MULTIPLE CUE DATA FUSION USING MARKOV RANDOM FIELDS FOR MOTION DETECTION

Marc Vivet, Brais Martínez
Department of Computer Science, Universitat Autònoma de Barcelona, Barcelona, Spain

Xavier Binefa
Department of Information Technologies and Communications, Universitat Pompeu Fabra, Barcelona, Spain

Keywords: Graphical model, Markov random field, Multiple cue fusion, Motion detection, Belief propagation.

Abstract: We propose a new method for Motion Detection using stationary camera, where the information of different motion detectors which are not robust but light in terms of computation time (what we will call weak motion detector (WMD)) are merged with spatio-temporal Markov Random Field to improve the results. We put the strength, instead of on the weak motion detectors, on the fusion of their information. The main contribution is to show how the MRF can be modeled for obtaining a robust result. Experimental results show the improvement and good performance of the proposed method.

1 INTRODUCTION

The segmentation of moving objects using stationary camera is a critical low-level vision process used as a first step for many computer vision applications, as for example video surveillance. This make that obtaining good results in this first process could be in many cases a must. One of the most common approaches to tackle this problem consists on background subtraction.

During the last decades many background subtraction methods have been proposed. The approaches range from naive frame differencing to more complex probabilistic methods or from color based methods to the use of edges. Our aim is to apport a probabilistic framework based on Markov Random Fields (MRF) to combine some of the simplest background subtraction algorithms to obtains robust results. The introduction will therefore be divided into a brief summary of the basic existing background subtraction techniques, a summary of MRF and its application to our problem and finally a summary of our work.

The most naive method is the frame differencing (Desa and Salih, 2004), where movement is detected whenever the difference between consecutive frames is superior than a predefined threshold. This method works only in particular cases and it lacks of robustness. A better solution consists on the use of statistical methods to model the possible aspect of each pixel individually. Some methods obtain the background like the average or the median of each pixel (Lo and Velastin, 2000; R. Cucchiara and Prati, 2003). Exponential forgetting (Koller et al., 1994) uses a moving-window over the temporal domain to handel the change of lighting condition and distinguish between moving and stationary objects. Some other approaches uses a generative method like Gaussian Mixture Models (Stauffer and Grimson, 1999), again modelling the historical aspect of each pixel individually. In Kernel Density Estimators (Ahmed M. Elgammal, 2000), the background PDF is obtained by using the histogram of the n most recent pixel values, each one smoothed with a Gaussian kernel. Mean-shift based background estimation (Bohyung Han, 2004) uses a gradient-ascent method to find the modes and covariance of that PDF. Other option is to use Hidden Markov Model (HMM) (Rittscher et al., 2000) to impose temporal continuity to the classification of a pixel as background or foreground. One common drawback of all these methods is the lack of spatial consistency, i.e., each pixel is modeled individually and no consistency with the contiguous pixels is imposed.

Another family of methods, in contrast to the...
previous ones, exploits the spatial consistency, like Eigen-background (N.M. Oliver and Pentland, 2000), Wallflower (K. Toyama and Meyers, 1999) and MRF based methods. In the first one, principle component analysis (PCA) is used to model the static background. Wallflower processes images at various spatial levels, pixel level, region level and frame level. Finally the MRF based methods uses a Markov network to introduce the spatial information to the previous methods. (Yin and Collins, 2007) uses MRF to introduce spatial and temporal information to frame differencing and (Wang et al., 2002) apply it for introducing the spatial consistency into the HMM method previously cited (Rittscher et al., 2000).

To solve a MRF different techniques exist, like Graph Cuts (Kohli and Torr, 2005) or Belief Propagation (BP) (Yedidia et al., 2005; Weiss and Freeman, 2001). The first one finds the best approximation of the optimum MRF state by repeatedly maximizing the joint probability using Max-flow / min-cut method from network theory. BP interactively propagates the probability (belief) of each node to its neighbors.

