
AN AGENT-BASED PROGRAMMING MODEL FOR DEVELOPING
CLIENT-SIDE CONCURRENT WEB 2.0 APPLICATIONS

Giulio Piancastelli, Alessandro Ricci and Mattia Minotti
DEIS, ALMA MATER STUDIORUM—Università di Bologna

Keywords: Concurrent Programming, Agent-Oriented Programming, Web 2.0.

Abstract: Using the event-driven programming style of JavaScript to develop the concurrent and highly interactive client-
side of Web 2.0 applications is showing more and more shortcomings in terms of engineering properties
such as reusability and maintainability. Additional libraries, frameworks, and AJAX techniques do not help
reduce the gap between the single-threaded JavaScript model and the concurrency needs of applications. We
specialise the model in the context of client-side Web development, by characterising common domain agents
and artifacts that form an extension of an existing programming framework. Finally, we design and implement
a simple but significant case study to showcase the capabilities of the model and verify the feasibility of the
technology.

1 INTRODUCTION

One of the most important features of the so-called
Web 2.0 is a new interaction model between the client
user interface of a Web browser and the server-side of
the application.

Such rich Web applications allow the client to
send multiple concurrent requests in an asynchronous
way, avoiding complete page reload and keeping the
user interface live and responding. Periodic activities
within the client-side of the applications can be per-
formed in the same fashion, with clear advantages in
terms of perceived performance, efficiency and inter-
activity.

The client user interface of rich applications is
programmed with extensive use of JavaScript and
AJAX techniques.

Being JavaScript a single-threaded language, most
of those programs are written in an event-driven style,
in which programs register callback functions that
are triggered on events such as timeouts. A single-
threaded event loop dispatches the appropriate call-
back when an event occurs, and control returns back
to the loop when the callback completes. To imple-
ment concurrency-intensive features, still keeping the
interface responsive, programmers must chain call-
backs together—typically, each callback ends by reg-
istering one or more additional callbacks, possibly
with a short timeout.However, this style of event-

driven programming is tedious, bug-prone, and harms
reusability (Foster, 2008).

The limitations of the JavaScript programming
model have been faced by introducing libraries that
attempt at covering event-based low-level details be-
hind the emulation of well-known concurrent abstrac-
tions.

Concurrent.Thread (Maki and Iwasaki, 2007)
builds a thread abstraction on top of the event-
driven JavaScript model, converting multi-threaded
code into an efficient continuation-passing style. The
WorkerPool API in Google Gears1 simulates a col-
lection of processes that do not share any execution
state, thus can not directly access the browser DOM
of Web pages. Albeit working in practice, neither ap-
proach is feasible to support a sound programming
model for concurrency in Web 2.0 applications (Lee,
2006). Frameworks such as Rails,2 with its Ruby-to-
JavaScript compiler plug-in, and Google Web Toolkit
(GWT)3 approach the problem from a different an-
gle, by adopting the programming model of the single
language employed for implementing both the client-
and server-side of the application. Even if the appli-
cation development benefits from the use of object-
oriented languages in terms of decomposition and en-

1http://gears.google.com
2http://www.rubyonrails.org/
3http://code.google.com/webtoolkit/

13
Piancastelli G., Ricci A. and Minotti M.
AN AGENT-BASED PROGRAMMING MODEL FOR DEVELOPING CLIENT-SIDE CONCURRENT WEB 2.0 APPLICATIONS.
DOI: 10.5220/0001822900130020
In Proceedings of the Fifth International Conference on Web Information Systems and Technologies (WEBIST 2009), page
ISBN: 978-989-8111-81-4
Copyright c© 2009 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

capsulation, the limitations of the target execution en-
vironment make such solution less effective: for ex-
ample, GWT does not allow the use of Java threads,
and only offers a timer abstraction to schedule tasks
(implemented as methods) within the single-threaded
JavaScript interpreter.

