008 as planned. Overall, the indicators 
are consistent with the expectation that the refactoring initiative would be effective. 
Furthermore, the subjective judgment by the developers was that the goal of the re-
factoring was met, and that change tasks were indeed easier to perform in P1.  

For project MT, the analysis of real change tasks (ICPR1, ICPR2 and ICPR3) indi-
cate a drop in productivity, with somewhere between 18 and 50% more effort to 
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complete changes in P1 compared with P0. The indicator that uses benchmarking 
data (ICPR4) supports this estimate, being almost exactly in the middle of this range. 
The project manager in MT proposed post-hoc explanations as to why productivity 
might have decreased. During P0, project MT performed most of the changes under 
fixed-price contracts. In P1, most of the changes were completed under time-and 
material contracts. The project manager indicated that the developers may have expe-
rienced more time pressure in P0.  

As discussed in Section 2.5, the indicators only consider trends in change effort, 
and not trends in other important outcome variables that might confound the results, 
e.g., positive or negative trends in quality of the delivered changes. To assess the 
validity of our indicators with respect to such confounding effects, we compared the 
amount of corrective versus non-corrective work in the periods. For MT, the percen-
tage of total effort spent on corrective work dropped from 35.6% to 17.1% between 
the periods. A plausible explanation is that the developers, due to less time pressure, 
expended more time in P1 ensuring that the change tasks were correctly imple-
mented. So even though the productivity indicators suggest a drop, the correctness of 
changes was also higher. For RCN, the percentage of the total effort spent on correc-
tive work increased from 9.7% to 15%, suggesting that increased productivity was at 
the expense of slightly lesser quality. 

3.1 Validation of ICPR1 

The distribution of change effort in the two periods is shown in Fig. 1 (RCN) and Fig. 
2 (MT). The square boxes include the mid 50% of the data points. A log scale is used 
on the y-axis, with units in hours. Triangles show outliers in the data set. 

For RCN, the plots for the two periods are very similar. The Hodges-Lehmann es-
timate of difference between two data sets (8) is 0, and the associated statistical test 
does not indicate a difference between the two periods. For MT, the plots show a 
trend towards higher change effort values in P1. The Hodges-Lehmann estimate is 
plus one hour in P1, and the statistical test showed that the probability is 0.21 that this 
result was obtained by pure chance. 

    
Fig. 1. Change effort in RCN, P0 (left) vs. P1.   Fig. 2. Change effort in MT, P0 (left) vs. P1. 
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If there were systematic differences in the properties of the change tasks between 
the periods, ICPR1 can be misleading. This was assessed by comparing values for 
variables that capture certain important properties. The results are shown in Table 3 
and Table 4. The Wilcoxon rank-sum test determined whether changes in these va-
riables were statistically significant. In the case of isCorrective, the Fischer’s exact 
test determined whether the proportion of corrective change tasks was significantly 
different in the two periods. 

For RCN, chLoc significantly increased between the periods, while there were no 
statistically significant changes in the values of other variables. This indicates that 
larger changes were completed in P1, and that the indicated gain in productivity is a 
conservative estimate 

For MT, crTracks significantly decreased between P0 and P1, while addCC and 
components increased in the same period. This indicates that more complex changes 
were completed in P1, but that there was less uncertainty about requirements. Be-
cause these effects counteract, it cannot be determined whether the value for ICPR1 is 
conservative. This motivates the use of ICPR2 and ICPR3, which explicitly control for 
changes in the mentioned variables.  

Table 3. Properties of change tasks in RCN. 

Variable P0 P1 p-value 
chLoc (mean) 26 104 0.0004 
crWords (mean) 107 88 0.89 
filetypes (mean) 2.7  2.9 0.50 
isCorrective (%) 38 39 0.90  

Table 4. Properties of change tasks in MT. 

