
A USER INTERFACE TO DEFINE AND ADJUST POLICIES FOR
DYNAMIC USER MODELS

Fabian Abel1, Juri Luca De Coi2, Nicola Henze1, Arne Wolf Koesling3, Daniel Krause1

and Daniel Olmedilla4

1Distributed Systems Institute/KBS, University of Hannover, D-30167 Hannover, Germany
2L3S Research Center, University of Hannover, D-30167 Hannover, Germany

3Peter L. Reichertz Institute for Medical Informatics, Hannover Medical School, D-30625 Hannover, Germany
4Telefonica Research & Development, 28043 Madrid, Spain

Keywords: Policy, RDF, Access Control, User Interface.

Abstract: A fine-grained user-aware access control to user profile data is the key requirement for sharing user profiles
among applications, and hence improving the effort of these systems massively. Policy languages like Protune
can handle access restrictions very well but are too complicated to be used by non-experts. In this paper, we
identify policy templates and embed them into a user interface that enables users to specify powerful access
policies and makes them aware of the current and future consequences of their policies.

1 INTRODUCTION

Personalization encounters more and more attention
as it promises to make programs more user friendly
and content more appropriate. This information ide-
ally should be learned by the system in interaction
with the user and stored in a user profile. While user
profiles that fit for one personalization component and
that are implemented in one application have proved
to work well, the benefit of a user profile will even in-
crease if different applications can share its data. Es-
pecially in a service-based environment, where users
invoke many different services and use them only for
a short period of time, it is nearly impossible for a sin-
gle service to generate such a user profile on its own
as there is not enough interaction with the user.

Shared user profiles enable applications to uti-
lize additional information that has been collected
by other applications and therefore need a univer-
sal data storage format. The Resource Description
Framework (RDF) provides such a generic format and
hence, is used in the User Modeling Service (UMSer-
vice) which is part of the Personal Reader Framework,
a framework allowing the creation of web service-
based applications. A serious problem of shared user
profiles is that applications store sensitive informa-
tion: While a trustful application known by the user
is maybe allowed to access his bank account infor-
mation, another application should not be allowed to

access the same data. Therefore, an access control
system is required that grants applications access to
profile data only after the user has agreed. For this ac-
cess control system, rule-based policy languages can
be used very well as they allow precisely to specify
which application can operate on which data at which
time.

Rule-based policy languages, like Protune (Bon-
atti and Olmedilla, 2005a; Bonatti and Olmedilla,
2005b), can be used to define in a fine-grained fashion
which web service is allowed to access which data,
which credentials it has to provide and so on. In the
domain of user profile data this problem is shifted to
the task of selecting data from an RDF graph pro-
tected by an access policy. Policy languages can deal
with this task but the resulting policies are usually too
complicated to be specified by non-experts. A pos-
sible approach is to use predefined policy templates
that can be completed easily by users. However, users
cannot be fully aware about which data is covered by
a policy if they do not have an appropriate user inter-
face.

The contribution of this paper is to present a user
interface that enables non-expert users to control the
access to their RDF-based user profiles. Hence, we
deduce access policy templates and embed them into
the user interface. Then, we examine how to imple-
ment these policies in the Protune policy language.
The user interface provides immediate feedback to the

184
Abel F., De Coi J., Henze N., Koesling A., Krause D. and Olmedilla D.
A USER INTERFACE TO DEFINE AND ADJUST POLICIES FOR DYNAMIC USER MODELS.
DOI: 10.5220/0001839801840191
In Proceedings of the Fifth International Conference on Web Information Systems and Technologies (WEBIST 2009), page
ISBN: 978-989-8111-81-4
Copyright c© 2009 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



user which includes information about which part of
the RDF data is covered by the policy and additionally
which consequences the specified policy has.