We argue that, despite these several efforts, Web
application client-side technologies do not offer suit-
able abstractions to manage the coordination and in-
teraction problems of typical distributed applications
in a simple yet complete fashion.

With the aim of supporting the development of
Web applications as much similar as possible to dis-
tributed desktop applications, JavaScript and AJAX
are not enough: a different programming model is
needed, so as to provide mechanisms and abstrac-
tions really oriented to collaboration and cooperation
among concurrent computational entities.

In this sense, even the object-oriented paradigm
promoted by GWT shows its shortcomings.Indeed,
mainstream object-oriented programming languages
such as Java are currently undergoing a concurrency
revolution (Sutter and Larus, 2005), where (i) sup-
port for multi-threading is extended by synchronisa-
tion mechanisms providing a fine-grained and effi-
cient control on concurrent computations, and (ii) it
is becoming more and more important to also provide
more coarse-grained entities that help build concur-
rent programs from a set of higher-level abstractions.

We believe that, to effectively face challenges
such as distributed computation, asynchronous com-
munication, coordination and cooperation, agents
represent a very promising abstraction, natively cap-
turing and modeling concurrency of activities and
their interaction; therefore, they can be considered
a good candidate for defining a concurrent program-
ming model beyond languages and technologies cur-
rently available within browsers on the client-side of
Web applications.

The agent abstraction is meant to model and de-
sign the task-oriented parts of a system, encapsulating
the logic and control of such activities. Not every en-
tity in the system can (or should) be modeled in this
way, though; we also introduce the companion arti-
fact abstraction, as the basic building block to design
the tools and resources used by agents during their ac-
tivities.

Accordingly, in this paper we first describe the
agent and artifact abstractions as defined by the A&A
(Agents and Artifacts) programming model (Omicini
et al., 2008), recently introduced in the field of
agent-oriented programming and software engineer-
ing; then, we specialise the model in the context of
client-side Web application development, by char-

acterising common domain agents and artifacts that
form a small extension of an existing programming
framework based on A&A.

Further, we describe the design and implementa-
tion of a simple but significant case study to showcase
the capabilities of the framework, and conclude with
some final remarks.

2 THE AGENTS AND ARTIFACTS
PROGRAMMING MODEL

In the A&A programming model, the term “agent” is
used to represent an entity “who acts” towards an ob-
jective or task to do pro-actively, and whose com-
putational behaviour accounts for performing actions
in some kind of environment and getting information
back in terms of perceptions. Differently from the
typical software entity, agents have no interface: their
interaction with the environment takes place solely in
terms of actions and perceptions, which concerns in
particular the use of artifacts. The notion of activity is
employed to group related actions, as a way to struc-
ture the overall behaviour of an agent.

The A&A model is currently accompanied with
the simpA framework4 as a Java technology to pro-
totype concurrent applications using the agent and
artifact abstractions as basic building blocks (Ricci
and Viroli, 2007). To define a new agent template
in simpA, only one class must be defined, extending
the alice.simpa.Agent base class provided by the
framework API.For example, on the client-side of a
Web e-mail application, an agent that fetches all the
messages from an account, and periodically checks if
new messages arrived, may be structured as follows:

public class MailAgent extends Agent {
@ACTIVITY_WITH_AGENDA(
todos={
@TODO(activity="setup",

persistent=false),
@TODO(activity="fetch",

persistent=false,
pre=completed(setup)),

@TODO(activity="check",
persistent=true)

}
) void main() {}
@ACTIVITY void setup() { /* ... */ }
@ACTIVITY void fetch() { /* ... */ }
@ACTIVITY void check() { /* ... */ }}

Agent activities in simpA can be either atomic or
structured, composed by some kinds of sub-activities.
Atomic activities are implemented as methods with

4http://simpa.sourceforge.net

WEBIST 2009 - 5th International Conference on Web Information Systems and Technologies