In this work, we propose a new method based on MRF to combine different naive motion detectors, possibly coming from different information sources, and at the same time add spatial and temporal information to improve the results. In that sense, this work uses as weak motion detectors information coming from the pixel color values, the detection of shadows and the detection of edges. All of these methods constitute a research line nowadays and none of the solutions adopted in this article are optimal. Nevertheless, each information source can be considered as an independent module and could be replaced by a better algorithm. The improvement of the results obtained by the different methods on their own respect to the fused method are remarkable and it should be remarked that our work was to build a general framework for information fusion rather than optimizing each source.

In the sections 2 and 3 are explained the concepts of MRF and how it can be inferred using BP. In section 4 are shown the our approach. Then section 5 are presented the result that we have obtained in different scenarios. Finally in section 6 are shown the conclusion and the future of our work.

2 MARKOV RANDOM FIELD

Markov Random Field (Bishop, 2006; Yedidia et al., 2005; Kindermann and Snell, 1980) is a graphical model that can be modeled as a undirected bipartite graph $G = (X, F, E)$, where each variable node $X_n \in X$, $n \in \{1, 2, ..., N\}$ represents a S discrete-valued random variable and x_0 represent the possible realizations of that random variable. Each factor node $f_m \in F$, $m \in \{1, 2, ..., M\}$ is a function mapping from a subset of variables $\{X_a, X_b, ...\} \subseteq X$, $\{a, b, ...\} \subseteq \{1, 2, ..., N\}$ to the factor node f_m, where the relation between them is represented by edges $\{e_{m,a}, e_{m,b}, ...\} \subseteq E$ connecting each variable node $\{X_a, X_b,\}$. The joint probability mass function is then factorized as

$$P(X_1 = x_1, X_2 = x_2, \ldots, X_N = x_N) \equiv P(x) \quad (1)$$

$$P(x) = \frac{1}{Z} \prod_{m=1}^{M} f_m(x_m), \quad (2)$$

where the factor f_m has an argument x_m that represents a subset of variables from X. Z is the partition function defined by

$$Z = \sum_{x} \prod_{m=1}^{M} f_m(x_m). \quad (3)$$

We assume that the functions f_m are non-negative and finite so $P(x)$ is a well defined probability distribution. To infer the most probable configuration of the graph, it is necessary to compute the marginals as,

$$P_n(x_n) = \sum_{x \setminus x_n} P(x) \quad (4)$$

where $x \setminus x_n$ means all the realizations in the graph except the realizations for the node X_n. $P_n(x_n)$ means the probability of the states of the random variable X_n and will denote the marginal probability function obtained by marginalizing $P(x)$ onto the random variable X_n.

However the complexity of this problem grows exponentially with the number of variables N and thus becomes computationally intractable in the general case. Approximation techniques such as Graph Cuts and Belief Propagation are often more feasible in practice. In section 3 we will explain in detail the Belief Propagation algorithm, which is the method that we have used.

3 BELIEF PROPAGATION

Belief Propagation (J.C.MacKay, 2003; Yedidia et al., 2005; Weiss and Freeman, 2001; Felzenszwalb and Huttenlocher, 2004) is an iterative algorithm for computing marginals of functions on a graphical model. This method is only exact in graphs that are cycle-free. However, it is empirically proved that, even in these cases, BP provides a good approximation of the optimum state. There exist different approaches
depending on the problem. In some cases, BP algorithms are focused in finding the maximum posterior probability for all the graph like Max-Product BP algorithm. In other cases, they are motivated by obtaining the most probable state for each node, like Sum-Product BP algorithm. We have selected the Sum-Product BP algorithm because perfectly suits our needs. A brief discussion of the practical consequences of choosing any of this methods can be found in (Felzenszwalb and Huttenlocher, 2004).

BP algorithms works by passing messages around the graph. The sum-product version will involve messages of two types: messages \(q_{m\rightarrow n}(x_n) \) from factor nodes to variable nodes, defined as

\[
q_{m\rightarrow n}(x_n) = \prod_{m' \in M(n)} r_{m'\rightarrow n}(x_n)
\]

(5)

where \(M(n) \) is the set of factors in which variable \(X_n \) participates. And messages \(r_{m\rightarrow n} \) from factor nodes to variable nodes, defined as

\[
r_{m\rightarrow n}(x_n) = \sum_{x_m} \left(f_m(x_m) \prod_{n' \in N(m)} q_{n'\rightarrow m}(x_{n'}) \right)
\]

