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Abstract: This paper describes a new Point-Based-Rendering technique that is parsimonious with the typically large 
data-sets captured by stereo-based, multi-view, 3D imaging devices for clinical purposes. Our approach is 
based on image pyramids and exploits the implicit topology relations found in range images, but not in 
unstructured 3D point-could representations. An overview of our proposed PBR-based system for 
visualisation, manipulation, integration and analysis of sets of range images at native resolution is presented 
along with initial multi-view rendering results.   

1 INTRODUCTION 

3D images have the potential to provide clinicians 
with an objective basis for assessing and measuring 
3D surface anatomy, such as the face, foot or breast. 
Clinicians often resort to subjective measures that 
rely on naked eye observations, and carry out 
surgical decisions based upon that data. Today, 3D 
scanned images of patients can provide objective 
metric measurements of body surfaces to sub-
millimetre resolution. Commercially available 
stereo-photogrammetry capture systems such as 
C3D (Siebert & Marshall, 2000) are capable of 
capturing 3D scans up to 16 megapixels in 
resolution. Although stereo-photogrammetry 
systems are desirable for many reasons, they present 
their own challenges. Large sets of data are difficult 
to manage, process, and visualize. In addition, stereo 
systems capture data from multiple ‘pods’ (each pod 
consisting of a pair of cameras) around the object, 
resulting in several 2.5D captures, each with a 
partial view of the object. Hence, multi-view 
integration techniques are usually required to join 
these partial views into a single 3D representation. 
The goal of this paper is to present progress towards 
a multi-view, multi-resolution method that permits 
clinicians to visualise, manipulate, measure and 
analyse large 3D datasets at native imaging 
resolution depicting 3D surface anatomy. 

Traditionally, the most popular data 
representation method for displaying 3D data has 
been the 3D polygon. Large data sets, such as 
captured by stereo imaging devices, however, are so 
dense that polygon numbers must be reduced by 
means of mesh decimation, increasing the size of the 
remaining polygons and thereby losing resolution. In 
order to achieve 3D visualisation at native imaging 
resolution, it is more efficient to treat each 3D 
(2.5D) measurement as a Point rendering primitive 
(Levoy and Whitted, 1985) than attempt to render 
polygons. Large data sets converted to polygons also 
claim more memory than storing each individual 
point (as regular range images for example). 
Polygons are a notoriously difficult representation 
when it comes to multi-view integration. Marching-
cubes (Lorenson and Cline, 1987) is a popular 
algorithm, however, it rarely works seamlessly with 
very high-resolution models. The standard 
techniques, Marching-cubes (Lorenson and Cline, 
1987), Zippered Polygon Meshes (Turk, Levoy, 
1994), all suffer a loss of resolution at the seams, 
and provide unpredictable results when polygonal 
resolution approaches pixel size. In light of the 
problems with polygon rendering methods, point-
based rendering (PBR) techniques have steadily 
been gaining interest. 
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2 PREVIOUS WORK 

The idea of using Points as a rendering primitive 
was reported by Levoy and Whitted as far back as 
1985 (Levoy and Whitted, 1985). The most common 
Point-Based Rendering implementation currently in 
use is Surface Splatting (Zwicker et al. 2001), where 
a 3D object is represented as a collection of surface 
samples. These sample points are reconstructed, 
low-pass filtered and projected onto the screen plane 
(Räsänen, 2002). Many extensions have been 
proposed for Surface Splatting since their 
introduction. Among others, Splatting has been 
extended to handle multiple views (Hübner et al. 
2006). 

Rusinkiewicz and Levoy describe QSplat, a 
system for representing and progressively displaying 
meshes that combines a multi-resolution hierarchy 
based on bounding spheres with a rendering system 
based on points. A single data structure is used for 
view-frustum culling, back-face culling, level-of-
detail selection, and rendering (Rusinkiewicz and 
Levoy, 2000).   

Both QSplat and Splatting techniques, however, 
have their limitations. QSplat, while efficient, relies 
on triangulated mesh data as input rather than native 
Point data, and lacks anti-aliasing features. Splatting, 
on the other hand, discards connectivity information 
that is vital in a clinical context for measurement and 
analysis of the underlying data. 

Several multi-view integration approaches have 
been proposed. Hubner et al (2006) introduce a new 
method for multi-view Splatting based on deferred 
blending. Hilton et al (2006), on the other hand, take 
the traditional 'polygonization' approach by 
proposing a continuous surface function that merges 
the connectivity information inherent in the 
individual sampled range images and constructs a 
single triangulated model. Problems with both 
Splatting techniques, and polygon approaches have 
been mentioned earlier, making either multi-view 
technique less than ideal for clinical purposes. 

Image pyramids were introduced by Burt and 
Adelson (1983a) as an efficient and simple multi-
resolution scale-space mage representation. Image 
pyramids, in addition to providing a multi-resolution 
algorithmic framework, have found use in down-
sampling images smoothly across scale-space. 
Image pyramids, although 2D in nature, were 
extended by Gortler et al (1996) in the landmark 
Lumigraph paper where they discuss the ‘pull-push’ 
algorithm.  The latest use of the image pyramid in 
PBR techniques, and one that is closest to our work, 
is that of Marroqium et al (2008). They implement 

the image pyramid on the GPU to provide an 
accelerated, multi-resolution, Point Based Rendering 
algorithm based on scattered one-pixel projections, 
rather than Splats as proposed by Zwicker et al 
(2001). 