14

the @ACTIVITY annotation, with the body of the
method defining the computational behaviour of the
agent corresponding to the accomplishment of the ac-
tivity. Structured activities introduce the notion of
agenda to specify the hierarchical set of the potential
sub-activities composing the activity, referenced as
todo in the agenda. Each todo names the sub-activity
to execute, and optionally a pre-condition. When a
structured activity is executed, the todos in the agenda
are executed as soon as their pre-conditions hold, but
if no pre-condition is specified, the todo is immedi-
ately executed. Thus, multiple sub-activities can be
executed concurrently in the context of the same (su-
per) activity. A structured activity is implemented
by methods with an @ACTIVITY WITH AGENDA an-
notation, containing todo descriptions as a list of
@TODO annotations. A todo can be specified to be
persistent—in this case, once it has been completely
executed, it is reinserted in the agenda so as to be pos-
sibly executed again. This is useful to model cyclic
behaviour of agents when executing some activities.

In the A&A programming model, the artifact ab-
straction is useful to design passive resources and
tools that are used by agents as basic building blocks
of the environment. The functionality of an artifact
is structured in terms of operations whose execution
can be triggered by agents through artifact usage in-
terface.Similarly to the interface of objects or compo-
nents, the usage interface of an artifact defines a set
of controls that an agent can trigger so as to execute
operations, each one identified by a label and a list of
input parameters.Differently from the notion of ob-
ject interfaces, in this use interaction there is no con-
trol coupling: when an agent triggers the execution
of an operation, it retains its control (flow) and the
operation execution on the artifact is carried on inde-
pendently and asynchronously. The information flow
from the artifact to agents is modeled in terms of ob-
servable events generated by artifacts and perceived
by agents; therefore, artifact interface controls have
no return values. An artifact can also have some ob-
servable properties, allowing to inspect the dynamic
state of the artifact without necessarily executing op-
erations on it. Artifact templates in simpA can be cre-
ated by extending the base alice.simpa.Artifact
class. For example, an artifact representing a Web
page, storing its DOM model in an observable prop-
erty, and exposing an operation to change an attribute
of an element in the model, may be structured as fol-
lows:

public class Page extends Artifact {
@OBSPROPERTY Document dom;
@OPERATION void setAttribute(String id,

String attr,
String val) {

Element e = dom.getElementById(id);
e.setAttribute(attr, val);
updateProperty("DOM", dom);

}
}

Each operation listed in the artifact user interface is
defined as a method with an @OPERATION annotation.
Besides the usage interface, each artifact may define
a linking interface, applying the @LINK annotation on
operations that are meant to be invoked by other arti-
facts. Thus, it becomes possible to create complex
artifacts as a composition of simpler ones, assem-
bled dynamically by the linking mechanism. An ar-
tifact typically provides some level of observability,
either by generating observable events during execu-
tion of an operation, or by defining observable proper-
ties using the @OBSPROPERTY annotation. An observ-
able event can be perceived by the agent that has used
the artifact by triggering the operation generating the
event; changes to observable properties, triggered by
the updateProperty primitive, can be sensed by any
agent that has focussed on the artifact, without neces-
sarily having acted on it. Besides agents and artifacts,
the notion of workspace completes the basic set of ab-
stractions defined in A&A: a workspace is a logic con-
tainer of agents and artifacts, and it is the basic means
to give an explicit (logical) topology to the working
environment, so as to help scope the interaction inside
it. We conclude this section by focussing on the main
ingredients of the agent-artifact interaction model: a
more comprehensive account and discussion of these
and other features of agents, artifacts and workspaces
– outside the scope of this paper – can be found in
(Omicini et al., 2008; Ricci and Viroli, 2007).

2.1 Agent-Artifact Interaction: Use and
Observation

The interaction between agents and artifacts strictly
mimics the way in which people use their tools. For
a simple but effective analogy, let us consider a cof-
fee machine. The set of buttons of the coffee machine
represents the usage interface, while the displays that
are used to show the state of the machine represent
artifact observable properties. The signals emitted by
the coffee machine during its usage represent observ-
able events generated by the artifact.

