MODELLING AND SIMULATION FOR DECISION SUPPORT IN SOFTWARE PROJECT WORKFORCE MANAGEMENT

Bernardo Giori Ambrósio1, José Luís Braga2, Moisés A. Resende-Filho3 and Jugurta Lisboa Filho2

1 Departamento de Ciências Exatas e Aplicadas, Universidade Federal de Ouro Preto, João Monlevade, Brazil
2 Departamento de Informática, Universidade Federal de Viçosa, Viçosa, Brazil
3 Departamento de Economia, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil

Keywords: Software Engineering, Software Process, Requirements, Risk Evaluation.

Abstract: This paper presents and discusses the construction of a system dynamics model, focusing on key managerial decision variables related to workforce management during requirements extraction in software development projects. Our model establishes the relationships among those variables, making it possible to analyze and to better understand their mutual influences. Simulations conducted with the model made it possible to verify and foresee the consequences of risk factors (e.g. people turnover and high requirements volatility) on quality and cost of work. Three scenarios (e.g. optimistic, baseline and pessimistic) are set using data from previous studies and data collected in a software development company.

1 INTRODUCTION

The decision making process in software development projects has become more complex over time as a result of the increased number of interrelated variables to be considered. It is common to observe low quality software, cost overruns and schedule delays in software development projects, indicating that managerial aspects of software development processes are not fully understood by many software project managers (Kappelman, Mckeeman & Zhang, 2006).

Adequately analyzing alternative decisions and their dynamic impacts on software development projects is often beyond the human capacity. This fact creates the need for using tools like system dynamics to support decisions. Indeed, system dynamics provides a modeling technique that makes it possible to understand and simulate decision problems with dynamic behavior (Sterman, 2000).

Previous studies to be presented in section 2 of this paper have employed system dynamics models in order to describe the mutual influence of variables in software project management process. Some of these studies addressed the requirements workflow that is often taken as of secondary importance for many software development companies (Kappelman, Mckeeman & Zhang, 2006).

This paper introduces a system dynamics model relating some key decision variables taken from the requirements workflow in software processes. We use the model to create three scenarios (e.g. baseline, optimistic and pessimistic). These scenarios are set by changing parameters associated with risk factors and alternative managerial interventions. In so doing, we used data collected from previous works and from a software development company.

This paper is developed as follows. Section 2 presents an overview of system dynamics. Section 3 describes our system dynamics model. Section 4 presents an analysis of scenarios’ simulations. Finally, section 5 presents the main conclusions.

2 CONTEXT

A system dynamics model (Sterman, 2000) has three main components: stocks that accumulate system’s resources, flows that change the level of stocks, and converters or variables that influence the values of flows. In Figure 1 we show an example of a stock named Specified Requirements, an example of a
flow named Rate of Change Request, and an example of a variable named work remaining in function points.

Senge (Senge, 1990) suggests that influence diagrams should be constructed in early stages of a modeling process in order to better understand relations between variables. In an influence diagram, a "+" on a link means that linked variables vary in the same direction (when a variable increases/decreases the other variable increases/decreases). On the other hand, a "-" on a link indicates that linked variables vary in opposite directions.

Examples of studies that have addressed the use of system dynamics for modeling aspects of software project management are (Abdel-Hamid & Madnick, 1991), (Abdel-Hamid, 1996), (Lin, Abdel-Hamid & Sherif, 1997), (Collofello et al., 1998), (Abdel-Hamid, Sengupta, & Swett, 1999), (Sengupta, Abdel-Hamid & Bosley, 1999) and (Madachy, 2008). (Pfahl & Lebsanft, 2000) is an example of study that addresses the requirements extraction and specification but that is limited in its scope once it focus only on the impacts of requirements volatility.

3 A DYNAMIC MODEL FOR WORKFORCE MANAGEMENT

The system dynamics model discussed in this paper addresses key variables related to workforce management while extracting requirements. In following, we will explain the relationships between variables on the basis of information taken from previous works. We used a free academic version of Vensim (http://www.vensim.com) that is the software used to construct and run our system dynamics simulations. Due to space constraint, this paper presents parts of our model and looks only at requirements volatility and workforce turnover issues.

In Figure 1, the flow Rate of Change Request denotes the rate at which requirements changes are requested and conveys information about the requirements stored in the stock Specified Requirements to the stock Requirements Waiting Change. It causes an increase in the variables work remaining in function points and man-days needed to finish specification (Madachy, 2008).

Managerial decisions determine the total amount of effort allocated to work (variables man-days available daily and man-days allocated for requirements change). This effort determines the value of flow Rate of Requirements Change.

In order to handle an increase in the amount of effort needed, avoiding delays in schedule plan, it may be necessary: (i) to increase team size and/or (ii) to contract extra effort from workers by encouraging them to work harder and for more hours (Abdel-Hamid, 1996). Both alternatives contribute to an increase in the rate of specification errors.