Existing techniques, despite making use of range 
images, and/or image pyramids, have not made the 
combined use of the connectivity information 
provided by the former, and the multi-resolution 
capabilities provided by the latter, to provide a 
multi-resolution, multi-view PBR algorithm that 
could be used in a clinical setting for measurement 
and analysis. We propose a method that takes range 
images as its input, uses an image pyramid for 
down-sampling, and smoothly joining multiple 
views in image space via a multi-resolution Spline 
as proposed by Burt et al (1983b), and finally, 
projects the image using 3x3 pixel Gaussian kernels 
for sub-pixel accurate, anti-aliased rendering.  
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Figure 1: Overview of the rendering process for a single 
view. 

The advantage of using range images, coupled 
with a PBR approach, is that our method renders 
data at its native resolution, retains connectivity 
information for measurement purposes, and provides 
a matrix-like data-structure that is compact and ideal 
for GPU acceleration.  
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3 THE PROPOSED METHOD 

The proposed method uses image pyramids, range 
images and the Gaussian kernels to provide anti-
aliased, hole-free, multi-resolution 3D images. A 
high-level overview of the algorithm, for a single 
view, is as follows. 

The input range image, provided in our case by a 
stereo-photogrammetry capture system,  is first 
converted into a Gaussian Pyramid to provide 
several range images, at subsequently smaller 
resolutions. Since the range images together 
comprise 3D data, this effectively provides anati-
aliased models at several resolutions. The 
corresponding texture image is converted into a 
Laplacian Pyramid, providing a texture image for 
each of the corresponding models to be derived from 
the range images. Starting from the apex, i.e the 
lowest resolution image in the pyramid, each pixel 
from the range image is transformed from range 
space to World Coordinates. The colour for this 
point is derived from the corresponding Texture 
image pyramid. Once in World Coordinates, the 
point goes through any pending viewing 
transformations. Finally, the pixel is projected onto 
the screen as a 3x3 Guassian kernel. This results in a 
series of images, of varying sizes, depending upon 
the level of the Pyramid they are generated from. 
The images form an image pyramid, in screen-space, 
with a Gaussian Image at the apex, followed by 
Laplacian Images containing successively higher-
frequency detail.  

 
Figure 2: Single-view Output Pyramid. 

The resultant images can now be recombined to 
form a Pyramid in viewport-space again. Though the 
method outlined above renders a single view, it is 
extendable to multiple views without any additional 
effort. A multi-view image can be obtained by 
repeating the process with another view (another 
input range image and texture image), and projecting 

each corresponding level into the same output space. 
The resulting images represent an image pyramid as 
before. The result of the reconstruction of this 
pyramid, however, is a blending of the two views 
together via a multi-resolution spline as proposed by 
Burt and Adelson (1983b).   

 
Figure 3: Multi-view Output Pyramid. 

3.1 Details of the Rendering Algorithm 

The proposed method makes extensive use of image 
pyramids as defined by Burt (1983a) for seamless 
splining of the two views, and of Gaussian kernels 
for sub-pixel anti-aliased display of the points. An 
explanation of the multi-resolution spline can be 
found in (Burt and Adelson, 1983b). An explanation 
of how the Gaussian kernel is used for rendering 
follows.  

3.2 The Gaussian Kernel 

      
Figure 4: A continuous Gaussian function (left) and its 
approximation by a 3x3 pixel kernel (right). Shifted 
versions in x,y  allow sub-pixel Gaussian splat placement. 

A single point can be approximated by a continuous 
Gaussian function. For display, it needs to be 
transformed into discrete values. For every fractional 
pixel value, a new Gaussian is generated, offset from 
the centre. In order to speed up the process, a Look-
Up Table was generated for 10,000 kernels thereby 
providing 0.01pixel shift resolution in x,y.  

If the image is rendered using the Gaussian 
kernels as-is, several bright patches appear on the 
final image where the Gaussian kernels overlap. The 
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image is therefore normalized by dividing it by a 
Splat map.  

 
Figure 5: The Splat map combining the two overlapping 
input range map views. 

The Splat map is generated by first rendering 
the Gaussian kernels without colour from the texture 
map into a separate buffer to keep a count of the 
contribution from each Gaussian kernels that falls 
into each pixel. This defines each pixels weight. The 
un-normalized image is then divided pixel-wise by 
this Splat map to obtain the final, normalized, image. 

4 ONGOING WORK 

From the current results, it is obvious that Hidden-
Surface Removal is required. Hidden-surface 
Removal may be implemented by treating a group of 
three connected points as an implicit polygon, and 
performing Back-Face Culling, and ordering the 
points using any of the well-known polygon-
ordering techniques such as the Z-Buffer. 