Interaction takes place by means of a use action
(stage 1a in Figure 1, left), performed by an agent in
order to trigger the execution of an operation over an
artifact; such an action specifies the name and param-
eters of the interface control corresponding to the op-
eration. The observable events, possibly generated by
the artifact while executing an operation, are collected

AN AGENT-BASED PROGRAMMING MODEL FOR DEVELOPING CLIENT-SIDE CONCURRENT WEB 2.0
APPLICATIONS

15

use opX(params)

 opX EXECUTION
TRIGGERED

1a

2a

XYZ

 opX EXECUTION

e

e

SENSOR

my_event1

op_exec_completed

sense with-my-filter

2b

1b

Figure 1: Abstract representation of an agent using an artifact, by triggering the execution of an operation (left, step 1a) and
observing the related events generated by the operation execution (right, step 1b).

by agent sensors, which are the parts of the agent
conceptually connected to the environment where the
agent itself is situated.Besides the generation of ob-
servable events, the execution of an operation results
in updating the artifact inner state and possibly arti-
fact observable properties. Finally, a sense action is
executed by an agent to explicitly retrieve the observ-
able events collected by its sensors. It must be noted
that, dually to indirect interaction through artifacts,
agents can also directly communicate with each other,
through a message passing mechanism provided by
the framework.

3 AN AGENT-ORIENTED MODEL
FOR CLIENT-SIDE WEB
PROGRAMMING

The main objective of our programming model based
on agent and artifact abstractions is to simplify devel-
opment of those parts on the client-side of Web appli-
cations that involve elements of concurrency, by re-
ducing the gap between design and implementation.
At the design level, it is first necessary to identify
the task-oriented and function-oriented parts of the
client-side system; then, such organisation drives to
the definition of agents and artifacts as depicted by
the A&A model. At the implementation level, the de-
sign elements can be directly realised using the simpA
framework. The notion of activity and the hierarchi-
cal activity model adopted in the agent abstraction al-
low a quite synthetic and readable description of pos-
sibly articulated behaviours, dealing with coordina-
tion management on a higher level than threads, time-
outs, and callbacks. The adopted model of artifacts
permits to specify possibly complex functionalities
to be shared and concurrently exploited by multiple
agents, abstracting away from low-level synchronisa-
tion mechanisms and primitives. In the domain of
client-side Web development, all computation takes

place in the browser environment, that can be straight-
forwardly mapped onto the workspace abstraction;
agents and artifacts downloaded as the client-side part
of Web applications will join this workspace, interact-
ing and cooperating in a concurrent fashion. Among
those agents and artifacts, there are a number of re-
curring elements in the majority of applications; here
follows a description of the main elements that we
identified, along with the role they will play in our
programming model.

Page. The page is typically represented by an acces-
sible, tree-like, standardised DOM object, allowing to
dynamically update its content, structure, and visual-
isation style; also, the page generates internal events
in response to user’s actions. The direct mapping of
the DOM API onto operations, and of the response to
user’s actions onto observable events, suggests the ar-
tifact as the most natural abstraction to model pages.

HTTP Channel. An entity is needed to perform
transactions in the HTTP protocol, allowing to spec-
ify the operation to execute (e.g. GET, POST, PUT,
DELETE), set the header values and possibly a pay-
load in the request; such an entity also has to receive
responses and make them available to the other enti-
ties in the system. The channel does not account for
autonomous actions, but it is supposed to be used by a
different, pro-active entity; it is therefore modeled as
an artifact, so that asynchronous communication to-
wards the server can be ensured by the agent-artifact
interaction model.