The paper is structured as follows: In Section 2
we present underlying techniques like the Personal
Reader Framework, the User Modeling Service and
policies. Section 3 introduces the usage of policies for
protecting user profiles. A user interface that enables
users to specify these user profile policies is shown in
Section 4 and 5. The related work can be found in
Section 6. We conclude the paper and give an outlook
to future work in Section 7.

2 THE PERSONAL READER
FRAMEWORK

The Personal Reader Framework (Henze, 2005) al-
lows the creation of modular web service-based ap-
plications (Figure 1). These applications are accessed
by user interfaces (UI for short). Syndication Services
implement the application logic and can be consid-
ered as the core of an application. By means of a
Connector Service all Syndication Services are able
to discover and access Personalization Services dy-
namically, which aggregate domain-specific informa-
tion in a personalized way. To gather information,
Personalization Services access and process Semantic
Web data sources. An important feature of the Per-
sonal Reader Framework is that new services can be
integrated in a plug-and-play manner, hence no cen-
tralized component has to be modified and new ser-
vices can be used immediately from all other services
within the framework.

Both Syndication and Personalization Services are
able to access and store user data which is supplied
by a centralized User Modeling Service. Several
applications have been implemented with the Per-
sonal Reader Framework like the Personal Publica-
tion Reader (Abel et al., 2005), the MyEar music rec-
ommender (Henze and Krause, 2006) or the Agent1.

2.1 The User Modeling Service

The User Modeling Service stores and aggregates
user profile data from various Personalization and
Syndication Services. Because these services, which
can be integrated at runtime and used immediately,
aim on different domains, they also use different on-
tologies to express their knowledge about the user.
For this reason we use RDF statements to store data
domain-independently. A statement contains the user

1http://www.personal-reader.de/Agent

as subject, a predicate from the service ontology and
a value as object. Objects can also be more compli-
cated and further RDF statements can be used to de-
scribe the objects in a more detailed way as outlined
in the example scenario in section 2.2.1.

2.1.1 Access Control Layer

The access control layer of the User Modeling Service
has to restrict the access to the data stored in the User
Modeling Service. Therefore, a user should specify
which web services are allowed to access which kind
of data in the user profile and in which way. The envi-
ronment of the access control layer is similar to a fire-
wall: whenever an application tries to access a spe-
cific port, if an access rule for such application and
port has been specified, the specified action (allow or
deny) is performed. Otherwise the firewall asks the
user how to behave. The firewall is at no time aware
of which applications or ports exist in a system.

Similarly, as the framework allows to plugin new
services immediately, the access control layer is not
aware of which services will try to access which part
of the user profile. Hence, specifying static access
rules a priori like in other access control systems is
not applicable.

Our access control layer solves this issue by a
deny-by-default behavior. Every service that tries to
access an RDF statement is rejected if no existing pol-
icy is applicable. The service is informed why it was
rejected and will report this to the user. Afterwards,
the user can enter the user interface of the access con-
trol layer to grant or deny access. The user interface
can take the context into account, which contains the
statements a service tried to access, and hence sup-
ports the user in specifying policies by reducing the
choices to the affected statements. By allowing users
to specify also general policies we try to avoid that
the user is overwhelmed by too much interaction with
the access control layer. Keeping user interaction low
enhances usability and at the same time avoids that
users ignore repeatedly displayed confirm messages.
In the rest of the paper, we focus on granting read ac-
cess. A similar approach can be used for write access
requests.

2.2 Policies for Securing Data

Securing RDF data is different from securing usual
datasets. Because RDF datasets can be considered as
graphs we take into account this graph structure in
order to provide a definition of “security”.

There are many possibilities to secure the data in
the user profile, like black- or whitelisting of services

A USER INTERFACE TO DEFINE AND ADJUST POLICIES FOR DYNAMIC USER MODELS

185



Personalization
Service

Personalization
Service

RDF

Connector
Service

...

User Model-
ing Service

User

Syndication
Service

UI

Syndication
Service

UI

Policy
Ecitor

UI

...

access 
control

RDF

Figure 1: Personal Reader Architecture.

