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Abstract. We study the dynamics of cell division in liveDrosophila embryos
using fluorescent proteins and 3D time-lapse microscopy. Accurate segmentation
of nuclei and mitotic chromosomes labeled by the live reporter histone-GFP is
a prerequisite for subsequent tracking and quantitative object analysis. We pro-
pose an automated 3D segmentation method based on narrow band level sets that
preserves the boundary of the cell nuclei and removes signals that are artifacts
of live cell imaging. We introduce an improved 3D narrow band approach in the
region shrinking and growing process for accurately segmenting the cell nuclei
from background. The proposed method has been evaluated with the ground truth
regarding the object level accuracy and segmentation quality. Both the object
level accuracy and pixel accuracy of the proposed method are around 96% and
85% respectively. Our algorithm can robustly segment nuclei and chromosomes
in different phase of the division cycle.

1 Introduction

Cell cycle regulation plays an important role in disease and development. Drosophila
embryogenesis is an excellent model system to study the mechanics and regulation of
cell division cycle in an intact multi-cellular organism [1]. The first 13 nuclear division
cycles are synchronous and take place in a common cytoplasm shared by all nuclei.
After completion of the syncytial blastoderm, cells form and all subsequent cell divi-
sions happen within the confines of cell membranes. Fluorescence proteins, such as
histone-GFP, in conjunction with 3D video microscopy can be applied to monitor cell
cycle progression in living cells. Quantitative analysis of 3D image stacks can provide
novel insights into the cell division cycle and its genetic regulation. However, computer
vision tasks like feature extraction, quantification, classification and tracking are highly
dependent on the accuracy of image segmentation.

Several automatic 3D segmentation methods [2–7] have been developed for seg-
mentation of cell nuclei. The most common methods used for cell nuclei segmentation
can be classified as watershed, model and active surface-based methods. Watershed-
based methods [2] [3] are very popular for segmentation of merged nuclei. However,
they are prone to over-segmentation and requiring complex postprocessing. Model-
based segmentation method [4] has demonstrated highest segmentation accuracy but
they rely ona priori model of the expected nuclei morphology. Moreover, various
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active surface based methods [5–7] have been proposed for nuclear segmentation. In
the active surface-based methods, objects are representedas a smooth surface, which
evolves with a speed force depending on the geometric property of the surface and the
external energy. However, the active surface-based methods suffer from an inherent de-
pendency on the initial seed. Various methods exist in the literature [2–7]; all of which
have been developed under restricted environmental conditions and are motivated by
specific application problem.

In 3D live microscopy, various factors, including uneven illumination due to limited
depth penetration, photo-bleaching, poor signal-to-noise ratio (SNR), heterogeneity in
the localization of fluorescent molecules and other artifacts can affect the performance
of segmentation. In order to characterize the dynamic changes of nuclear and chromo-
somal morphology during the division cycles we propose a segmentation algorithm that
has to meet the following requirements: (1) recognition of various shapes and textures
in the different stages of interphase and mitosis, (2) recognition during different stages
of development and (3) robustness of the object detection against fluorescence signals
that are not associated with nuclei, e.g. lipid droplets. Inthis paper, we present a hybrid
3D segmentation method that aims to handle the above-mentioned challenges of nu-
clear segmentation. We also present experimental results and validation of the proposed
method.

2 Hybrid 3D Segmentation Method

In this section, we describe an automated hybrid 3D segmentation approach that pre-
serves the surfaces of cell nuclei and is also robust againstimaging artifacts inherent
to laser scanning confocal microscopy (LSM). The method is composed of a sequence
of four major steps; namely preprocessing, background/foreground model, cell object
detection and marker-based region growing (Figure 1). The detailed description of the
major steps is provided next.

Fig. 1. Flow chart illustrating the major steps in the proposed method.

2.1 Image Acquisition

Cell nuclei and chromosomes inDrosophila embryos were labeled using the live flu-
orescence reporter histone H2Av-GFP [8] . Image acquisition was performed using an
inverted Zeiss 5 Live laser scanning confocal microscope and a 63x N.A. 1.3 oil immer-
sion lens. Drosophila embryos were dechorionated in 50% bleach and embedded in 1%
agarose on aglass bottom dish. Image de-convolution was carried using the Huygens
Professional, version 3.0.
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2.2 Preprocessing