Common Domain Elements. Common compo-
nents that are frequently and repeatedly found in
specific application domains can also be modeled
in terms of agents and artifacts. As an example,
consider the shopping cart of any e-commerce Web
site: since its control logic and functionalities are
almost always the same, it could be implemented

WEBIST 2009 - 5th International Conference on Web Information Systems and Technologies

16

as a client-side component, in order to be used by
a multiplicity of e-commerce transactions towards
different vendors, and allowing comparisons and
other interesting actions on items stored for possibly
future purchase. Given the possibly complex nature
of the computations involved, such common domain
elements would probably need to be modeled as a
mix of both agents and artifacts.

There also are some important issues in client-side
Web application development that, due to the lack of
space, we only intend to acknowledge without provid-
ing a complete description of their possible modeling
and programming solution. First, security needs to be
addressed, in order to manage read/write permissions
on the file system, mobile code authentication, origin
control, and access authorisation; to this purpose, the
RBAC model (Sandhu et al., 1996) provided by simpA
can be exploited. Then, albeit architecturally depre-
cated, also cookies need to be taken into account as a
popular mechanism to allow data persistence between
working sessions; they can be devised as another par-
ticular kind of artifact template.

3.1 From simpA to simpA-Web

simpA-Web is a thin layer that exploits classes and
mechanisms of the simpA framework to define agent
and artifact templates oriented to client-side Web de-
velopment. Whereas simpA supports A&A abstrac-
tions, simpA-Web offers specific agents and artifacts
representing the common elements comprised by the
programming model explained above.

For example, simpA-Web provides implementa-
tions for the HTTP Channel and the Page artifacts.
The HTTP Channel artifact represents a HTTP work-
ing session used by a part of the client-side Web ap-
plication. The artifact allows communication through
the HTTP protocol, and is able to store and manage
both local and remote variables. The user interface of
HTTP Channel exposes three operations:

• setDestination. stores the URI of the server to
which the session represented by this artifact will
communicate. This operation takes the destina-
tion URI as a parameter, and generates a Destina-
tionChanged observable event.

• setHeader. adjusts a HTTP header for subse-
quent requests. It takes the header name and value
as parameters, and generates a HeaderChanged
observable event.

• send transmits a HTTP request to the server iden-
tified by the stored URI. It takes the HTTP pay-
load as a parameter, and generates three events:

RequestSent, as soon as the HTTP request has
been committed; Response, containing headers
and body, when a HTTP response is received;
Failure, if no response has been sent back.

The Page artifact represents the interface to access
the page visualised by the browser, encapsulating its
events and its main characteristics. The Page arti-
fact features an observable property called DOM, rep-
resenting the Document Object Model of the whole
page. The artifact interface exposes six operations,
each generating a corresponding observable event at
the end of a successful execution:

• changeDOM. substitutes the old DOM with a new
object taken as a parameter, thus changing the rep-
resentation of the whole page.

• setElement. changes the content of a DOM el-
ement identified by the first id parameter to the
string passed as second parameter.

• setAttribute. does the same as the previous
operation, but on a property of a DOM element.

• addChild. appends a DOM element as a child to
an element with a given id.

The presented entities in the simpA-Web layer repre-
sent a common agent-oriented infrastructure deployed
as an additional library alongside simpA, so as to free
client-side Web application developers from dealing
with such a support level and let them focus on appli-
cation domain issues.

4 A SAMPLE AGENT-ORIENTED
WEB 2.0 APPLICATION

To verify the feasibility of our A&A-based program-
ming model and test-drive the capabilities of the
simpA-Web framework, we designed a sample Web
application to search products and compare prices
from multiple services. The characteristics of concur-
rency and periodicity of the activities that the client-
side needs to perform make this case study a signifi-
cant prototype of the typical Web 2.0 application.