S1: (John, phoneNumber, 123)
S2: (John, hasFriend, Friend 1)
S3: (Friend 1, phoneNumber, 234)
...
Sm−4: (John, hasFriend, Friendn)
Sm−3: (Friendn, phoneNumber, 345)
Sm−2: (John, hasFriend, Mary)
Sm−1: (Mary, phoneNumber, 456)
Sm : (John, loves, Mary)

Figure 2: John’s user profile.

for specific RDF statements by means of access con-
trol lists. We do not want to mark resources as “ac-
cessible” or not in an automatic way, because the user
should keep full control on which resources (not) to
grant access for. But we also want to relieve the user
from marking each resource individually, so we need
a more flexible solution. We think that policies pro-
vide such a flexible solution. In the following we ex-
amine how Protune policies can be applied to RDF
statements and graphs.

2.2.1 Scenario 1 - Sharing Telephone Number
Information

Let assume that John’s user profile contains the RDF
statements illustrated in Figure 2.
John may want to make the phone numbers of his
friends publicly available, but may want to hide state-
ment Sm or maybe even statement Sm−1. The policy
language Protune allows to define policies protecting
such statements.

3 PROTUNE POLICY
TEMPLATES FOR A USER
MODELING SERVICE

The policies we need must be able to specify in
a declarative way the prerequisites a service has to
fulfill in order to access some resource. The pol-
icy language Protune (Bonatti and Olmedilla, 2005a;
Bonatti and Olmedilla, 2005b) allows to formulate
a broad range of policies like access control poli-
cies, privacy policies, reputation-based policies, pro-
visional policies, and business rules. Some languages,
like e.g. KAoS or Rei (Uszok et al., 2003; Ka-
gal et al., 2003) adopt Description Logics (Baader
et al., 2003) as underlying formalism, whereas Pro-
tune, which extends PAPL (Bonatti and Samarati,
2000) and PeerTrust (Gavriloaie et al., 2004), exploits
Logic Programming and its SLDNF-based reasoning
mechanism (Lloyd, 1987).

One of the main differences between Description
Logics-based (DL-based) and Logic Programming-
based (LP-based) policy languages can be found in
the way they deal with negation: Description Log-
ics allow to define negative information explicitly,
whereas LP-based systems can deduce negative in-
formation by means of the so-called negation as fail-
ure inference rule. Whilst consistency problems may
arise in DL-based systems (since both a statement and
its negation can be asserted), LP-based systems do
not have to deal with consistency issues, since they
only allow the user to specify positive statements.
LP-based policy languages like Protune may decide
whether the user should only specify allow policies
(thereby relying on the negation-as-failure inference
rule) or the other way around. The first approach is
usually preferred, since wrongly disclosing private in-

WEBIST 2009 - 5th International Conference on Web Information Systems and Technologies

186



formation is a more serious issue than not disclosing
information that should be publicly available.

In our framework we need both usual deny poli-
cies and deny-by-default policies: If a deny-by-
default policy applies, the user is directed to the user
interface to specify new policies, if a usual deny pol-
icy occurs the user is not informed since he already
defined a policy. This feature allows us to implement
in a very clean way the algorithm to be executed by
the access control component (cf. figure 1), namely
if(a deny policy is defined) deny access
else
if(an allow policy is defined) allow access
else
deny access and ask the user

The access control component checks first
whether a deny policy is applicable to the current ac-
cess request and, if it is the case, denies access. If not,
the system checks whether an allow policy is appli-
cable. If this is not the case, access is denied and a
message is sent to the user.

The following Protune policy applies to the RDF
statements example given in the previous chapter. Its
intended meaning is to allow services that belong to
the user-defined group trustedServices to access the
telephone numbers of John’s friends, except Mary’s
number.
allow(access(rdfTriple(Y, phoneNumber, X))) :-
requestingService(S),
rdfTriple(S, memberOf, ’#trustedServices’),
rdfTriple(’#john’, hasFriend, Y),
not Y = ’#mary’.