Serial optical sections produced by confocal microscopy tend to suffer from attenuation
of fluorescence signals in deeper tissue layers. In order to compensate for uneven illu-
mination within the same image stack, we use a simple method that normalizes pixel
intensity relative to the optical slice which shows the highest mean intensity. More-
over, live cell imaging records signals that are not associated with nuclei or chromo-
somes. These can be due to auto-fluorescence or cytoplasmic histone-GFP containing
lipid droplets [9]. Compared to cell nuclei, lipid dropletshave a smaller size and differ
both in mean and standard deviation of intensity. A series ofmedian filters was used
to alleviate the problem. However, variable window size filtering altered the shape of
object boundaries and increased false detection rate. To overcome this problem, we in-
troduced a novel pre-processing method based on 3D morphological reconstruction [10]
that enhances the background noise and limits debris. We performed 3D morphological
reconstruction that preserves object boundaries, followed by multi-scale gradient and
local minima elimination that limits the debris by varying the height parameterh. The
parameterh used for reducing debris needs to be specified manually as itsappropriate
value depends on the nature of variation of gray values in thedebris.

2.3 Background/Foreground Detection

The background/foreground detection starts with the detection of plateau minima in
the gradient stack and then, labels the largest minima of height h as background and
the others as foreground. At last, we applied a fast hillclimbing technique [11] on all
optical slices simultaneously.

2.4 Cell Object Detection

This section describes the cell object detection in the image stack by region shrinking
based on the Narrow Band level set (NB) approach [12] [13]. The basic idea of the
narrow band level set concept is to update level sets and the driving force in a subset of
points in the neighborhood of evolving front instead of the points on the grid. The nar-
row band has to be updated in each iteration and where it searches for closest front point
over the entire fixed narrow band for computing front drivingforce. The time complex-
ity of the NB method isO(δn4), wheren is the number of grid points along a side and
δ is the width of narrow band. The conventional NB approach, however, is impractical
for high-throughput or large scale 3D nuclei segmentation.In the proposed approach,
we aim at update the level set in the nearest neighboring points (26-connected) of the
deforming front points and define an appropriate speed function F that can accelerate
the evolving surface to the desired object boundary.

We use an implicit representation of the surfaceS as the zero level set of higher di-
mensional time-varying functionΦ(S) = 0. The surface evolution equation as follows,

∂Φ(S)

∂t
=

∂S

∂t
· ∇Φ +

∂Φ

∂t
⇒ ∂Φ

∂t
= −F |∇Φ| (1)
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WhereF is the speed function normal to the surfaceS. The formulation of modified
speed function is

F = R − εK (2)

WhereR is an unit sign function (+1 for object region and -1 for background) that
makes the object surface inflate or deflate. The signed valueR(p) at pixelp ∈ DI can
be obtained

R(p) =

{

+1 if (I(p) > Ti) then
−1 Otherwise

, Ti ∈ [µB + kσB , µOi
− kσOi

] (3)

HereTi is an optimal threshold value [14] between the background model(µB , σB) and
the candidate object model(µOi

, σOi
) . The viscosity term -εK reduces the curvature

of the surface. WhereK is the mean curvature of the evolving surfaceS andε is a non-
negative regularization parameter. The mean curvatureK of surface can be formulated
as

K = ∇ · ∇Φ

|∇Φ| = ∆̂xΦ + ∆̂yΦ + ∆̂zΦ = −→n + −−→n
−

,
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2 represent forward, backward and
center gradients inx direction, and similarly fory andz directions.

We utilize a FIFO queue for recursive region shrinking in depth-first order from
initial foreground front points as shown in Fig.2. First, weinitialize the 3D level sets
Φ with +1 for background and -1 for foreground region, and then, initialize the FIFO
queueQ with the foreground points (Φ = −1 ) which have at least one outer band point
(background,Φ = 1).

Fig. 2. Queue-based region shrinking at candidate front points.

In each iteration, points in the queueQ are processed, and the connected elements
and object models are updated. Pointp ∈ DI is de-queued from queueQ one at a time
and its surface driving forceF is calculated as given in equation 2. If the forceF is less
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than zero, then the candidate pointp becomes background (Φ=1) and its neighboring
object points with level set value equal to -1 are inserted into the queueQ for recursive
region shrinking process. Otherwise, if the forceF at pointp is greater than zero, then
the candidate pointp becomes cell object boundary point. This process is iterated until
the criterion is satisfied. The complexity of proposed approach is linear with respect to
the number of neighboring grid points. The total number of operations per iteration is
bound byn ∗ N26

G , hereN26
G stands for 26-connected neighbors on the 3D grid andn

is the number of evolving surface front points. Hence, the proposed approach limits the
search range with inN26

G points at each candidate surface front point againstδn2 points
for narrow band methods.