We imagine the existence of N services (of type A)
that offer product lists with features and prices, codi-
fied in some standard machine-readable format. Each
type A service lets users download an agent (typi-
cally programmed by the service supplier) that allow
product searching on that service; each agent commu-
nicates with the corresponding service using its own
protocol, possibly different from the protocols of the
other agents in the system.We further imagine the ex-
istence of an additional service (of type B) offering a

AN AGENT-BASED PROGRAMMING MODEL FOR DEVELOPING CLIENT-SIDE CONCURRENT WEB 2.0
APPLICATIONS

17

static list of type A services or allowing to dynami-
cally search the Web for such services.

The client-side in this sample Web application
needs to search all type A services for a product that
satisfies a set of user-defined parameters and has a
price inferior to a certain user-defined threshold. The
client also needs to periodically monitor services so
as to search for new offerings of the same product.

A new offering satisfying the constraints should
be visualised only when its price is more convenient
than the currently best price. The client may finish
its search and monitoring activities when some user-
defined conditions are met—a certain amount of time
is elapsed, or the user interrupts the search with a
click on a proper button in the page displayed by the
browser. Finally, if such an interruption took place, by
pressing another button it must be possible to let the
search continue from the point where it was blocked.

It’s worth remarking that the sample application
should be considered meaningful not for evaluating
the performance or efficiency of the framework –
which is part of future work – but for stressing the
benefits of the agent-oriented programming model in
facing the design of articulated and challenging appli-
cation scenarios. The main value in this case is having
a small set of high-level abstractions that make it pos-
sible to keep a certain degree of modularisation, sep-
aration of concerns, and encapsulation in designing
and programming applications, despite of the com-
plexities given by aspects such as concurrency, asyn-
chronous interactions, openness/dynamism, distribu-
tion.

4.1 Design

From the above description, it is fairly easy to use
high-level abstractions such as agents and artifacts
in order to represent the different computational el-
ements in the client-side of the application.

We define the Application Main (AM) Agent
as the first agent to execute on the client, with the
responsibility to setup the application once down-
loaded. Immediately after activation, the agent pop-
ulates the workspace with artifacts and other agents
needed to perform the product search as defined by
the requirements. After validating user-defined data
for product querying, the agent spawns another agent
to interface with the B service so as to get a list of A
services and commence the product search. The AM
Agent also needs to control results and terminate the
research when a suitable condition is verified; more-
over, it has to manage search interruption and restart-
ing as a consequence of user’s explicit commands.

The task of the Service Finder (SF) Agent is to

use the type B service so as to find a list of type A
services, and to concurrently download search agents
from their sites, asking them to start their own activ-
ity. The SF Agent also has to periodically monitor the
type B service for new type A services to exploit.

The Product Finder (PF) Agent instances inter-
act with their own type A service by a possibly com-
plex communication protocol, so as to get a list of
products satisfying the user-defined parameters. Af-
ter, each agent passes the resulting list to another ele-
ment in the workspace dealing with product data stor-
age. Each PF Agent also periodically checks its ser-
vice in order to possibly find new products or remov-
ing from the list products that are no more available.

The Product Directory (PD) Artifact stores
product data found by the PF agents, and applies fil-
tering and ordering criteria to build a list of available
products, possibly containing only one element.The
artifact also shows a representation for its list on the
page in the browser, updating results as they arrive.

Finally, an additional Pausing Artifact is intro-
duced to coordinate the agents in the workspace on
the interruption or restarting of the research activi-
ties in response to a user’s command.While the con-
trol logic of search interruption and restarting is en-
capsulated in the AM agent, the agent does not di-
rectly know all the PF agents; in such a case when
direct communication between agents is unfeasible,
an intermediate coordination element is needed to ask
agents to perform the actions requested by the user.

The complete architecture of the client-side ap-
plication is depicted in Figure 2, where interactions
with pre-defined artifacts and agents in the browser
are shown. In particular, it must be noted that the Ser-
vice Finder and Product Finder agents use their own
instances of the HTTP Channel artifact to commu-
nicate through the Web with the correspondent sites;
also, the Product Directory artifact links the Page ar-
tifact in order to visualise the product list by directly
use the DOM API operations that are made available
through the Page artifact linking interface.