Predicate rdfTriple retrieves RDF triples from some
RDF repository, whereas predicate requestingService
accesses runtime data in order to retrieve the value
of the current requesting service. The rule the policy
consists of can be read as a rule of a Logic Program,
i.e., allow(access(. . . )) is satisfied if predicate re-
questingService, all literals rdfTriple and the inequal-
ity are satisfied. Predicates which represent an action
(i.e., requestingService and rdfTriple) are supposed to
be satisfied if the action they represent has been suc-
cessfully executed. The policy can therefore be read
as follows: access to RDF triple (Y, phoneNumber,
X) is allowed if the current requesting service (S) be-
longs to trustedServices and X is the phone number of
someone who is a friend of John different than Mary.

3.1 Policy Templates for an RDF based
User Profile

Since expressive policies become quickly hard to read
for non-technical users we defined some general pur-
pose policies in so-called templates.

3.1.1 Templates

Policy types can be defined in several ways:

1. One may group targets (in our case RDF state-
ments or parts of them), so that the user is enabled
to state, what triples should be accessible. Exam-
ples for such a group of targeted RDF statements
are:

• allow access to some specific phone numbers
• allow access only to my own phone number
• allow access only to my friends’ phone num-

bers

2. Policies may also be grouped according to the re-
quester, so that the user is enabled to state who
gets access to the triples (i.e. allow access for one
service or a specific group/category of services).

Protune policies allow the usage of both kind of
policy types to protect specific RDF statements, a spe-
cific group of statements or, in general, an arbitrary
part of an RDF graph. So, it is possible to

• specify RDF-predicates anywhere used in the user
profile to be secured by a policy

• specify RDF-object/RDF-subject types anywhere
used in the user profile

• specify RDF statements that contain information
directly related to the user, like (John, loves,
Mary), and not just information indirectly related
to the user, like (Friendx, phoneNumber, xyz)

• specify meta-data predicates like requester or cur-
rent time

Our user interface allows to define policies pro-
tecting RDF graph patterns. When defining a policy
the user must instantiate such patterns and adapt them
to the given context (see Figure 4).

3.1.2 Effects on the User Interface

If there is no policy defined on an RDF statement, an
incoming request is denied by default and the access-
ing service will point the user to the user interface to
define a new policy regulating the access to the RDF
statement in the future. On the other hand, no user
feedback is requested if a deny policy applies to the
RDF statement and the current requester. Therefore,
the service needs to distinguish between default de-
nial and policy-based denial. Protune by itself uses
only positive authorizations in order to avoid con-
flicts. For this reason we defined a deny predicate on
top of Protune to enable also the definition of deny
policies. However, if we allow for both positive and
negative authorizations, conflicts can arise: This is the

A USER INTERFACE TO DEFINE AND ADJUST POLICIES FOR DYNAMIC USER MODELS

187



case whenever a resource is affected by both an allow
and a deny policy. To avoid such situations we de-
signed our user interface in order to ensure that no
conflict situations will arise or that they are solved in
precedence.

When the user defines an allow policy affecting a
resource that is already covered by a deny policy, the
user interface will show a dialog, notifying the user
that there is a conflict.

If the user does not want to allow access to the
resource, the allow policy will still be defined (since
in our framework deny policies have by default higher
priority than allow policies),

otherwise the deny policy will be modified in or-
der to exclude from its scope the affected resource.
On the other hand when the user defines a deny pol-
icy affecting a resource that is already covered by an
allow policy, the user interface will show a dialog,
notifying the user that there is a conflict. If the user
does not want to allow access to the resource, the deny
policy will simply be added (for the same reason de-
scribed above), otherwise a modified version of it will
be added, which excludes from its scope the affected
resource.