Variable P0 P1 p-value 
addCC (mean) 8.7 44 0.06 
components (mean) 3.6 7 0.09 
crTracks (mean) 4.8 2.5 <0.0001 
systExp (mean) 1870 2140 0.43 

3.2 Validation of ICPR2 

ICPR2 is obtained by fitting a model of change effort on change task data from P0 
and P1. The model includes a binary variable representing period of change (inP1) to 
allow for a constant proportional difference in change effort between the two periods. 
The statistical significance of the difference can be observed directly from the p-value 
of that variable. The fitted regression expressions for RCN and MT were:  

 

.1inP10.0veisCorrecti79.0
changed00073.0filetypes2258.0crWords0018.05.9)effortlog(

⋅−⋅
−⋅+⋅+⋅+=

 (14) 
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.1inP40.0systExp00013.0
components098.0addCC0041.0crTracks088.01.9)effortlog(

⋅+⋅
−⋅+⋅+⋅+=

 (15) 

The p-value for inP1 is low (0.054) for MT and high (0.44) for RCN. All the other 
model variables have p-values lower than 0.05. For MT, the interpretation is that 
when these model variables are held constant, change effort increases by 50% 
(e0.40=1.50). A plot of deviance residuals in Fig. 3 and Fig. 4 is used to assess whether 
the modelling framework (GLM with gamma distributed change effort and log link 
function) was appropriate. If the deviance residuals increase with higher outcomes 
(overdispersion) the computed p-values would be misleading. The plots show no sign 
of overdispersion. This validation increases the confidence in this indicator for 
project MT. For project RCN, the statistical significance is too weak to allow confi-
dence in this indicator alone. 

 

  
Fig. 3. Residual plot for RCN model (14). Fig 4. Residual plot for MT model (15). 

3.3 Validation of ICPR3 

ICPR3 compares change effort in P1 with the model-based estimates for the same 
change tasks had they been completed in P0. The model was fitted on data from P0. 
Fig. 5 shows that actual change effort tends to be higher than estimated effort for MT, 
while the tendency is opposite for RCN. For RCN, the low p-value shows that that 
actual change effort is systematically lower than the model-based estimates. For 
project MT, the high p-value means that actual effort was not systematically higher.  

If the variable subset is overfitted to data from P0, the model-based estimates using 
data from P1 can be misleading. To evaluate the stability of the model structure, we 
compared the model residuals in the P0 model with those in a new model fitted on 
data from P1 (using the same variable subset). For MT, the model residuals were 
systematically larger (Wilcoxon rank-sum test, p=0.0048). There was no such trend 
for RCN (Wilcoxon rank-sum test, p=0.78), indicating a more stable model structure. 

Another possible problem with ICPR3 is that model estimates can degenerate for 
variable values poorly covered by the original data set. Inspection of the distributions 
for the independent variables showed that there was a potential problem with the 
variable chLoc, also indicated by the large difference in mean, shown in Table 3. We 
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re-calculated ICPR3 after removing the 10 data points that were poorly covered by the 
original model, but this did not affect the value of the indicator.  

 

 
Fig. 5. Model estimates subtracted from actual effort. 

In summary, the validation for ICPR3 gives us high confidence in the result for 
project RCN, due to high statistical significance, and evidence of a stable underlying 
model structure. For project MT, the opposite conclusion applies.  

3.4 Validation of ICPR4 

ICPR4 is obtained by comparing the estimates that were made in the benchmarking 
sessions in P0 and P1. Fig. 6 shows that for project MT, the estimates tended to be 
higher in P1 than in P0. For project RCN, there was no apparent difference.  

A two-sided sign determines whether the differences are positive or negative in 
more cases than could be expected by pure chance. For project MT, the low p-value 
shows that estimates in P1 are systematically higher than estimates in P0. For project 
RCN, the high p-value means that estimates in P1 were not systematically different 
from in P0. 

A change in estimation accuracy constitutes a threat to the validity of ICPR4. For 
example, if developers tended to underestimate changes in P0, experience may have 
taught them to provide more relaxed estimates in P1. Because this would apply to real 
change tasks as well, we evaluated this threat by comparing estimation accuracy for 
real changes between the periods. The required data for this computation (developers’ 
estimates and actual change effort) was only available for RCN. Fig. 7 shows a dif-
ference in estimation bias between the periods (Wilcoxon rank-sum test, p=0.086).  

Changes tended to be overestimated in P0 and underestimated in P1. Hence, the 
developers became more optimistic, indicating that ICPR4 can be biased towards a 
higher value. This agrees with the results for the other indicators. 