It’s worth noting that we chose to place all the
agents and artifacts described above on the client side
to maximise the distribution of the workload (with re-
spect to the server-side): however, it is straightfor-
ward to devise different design solutions where some
of the agents (and artifacts) run on the server side and
interact with agents on the client side by using proper
artifacts like the HTTP Channels.

4.2 Implementation

Since we wanted our application case study to exploit
existing Web clients, so as to verify the feasibility of

WEBIST 2009 - 5th International Conference on Web Information Systems and Technologies

18

Figure 2: The architecture of the sample client-side Web application in terms of agent, artifacts, and their interactions.

current technologies w.r.t. our new model, resorting to
design or implementation compromise when needed,
we had to face some discrepancies that emerged dur-
ing the implementation phase.

As we could not use JavaScript, due to its single-
threaded nature, as a language for the client-side of
our sample Web application, we adopted the other
mechanism for code mobility that browsers make
available, that is Java applets. Applets allow to trans-
fer code from a server to a browser and have it exe-
cuted within a controlled secure environment known
as sandbox; in particular, signed applets drop much of
the security constraints of the sandbox, for instance
allowing Java classes to open their own connections
towards multiple servers. Furthermore, the Java Vir-
tual Machine invoked by the browser does not force
any restriction on the number of threads that a pro-
gram may spawn, thus providing a truly concurrent
environment where to execute our application. Ac-
cess to the page DOM representation in the browser
is granted by a suitable JavaScript library called Live-
Connect,5 that can be conveniently invoked from the
JVM multi-threaded execution context. Another is-
sue is that browsers start without any notion of agents
or artifacts: for this reason, the simpA-Web frame-
work has to be entirely downloaded at the same time
as the agents and artifacts belonging to the real client-
side application. In particular, we exploit the applet
mechanism allowing a specific class to start as soon
as the JAR files have been completely fetched from
the Web site in order to activate the Application Main

5http://developer.mozilla.org/en/LiveConnect

agent. The Page artifact is programmed to access the
DOM API by using the Rhinohide6 library, a conve-
nient wrapper around LiveConnect that offers a sim-
pler and more complete support for page event man-
agement. The HTTP Channel artifact does not exploit
the HTTP protocol support in the browser, instead re-
lying on functionalities offered by the Java standard
library. As a relevant code snippet, we show the Prod-
uct Finder Agent interacting with the HTTP Channel
artifact to get the product list from its type A service.

public class ProductFinder extends Agent {
@ACTIVITY void find() {
ArtifactId http =

lookupArtifact("HTTP_" + getId());
String url = getServiceURL() + getQuery();
// Make the Request
use(http, new Op("setDestination", url));
SensorId sid = getSensor("s0");
use(http, new Op("send", "GET", ""), sid);
// Sense the Response
Perception p = sense(sid, "Response");
String body = p.stringContent(0);
// ...

}
}

The source code of the application – including a PHP
back-end simulating type A and B services, used to
test the system – can be downloaded from simpA web
site.

6http://zelea.com/project/textbender/o/rhinohide

AN AGENT-BASED PROGRAMMING MODEL FOR DEVELOPING CLIENT-SIDE CONCURRENT WEB 2.0
APPLICATIONS

19

5 CONCLUDING REMARKS
Current languages and techniques used to develop
the client-side of Web 2.0 applications have clearly
shown their shortcomings in terms of programming
model and code organisation. Even for a mildly com-
plex application such as the presented case study, a
possible JavaScript-based approach is not feasible to
effectively manage concurrent and periodical activ-
ities so as to promote engineering properties such
as maintainability, extendibility, and reusability. In
particular, the use of callbacks and timeouts to fit
the single-threaded event-based programming style of
JavaScript constrains developers to work at such a low
abstraction level that a high degree of flexibility and
a solid design are hard to achieve within reasonable
amounts of time and effort. In this scenario, toolkits
such as GWT appear only to partially help: while they
may reduce the time-to-market and improve the over-
all structure and organisation of applications, their
programming abstractions still lack the expressivity
to represent the coordinating and cooperating entities
of typical concurrent systems.