2.5 Marker-based Region Growing

In this section, we introduce a fast marker-based 3D region growing method for sepa-
rating the merged cells that are extracted in the cell objectdetection step. The proposed
method consists of two sequential steps, namely 3D marker detection and 3D region
growing. In the marker detection step, we use conditional binary morphological erosion
based on the hypothesis test followed by volume-based filtering. The proposed marker
detection technique well identifies the markers in the cell object and also detects sep-
arate markers for merged cells in the image stack. The proposed 3D region growing
method starts from the labeled 3D marker and then, grows the region by surface defor-
mation, simultaneously in all the markers. We use a FIFO queue for recursive 3D region
growing in depth-first order from initial 3D object markers as shown in Fig. 3.

First, we label the object markers in 3D by using connect component labeling where
each marker get unique label and then, initialize the 3D level setsΦ with +1 for back-
ground and -1 for 3D object marker and the FIFO queueQ with the outer band points
(Background,Φ=1) which have at least one marker object point (Marker,Φ=-1).

Fig. 3. Queue-based region growing at candidate outer points.

Outer band pointp ∈ DI is de-queued from queueQ one at a time and its sur-
face driving forceF is calculated as given in equation 2. If the forceF at pointp is
greater than zero, then we decide the label of candidate point p based on its neighboring
surface front points. If the candidatep has neighboring surface front points which are
originated from same marker, then the outer band pointp becomes surface front point
and its neighboring outer band pointsq ∈ NG(p) with level set value equal to 1 are
inserted into the queueQ for recursive region growing process. However, if the pointp
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has surface front neighbors which are originated from different markers, then, the point
p gets a watershed label which is used to separate the adjacentsurface fronts. Other-
wise, if the forceF at pointp is less than zero, then, the candidate pointp becomes
background. The present iteration completes when all the points in the queue visited. In
the each iteration, we update the object models. This process is iterated until the crite-
rion is satisfied. Finally, we apply an isotropic and discrete Gaussian shape filter of size
(3×3×3) on the 3D level set for smoothening the surface points.

3 Experimental Results

We performed a set of experiments to evaluate the proposed 3Dsegmentation method
for the detection of cell nuclei in LiveDrosophila Embryos time-lapse images. We
tested our segmentation on image stacks acquired during different stages of embryonic
development; the synchronous nuclear cycles of the syncytial blastoderm and mitotic
domains of the post-cellular blastoderm that contain mixtures of different phases of
the cell cycle. Figure 4 illustrates the experimental results obtained from applying the
proposed 3D segmentation method for post-cellular blastoderm time-lapse images. The
method has been evaluated by manually creating ground truth, developed by automatic
thresholding on image stack followed by manual correction on individual cells by using
ImageJ plugin. We evaluated the segmentation results basedon the object level accuracy
such as number of correctly classified cells, merged cells and split cells, and pixel level
detection rates, namely miss detection rate and false alarmrate. The accuracy of our
approach was evaluated for image data recorded during different stages of development
(Table 1). On average, 96% of 3D cell nuclei were identified. The segmentation quality
on the pixel level ranged between 85%-90%. Figure 5 shows a mitotic nucleus track
from interphase to the end of anaphase in wildtype syncytium.

Table 1. The performance of proposed method in LiveDrosophila Embryos time-lapse images.

Object level accuracy Pixel level

Image Stack No. of Correct Merged False Split Accuracy
(70 slices) cell nuclei cells cells Positives cells

Post-cellular 192 187 1 13 6 86.45%
blastoderm
Syncytial 96 96 0 1 0 88.67%
blastoderm
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(a) (b)

(c) (d)

(e)
(f)

Fig. 4. Automatic segmentation of cell nuclei in images acquired during the post-cellular blasto-
derm of embryogenesis. (a) Original optical slice 15, (c) original optical slice 25, (e) Maximum
Intensity Projection (MIP) of original image stack. Segmentation results of optical slices 15 (b)
and 25 (d). Contours of detected regions of interest are shown in white. (f) 3D visualization of
segmented cell nuclei and their labels.
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Fig. 5. Cell cycle dependant changes of nuclear and chromosomal volume from interphase to the
end of anaphase in wildtype syncytium.

4 Conclusions

We presented a novel method for the detection of fluorescently labeled cell nuclei in
3D image stacks. Reliable segmentation of cell nuclei and mitotic chromosomes is very
important for the study of cell cycle progression in LiveDrosophila Embryo. We intro-
duced a methodology based on narrow band level sets for isolating the cell nuclei from
background. The proposed method has been evaluated regarding object level and pixel
level accuracy. Preliminary results show that the outputs of the image segmentation are
suitable for downstream tracking, quantification and classification of identified image
objects.
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