Team workers are classified into beginners and experienced, as shown in Figure 2. Beginners are less productive and cause more errors than experienced workers (Lin, Abdel-Hamid & Sherif, 1997). The need for increased team size increases the amount of beginners in the team. This fact contributes to increase the number of specification errors (Lin, Abdel-Hamid & Sherif, 1997).

When there is risk of schedule overrun, team members are encouraged to work harder (Abdel-Hamid, 1996) to provide extra effort. It may cause team stress and exhaustion, increasing the number of errors made (Collofello et al., 1998). Increased schedule pressure also implies a reduction in effort allocated to quality assurance activities (Abdel-Hamid, Sengupta & Swett, 1999).

The model uses a stock called Man-days Spent to measure the cost of finishing requirements specification. The increase in the amount of effort needed due to higher requirements volatility leads to cost increases.
The flow Rate of Turnover in Figure 2 unleashes an increase in the value of the flow Rate of Allocation. Therefore, beginners are allocated to team in order to balance the effects of increased turnover, which contributes to increase the amount of specification errors made.

The increase in the amount of errors can trigger an increase in the amount of effort needed to finish requirements specification. Team members are then encouraged to make extra effort (Abdel-Hamid, 1996), which also may increase the number of errors made. The workforce turnover may cause an increase in cost of work due to: (i) the use of extra effort; (ii) an increase in the amount of effort needed to fix errors while they are detected.

4 SIMULATIONS

Values of variables in the model can be adjusted in order to set scenarios. We use some variable values obtained from a company that develops software, to set and carry out our simulations. These values are estimated according to the experience of a software company’s director and a project manager, considering a medium size software project that demands a schedule from 12 to 18 months.

Table 1 presents the values baseline (more likely) informed for some variables in the model. The values in Table 1 were used in setting the three scenarios. Other variables that have received specific values for the optimistic, baseline and pessimistic scenarios are presented in Table 2.

<table>
<thead>
<tr>
<th>Table 1: Values obtained from a software development company.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1- Requirements specified and delivered in a software release: 120 requirements = 120 function points.</td>
</tr>
<tr>
<td>2- Average productivity of workers in team: 2 function points per man-day.</td>
</tr>
<tr>
<td>3- Initial team size: 2.</td>
</tr>
<tr>
<td>4- Percentage of team effort that is allocated to quality assurance: 10%.</td>
</tr>
<tr>
<td>5- Increase in effort by team members when there are risks of schedule overrun: up to 15%.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2: Values used to set the scenarios.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1- Probability of error made in requirements workflow</td>
</tr>
<tr>
<td>Optimistic: 5% Baseline: 15% Pessimistic: 20%</td>
</tr>
<tr>
<td>2- Probability of requirements change</td>
</tr>
<tr>
<td>Optimistic: 10% Baseline: 20% Pessimistic: 30%</td>
</tr>
<tr>
<td>3- Turnover</td>
</tr>
<tr>
<td>Optimistic: No Baseline: No Pessimistic: Yes</td>
</tr>
</tbody>
</table>

The graphs presented in Figure 3 can be used to compare the results of the three scenarios. Shorter schedule tends to increase the amount of specification errors. This is because in order to finish specification faster, it may be necessary to increase the size of the work team and/or to promote overtime (Abdel-Hamid, 1996), what contributes to increase the amount of errors made (Lin, Abdel-Hamid & Sherif, 1997) (Collofello et al., 1998).

Cost curves show that there is a project schedule plan that generates the minimum cost for each scenario. While encouraging the conclusion of software specification in a shorter time span, it may be necessary to increase the size of the team and/or to contract team’s extra effort (Abdel-Hamid, 1996) that will increase costs. However, when software specification schedule is overestimated, team works with lower productivity (Abdel-Hamid & Madnick, 1991), which also increases cost. Notice though that cost curves get closer to each other when schedule is overestimated. This is because great part of effort used to handle rework in the pessimistic scenario comes from idle time of team that would exist in other scenarios. Notice that in the optimistic scenario, the amount of effort necessary to finish the specification is lower than in any other scenario. As a result, idle time increases causing a reduction in team productivity, what increases cost.
5 CONCLUSIONS

Simulation results show that the behavior of our model is consistent with the literature in the area of Software Engineering. Our model is capable of dealing with other managerial issues such as the effects of allocating resources to quality assurance and the effects of change in schedule plan, team size and extra work use.

It is usually impossible to reproduce a software development project in order to study the consequences of changes in factors that affect it. Therefore, models emerge as an alternative for the creation of "learning laboratories" (Sterman, 2000) in companies. This is because models can enable managers to learn from simulations, without incurring the risks and costs of a real project.

It is necessary to verify the validity of the model by analyzing the results of simulations carried out using real data from various software development companies. Thus, it will be possible to determine more precisely the right context for using the model. Finally, our model can be used as a basis for the implementation of a simulator to be used in training software project managers.

ACKNOWLEDGEMENTS

This research was partially financed by Fapemig and CNPq.

REFERENCES