The existing method combines two views in 
image space via a multi-resolution spline, however, 
for the purposes of measurement, it is necessary to 
employ a multi-view algorithm that merges the 
underlying data. Ju et al (2004) describes view-
integration based on polygons. We propose to 
extend their algorithm to work with range images 
and image pyramids, and make improvements to the 
basic algorithm in the process. The algorithm 
proposed by Ju et al begins with a blue-screen stereo 
capture of an object. The blue-screen permits 
masking of the background, selectively isolating the 
object. The range images are then decomposed into 
subset patches, categorising elements into visible, 
invisible, overlapping, and unprocessed patches 
when compared with a second range image.  To 
resolve ambiguities in a range image, a confidence 

competition is conducted, whereby overlapping 
patches are culled, and the remaining winning 
patches are merged into a single mesh. It should be 
noted that this process needs to be carried out only 
once, as a pre-processing step. 

Since our data representation uses groups of 
points (as opposed to polygons), it will work on 
individual pixels rather than breaking down the 
range image into patches. The following algorithm 
summarizes the process: 

 
Since multi-view stereo-photogrammetry relies 

on range images being generated from cameras in 
close vicinity, there will be considerable overlap 
between various range images that are produced 
from multiple views, especially those that are close. 
Before we integrate the models, it is necessary to 
take care of this redundant data. As proposed by Ju 
et al, it is necessary to carry out a 'competition' in 
which the best data from each range image is 
selected.   

First, it is necessary to find precisely the 
redundant data, i.e., where range images overlap. 
Hence, we traverse through each range image, and 
scan every other range image from this point-of-
view (by projecting them into range image space) to 
find the overlapping pixels. 

N = Num of Range Images 
Masks of All range Images = 0 

 
loop from 1 to N 
 Compare every Range image i 
 With every other Range Image j 

if i != j 
  { 
  project range-map j onto i 
  find overlapping pixels 
   
  for each overlapping pixel

  { 
For both views j and j: 
use confidence, 
normal_map, chroma_map to 
find competition_weight_i 
and competition_weight_j 
for current pixel 
 
if comptetion_weight_i -  
competition weight of j < 
threshold:  

  mask[currentpixel] = 1.0 
}
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Figure 6: Scanning range image j from the point-of-view 
of range image i. 

For each overlapping pixel from both views 
(view j and View i), we can isolate relevant data 
from the background with the help of a blue-
screen/chroma mask we call S. If the pixel is 
deemed to be part of the model (and not the 
background), we can proceed to calculate the 
confidence that a pixel is visible from this view with 
the help of a “normal map” as well as a “confidence 
map” of the same view, depicting how confident the 
3D scanner was about the regeneration of each 
individual point in 3D. We call the Confidence value 
C. In addition, for both views, for every overlapping 
pixel (in range space), we can consider how visible a 
point is to a particular view by checking how closely 
the normal points towards the view.  We can 
represent this as V (for Viewing-Angle). The three 
maps together, then provide a selection mask with 
values [0..1], with 1 being completely visible, 0 
being completely invisible, and a value in-between 
depicting a semi-visible pixel. This can be written 
as: 

Competition Weight = S C V (1) 

The entire process is summarized in Figure 7 as 
follows: 

Range i

Range j

Overlapping Pixels

Range Image j
 in Range-Image 

space of i

Range Image I
+

New Mask

RANGE IMAGE J
Chroma Mask
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Normals

RANGE IMAGE I
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Normals

 
Figure 7: Confidence Competition overview. 

At this stage, we can determine which of the two 
views won the competition for this particular pixel. 
If it was view j, then we mask the current pixel in 
view i to that during projection, we will not choose 
this pixel from view i again.  

A peculiar case arises when for a certain point, 
two views tie in the competition, i.e, when there is a 
'draw'. In such a case, there are several paths that can 
be taken. An assortment of fusion/blending 
techniques is available. Which one of these 
techniques is most effective is a question that must 
be further investigated. 

Once data-integration has been accomplished, 
measurement operations can be carried out natively 
over the range images. Traversing over the range 
images is decidedly straightforward due to the range 
image’s matrix-like nature.  

5 RESULTS AND CONCLUSIONS 

Though the work is still ongoing, initial results of 
our system can be seen in the images that follow. An 
initial test result, based on a shallow blend, reveals 
the sources of the two input views, Figure 8. By 
creating a 6 layer deep pyramid, the blend better 
conceals the join between views, Figure 9. 
 

 
Figure 8: Result of the proposed method with a Pyramid 3 
levels deep. 

          
Figure 9: (Left) The result of the proposed method with a 
Pyramid 3 levels deep (Right) The result with a pyramid 6 
levels deep. 
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Without hidden point removal, self occluded 
regions of the model blend together in areas such as 
the chin and the ear towards the left of the image. 
While, the rendering is currently not carried out in 
real-time, the proposed method lends itself to GPU 
optimization. The above issues will be addressed in 
during our ongoing research work to implement the 
complete system for clinical visualisation, 
manipulation, measurement and analysis of multi-
view range images of surface anatomy. 
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