In summary, the benchmarking sessions supported the results from data on real 
change tasks. An additional result from the benchmarking session was that uncertain-
ty estimates consistently increased between the periods in both projects. The develop-
ers explained this result by claiming they were more realistic in their assessments of 
uncertainty. 
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Fig. 6. Differences in estimates. 

 
Fig. 7. RCN: Estimates subtracted from actual 
effort. 

4 Discussion 

The described approach to measuring productivity of software processes has some 
notable features compared with earlier work in this area. First, rather than searching 
for generally valid indicators of productivity, we believe it is more realistic to devise 
such indicators within more limited scopes. Our indicators target situations of soft-
ware evolution where comparable change tasks are performed during two time inter-
vals that are subject to the assessment. Second, rather than attempting to assess gen-
eral validity, we believe it is more prudent to integrate validation procedures with the 
indicators. Third, our indicators are flexible within the defined scope, in that the 
structure of the underlying change effort models can vary in different contexts.  

In a given project context, it may not be obvious which indicator will work best. 
Our experience is that additional insight was gained about the projects from using and 
assessing several indicators. The three first indicators require that data on change 
effort from individual change tasks is available. The advantage of ICPR1 is that data 
on change effort is the only requirement for data collection. The caveat is that addi-
tional quantitative data is needed to assess the validity of the indicator. If this data is 
not available, a development organization may choose to be more pragmatic, and 
make qualitative judgments about potential differences in the properties of change 
tasks between the periods. 

ICPR2 and ICPR3 require projects to collect data about factors that affect change 
effort, and that statistical models of change effort are established. To do this, it is 
essential to track relationships between change requests and code changes committed 
to the version control system. An advantage of ICPR3 is that any type of prediction 
framework can be used to establish the initial model. For example, data mining tech-
niques such as decision trees or neural networks might be just as appropriate as mul-
tiple regression. Once the model is established, spreadsheets can be used to generate 
the estimates, construct the indicator and perform the associated statistical test.  

ICPR2 relies on a statistical regression model fitted on data from the periods under 
consideration. This approach better accounts for underlying changes in the cost driv-
ers between the periods, than does ICPR3. In organizations with a homogenous 
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process and a large amount of change data, the methodology developed by Graves 
and Mockus could be used to construct the regression model [17]. With their ap-
proach, data on development effort need only be available on a more aggregated level 
(e.g., monthly), and relationships between change requests and code commits need 
not be explicitly tracked.  

ICPR4 most closely approximates the hypothetical measure of comparing change 
effort for identical change tasks. However, it can be difficult to design benchmarking 
tasks that resemble real change tasks, and to evaluate whether changes in estimation 
accuracy have affected the results. If the benchmarking sessions are organized fre-
quently, developers’ recollection of earlier estimates would constitute a validity 
threat. 

As part of our analysis, we developed a collection of scripts to retrieve data, con-
struct basic measures and indicators, and produce data and graphics for the evalua-
tion. This means that it is straightforward and inexpensive to continue to use the indi-
cators in the studied projects. It is conceptually straightforward to streamline the 
scripts so that they can be used with other data sources and statistical packages. 

5 Conclusions 

We conducted a field study in two software organizations to measure productivity 
changes between two time periods. Our perspective was that productivity during 
software evolution is closely related to the effort required to complete change tasks. 
Three of the indicators used the same data from real change tasks, but different me-
thods to control for differences in the properties of the change tasks. The fourth indi-
cator compared estimated change effort for a set of benchmarking tasks designed to 
be representative of real change tasks. 

The indicators suggested that productivity trends had opposite directions in the two 
projects. It is interesting that these findings are consistent with major changes and 
events in the two projects: Between the measured periods, the project with the indi-
cated higher productivity performed a reorganization of their system with the goal of 
simplifying further maintenance and evolution. The project with indicated lower 
productivity had changed from fixed-price maintenance contracts to time-and-
material contracts, which may have relaxed the time pressure on developers. 

The paper makes a contribution towards the longer term goal of using methods and 
automated tools to assess trends in productivity during software evolution. We be-
lieve such methods and tools are important for software projects to assess and optim-
ize development practices. 
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