Finally, if the user model changes, new RDF state-
ments can be automatically covered by existing poli-
cies. But the user has also the option to apply his pol-
icy only to RDF statements existing at policy creation
time.

As soon as a service adds RDF statements, the
user will be asked by the user interface whether his
policy should also apply to the new statements.

4 USER INTERFACE FOR
DEFINING ACCESS POLICIES

The interface that enables users to specify Protune ac-
cess policies is called Policy Editor and operates on
top of the access control layer of the User Model-
ing Service as outlined in Figure 1. If a service at-
tempts to access user data for which no access poli-
cies have been defined yet, then the operation of the
service fails and the user is forwarded to the Policy
Editor. The interface which is shown to the user (see
Figure 3) is adapted to the context of the failed op-
eration. Such a context is given by the RDF state-
ments which the service needed to access. Thus, the
overview is split into a part which outlines these RDF
statements, and a part which allows the specification
of corresponding access policies. RDF statements are
colored according to the policies affecting them (e.g.
if a statement is not affected by any policy it may be
colored yellow, green statements indicate that at least

one service is allowed to access, etc.). Next to such
statements the interface additionally shows conflict-
ing policies by marking affected policies and RDF
statements.

Warnings make the user aware of critical policies.
In Figure 3 the user wants to allow the access to names
to all instances of a class Contact. But as the user may
not be aware that such a policy would also disclose
all future user profile entries containing a name, he
is explicitly prompted for validation. If the user dis-
agrees, he will be prompted whether the policy should
be refined to cover only those name instances that are
currently stored in the user profile.

In general, policies are edited using the interface
depicted in Figure 4. This interface consists of two
main parts which allow to:
1. define policies (top frame)
2. dynamically show the effects of the policy (bot-

tom frame)
An expert mode is also available, which allows to di-
rectly input Protune policies. Users that do not use the
expert mode just have to instantiate a template con-
sisting of four steps (see top right in Figure 4):
What. The main task during creation of access poli-

cies is the specification of RDF graph patterns
which identify statements that should be accessi-
ble or not. The predefined forms for defining these
patterns are generated on basis of a partial RDF
graph consisting of a certain RDF statement (here:
(#contact1, name, ’Daniel Krause’)) and its rela-
tion to the user (#henze, hasContact, #contact1).
To clarify this fact the RDF graph is presented to
the user on the left hand.
To determine the options within the forms schema
information of domain ontologies is utilized. In
the given example the property name is part of the
statement from which the forms are adapted. As
name is a subproperty of contactDetail both ap-
pear within the opened combo box.
By clicking on add pattern or remove the user
is enabled to add/remove RDF statement patterns
to/from the overall graph pattern.

Allow/Deny. The user can either allow or deny the
access to RDF statements expressly.

Who. The policy has to be assigned to some services
or category of services. For example to Contact-
Info, the service trying to access user data, or to
a category like Address Data Services with which
ContactInfo is associated.

Period of Validity. This parameter permits the tem-
poral restriction of the policy.
According to Figure 4 the resulting Protune policy

would be (without period of validity):

WEBIST 2009 - 5th International Conference on Web Information Systems and Technologies

188



Figure 3: Defining Policies - Overview.

Figure 4: Editing a policy in a detailed view.

A USER INTERFACE TO DEFINE AND ADJUST POLICIES FOR DYNAMIC USER MODELS

189



allow(access(rdfTriple(X, contactDetail, _))) :-
requestingService(S),
rdfTriple(S, memberOf,
’#addressDataServices’),
rdfTriple(’#henze’, hasContact, X).