Agents have been shown to natively capture con-
currency of activities and their interaction, both at
the design and the implementation level. In the pre-
AJAX era, agents had already been used as the ba-
sic building block for client-side concurrent Web pro-
gramming (Hong and Clark, 2000). This suggests
that agent-oriented programming models such as A&A
may effectively help construct the kind of highly in-
teractive applications that populate the Web 2.0 and
exploit concurrency as their primary computational
paradigm. As a significant prototype of this kind
of applications, the presented case study has been
designed and implemented by employing a set of
engineering best practices and principles (including
modularisation, separation of concerns, encapsula-
tion) that are directly supported by the A&A model,
but that are hardly represented in the current technolo-
gies for client-side Web development. The integration
difficulties that agent-oriented technologies such as
simpA have to overcome in order to seamlessly work
on modern Web clients should not be considered as
diminishing the value of the programming model, but
as a temporary accident due to the lack of proper sup-
port for the concurrency paradigm in the mainstream.

As a final note, the use of agents to represent
concurrent and interoperable computational entities
already sets the stage for a possible evolution of
Web 2.0 applications into Semantic Web applications.
From the very beginning (Berners-Lee et al., 2001;
Hendler, 2001), research activity on the Semantic
Web has always dealt with intelligent agents capa-
ble of reasoning on machine-readable descriptions of

Web resources, adapting their plans to the open In-
ternet environment in order to reach a user-defined
goal, and negotiating, collaborating, and interacting
with each other during their activities. Concurrency
and intelligence being two orthogonal programming
concepts, agent-oriented models that combine both
aspects are likely to be adopted for future mainstream
technologies.

REFERENCES

Berners-Lee, T., Hendler, J., and Lassila, O. (2001). The
Semantic Web. Scientific American.

Foster, J. S. (2008). Directing JavaScript with Arrows.
In ICFP 2008: The 13th ACM SIGPLAN Interna-
tional Conference on Functional Programming, Vic-
toria, British Columbia, Canada. Poster paper.

Hendler, J. (2001). Agents and the Semantic Web. IEEE
Intelligent Systems, 16(2):30–37.

Hong, T. W. and Clark, K. L. (2000). Concurrent program-
ming on the Web with Webstream. Technical report,
Department of Computing, Imperial College, London.

Lee, E. A. (2006). The problem with threads. IEEE Com-
puter, 39(5):33–42.

Maki, D. and Iwasaki, H. (2007). A portable JavaScript
thread library for Ajax applications. In OOPSLA ’07:
Companion to the 22nd ACM SIGPLAN conference
on Object oriented programming systems and appli-
cations, pages 817–818, Montreal, Quebec, Canada.

Omicini, A., Ricci, A., and Viroli, M. (2008). Arti-
facts in the A&A meta-model for multi-agent sys-
tems. Autonomous Agents and Multi-Agent Systems,
17(3):432–456.

Ricci, A. and Viroli, M. (2007). simpA: an agent-oriented
approach for prototyping concurrent applications on
top of Java. In PPPJ ’07: The 5th international sym-
posium on Principles and practice of programming in
Java, pages 185–194, Lisboa, Portugal.

Sandhu, R. S., Coyne, E. J., Feinstein, H. L., and Youman,
C. E. (1996). Role-based access control models. IEEE
Computer, 29(2):38–47.

Sutter, H. and Larus, J. (2005). Software and the concur-
rency revolution. ACM Queue: Tomorrow’s Comput-
ing Today, 3(7):54–62.

WEBIST 2009 - 5th International Conference on Web Information Systems and Technologies

20