Thus, Address Data Services are allowed to ac-
cess all statements (X, contactDetail, Y) that match
the RDF graph pattern (#henze, hasContact, X),
(X, contactDetail, Y). This policy overlaps with an-
other policy that denies the access to statements
of the form (X, privateMail, Y) wherefore a warn-
ing is presented to the user. This warning also
lists the statements affected by this conflict: As
(#henze, privateMail, ’nicola@home.com’) does not
suit, the pattern specified in Figure 4 (#contact5,
privateMail, ’juri@home.com’) is the only affected
statement. By clicking on “Yes, overwrite!” the deny
policy would be amended with the exception: not
rdfTriple(#contact5, privateMail, ’juri@home.com’).
Otherwise, by selecting “No, don’t overwrite!” both
policies would overlap. But as deny policies outrank
allow policies (cf. section 3) the affected statement
would still be protected.

Next to such warnings the Policy Editor makes the
user aware of how specified policies will influence
the access to RDF statements. As name, email, etc.
are subproperties of contactDetail the above policy
permits access to a big part of the user’s RDF graph
which is consequently shown in green (see bottom of
Figure 4).

5 CURRENT IMPLEMENTATION
AND DISCUSSION

In the current implementation2 the user interface for
defining access control policies for RDF data supports
already the core functionality described in Section 4.
We furthermore integrated the prototype into the Per-
sonal Reader framework (cf. Section 2) and applied
AC4RDF (Abel et al., 2007) together with Protune to
enforce the policies defined by the users. AC4RDF
is an access control mechanism for RDF stores. It
rewrites queries so that they respect the access poli-
cies specified via the user interface, i.e. policies as
presented in Section 3.

Regarding usability issues, the main advantage of
our user interface are:

• Easy-to-use – the users do not need to learn any
policy language, policies are created by specify-
ing simple pattern.

2The policy editor user interface is made available via:
http://www.personal-reader.de/wp/projects/policy-editor

• Scrutability – users can inspect the effect of the
policy immediately as the RDF data is colored ei-
ther red (access not allowed) or green (Access Al-
lowed)

• Awareness of Effects – whenever a change in a
policy will disclose data in the future, it is not vi-
sualized in the current graph. Hence, users get
a confirmation message to make the aware of the
effects of the changes.

6 RELATED WORK

Controlling the access to RDF data stores can be real-
ized within the RDF query layer. As outlined above,
we utilize AC4RDF (Abel et al., 2007) together with
Protune in our current implementation to enforce the
policies formulated by the users via the easy-to-use
editor presented in this paper. Another approach to
access control for RDF data is discussed in (Dietzold
and Auer, 2006), where access to RDF data is re-
stricted by defining views, which correspond to RDF
subgraphs an inquirer is allowed to access. However
this approach does not make use of policies and thus,
cannot benefit from their advantages (e. g. negoti-
ation, declarative and intuitive structure, and facility
of fine-grained adjustments) and broad range of tool
support (e. g. upcoming possibilities like formulating
policy rules in natural language 3) policy languages
like Protune offer.

Beside the policy language Protune, there exist
other policy languages like e.g. KAoS (Uszok et al.,
2003) or Rei (Kagal et al., 2003) that may be utilized
to secure RDF statements. But we didn’t choose those
languages for protecting RDF graph patterns but Pro-
tune instead, because in our approach we make use of
properties like e.g. recursive definitions and variables
and we also want to exploit advanced features like ne-
gotiations in the future. For some policy languages
there are policy editors available. Because of their
complexity, most of these editors are difficult to use.
KPAT (Uszok et al., 2004), a policy editor for KAoS,
offers to constrain the creation of policies with forms
to ease the usage. However, none of the editors deals
with the visualization of the policies’ consequences
or takes RDF graph structure into account to deduce
policy templates.

3Expressing Protune rules in ACE:
http://attempto.ifi.unizh.ch/site/

WEBIST 2009 - 5th International Conference on Web Information Systems and Technologies

190



7 CONCLUSIONS AND FURTHER
WORK

In this paper we presented a user interface that enables
non-expert users to control the access to their RDF-
based user profiles. We used the policy framework
Protune to enforce the underlying access control layer
and outlined how to use policy templates to define ac-
cess control policies. Furthermore, we discussed how
to deal with conflicting policies and how a user inter-
face helps to understand complex and expressive poli-
cies and their consequences. We presented the current
implementation of the proposed user interface. In the
future we will evaluate the user interface by testing its
usability. This includes to check whether a user will
be able to express his intention and whether he can be
made aware of the consequences of his policies.

REFERENCES

Abel, F., Baumgartner, R., Brooks, A., Enzi, C., Gottlob,
G., Henze, N., Herzog, M., Kriesell, M., Nejdl, W.,
and Tomaschewski, K. (2005). The personal publi-
cation reader, semantic web challenge 2005. In 4th
International Semantic Web Conference.

Abel, F., Coi, J. L. D., Henze, N., Koesling, A. W., Krause,
D., and Olmedilla, D. (2007). Enabling advanced and
context-dependent access control in rdf stores. In 6th
International Semantic Web Conference, pages 1–14.

Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D.,
and Patel-Schneider, P. F., editors (2003). The De-
scription Logic Handbook: Theory, Implementation,
and Applications. Cambridge University Press.

Bonatti, P. A. and Olmedilla, D. (2005a). Driving and moni-
toring provisional trust negotiation with metapolicies.
In 6th IEEE International Workshop on Policies for
Distributed Systems and Networks (POLICY 2005),
pages 14–23, Stockholm, Sweden. IEEE Computer
Society.

Bonatti, P. A. and Olmedilla, D. (2005b). Policy language
specification. Technical report, Working Group I2, EU
NoE REWERSE.

Bonatti, P. A. and Samarati, P. (2000). Regulating service
access and information release on the web. In ACM
Conference on Computer and Communications Secu-
rity, pages 134–143.

Dietzold, S. and Auer, S. (2006). Access control on rdf
triple stores from a semantic wiki perspective. In
Scripting for the Semantic Web Workshop at 3rd Eu-
ropean Semantic Web Conference (ESWC).

Gavriloaie, R., Nejdl, W., Olmedilla, D., Seamons, K. E.,
and Winslett, M. (2004). No registration needed: How
to use declarative policies and negotiation to access
sensitive resources on the semantic web. In 1st Euro-
pean Semantic Web Symposium (ESWS 2004), volume

3053 of Lecture Notes in Computer Science, Herak-
lion, Crete, Greece. Springer.

Henze, N. (2005). Personalization services for the seman-
tic web: The personal reader framework. In Frame-
work 6 Project Collaboration for the Future Semantic
Web Workshop at European Semantic Web Conference
ESWC 2005, Heraklion, Greece.

Henze, N. and Krause, D. (2006). Personalized access to
web services in the semantic web. In SWUI 2006 - 3rd
International Semantic Web User Interaction Work-
shop, Athens, Georgia, USA.

Kagal, L., Finin, T. W., and Joshi, A. (2003). A pol-
icy language for a pervasive computing environment.
In 4th IEEE International Workshop on Policies for
Distributed Systems and Networks (POLICY), Lake
Como, Italy. IEEE Computer Society.

Lloyd, J. W. (1987). Foundations of Logic Programming,
2nd Edition. Springer.

Uszok, A., Bradshaw, J. M., Jeffers, R., Suri, N., Hayes,
P. J., Breedy, M. R., Bunch, L., Johnson, M., Kulka-
rni, S., and Lott, J. (2003). Kaos policy and do-
main services: Toward a description-logic approach
to policy representation, deconfliction, and enforce-
ment. In 4th IEEE International Workshop on Poli-
cies for Distributed Systems and Networks (POLICY),
Lake Como, Italy. IEEE Computer Society.

Uszok, A., Bradshaw, J. M., Johnson, M., Jeffers, R., Tate,
A., Dalton, J., and Aitken, S. (2004). Kaos policy
management for semantic web services. IEEE Intelli-
gent Systems, 19(4):32–41.

A USER INTERFACE TO DEFINE AND ADJUST POLICIES FOR DYNAMIC USER MODELS

191