(6)

where \(N(m) \) is the set of variables that the \(f_m \) factor depends on. Finally a belief \(b_n(x_n) \), that is an approximation of the marginal \(P_n(x_n) \), is computed for each node by multiplying all the incoming messages at that node,

\[
b_n(x_n) = \frac{1}{Z} \prod_{m \in M(n)} r_{m\rightarrow n}(x_n)
\]

(7)

Note that \(b_n(x_n) \) is equal to \(P_n(x_n) \) if the MRF have no cycles. In this point we have to select the more feasible state for each node. In order to do this, there exist different criteria like Maximum a Posteriori (MAP) and Minimum Mean Squared Error (MMSE):

- **MAP (Maximum a Posteriori).** For each node we take the state \(x_n \) with higher belief \(b_n(x_n) \) (Qian and Huang, 1997).

\[
x_n^{MAP} = \arg\max_{x_n} b_n(x_n)
\]

(8)

- **MMSE (Minimum Mean Squared Error).** We make the weighted mean of each state \(x_n \) and its belief, given by \(b_n(x_n) \) and we select the \(x_n \) that have less squared error (Yin and Collins, 2007).

\[
x_n^{MMSE} = \sum_{x_n} x_n b_n(x_n)
\]

(9)

4 OUR MODEL

Our objective is to perform a good motion segmentation using Weak Motion Detection (WMD) algorithms, which are defined as fast and simple but not fully reliable motion detectors. These motion algorithms are selected to extract different types of information. First of all, we will use a Background Subtraction Algorithm that uses a simple gaussian to represent the historical values of each pixel and then to estimate if the pixel is part or not of a mobile object; we will use a Motion Edge Detector, that obtains the edges of the moving objects, doing a simple subtraction of the edges detected in a frame and the edges detected in the background model (removing the stationary edges); the last algorithm will be a Shadow Detector of the mobile parts. Then, in order to merge all this information, we will model a MRF and its potential function to obtain the more feasible moving image regions for each frame in a video.

Our model is inspired in (Yin and Collins, 2007; Wang et al., 2002). This model is represented by a 4-partite graph \(G = (X, D, F, H, E) \) where there are two types of variables nodes and two types of factors nodes. The first type of variable nodes \(X_{(i,j)} \in X \) represents a binary discrete-valued random variable corresponding to the static and dynamic states that can take each pixel in a \(w \times h \) image, so we have one \(X_{(i,j)} \) for each pixel \(I_{(i,j)} \) in the image and \(X_{(i,j)} \) represents its possible realizations. The other type of nodes is defined as \(D_{(i,j)} \in D \); where \(D_{(i,j)} \) represents a discrete-valued random variable obtained using WMD and \(d_{(i,j)} \) its possible realizations. Because we have three WMD giving binary information for each pixel, each node \(D_{(i,j)} \) can take values from 0 to 7 (\(2^7 \)). In the table 1 the meaning of this values is shown. Each node \(D_{(i,j)} \) is related to each \(X_{(i,j)} \) by

<table>
<thead>
<tr>
<th>Shadow D.</th>
<th>Edge D.</th>
<th>Color D.</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>x</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Here are shown which detectors are activated to produce the observation data value in the last column. \(D \) means Detector.

a node factor \(h_{(i,j)} \in H \) which is the local evidence. This relation is represented by two edges, one from \(D_{(i,j)} \) to \(h_{(i,j)} \) and another from \(h_{(i,j)} \) to \(X_{(i,j)} \).

We also have four relations between \(X_{(i,j)} \) and its neighborhood variable nodes \(X_{(i,k)} \) where, \((i,k) \in \{ (i-1,j), (i+1,j), (i,j-1), (i,j+1) \} \), called compatibility function and denoted by \(f_{c(i,j),(i,k)} \in F \). The relation with each neighbor is represented by two
edges that forms the path from one node to the other
where between them there is the factor node.

In order to add temporal information, our model has five layers that corresponds to five consecutive frames from \(t = 2 \) to \(t + 2 \). To distinguish the names in different temporal layer, we describe each node as \(X^t_{i,j} \) and each observation node as \(D^t_{i,j} \) where \(t \) represents the time index. This temporal information is done by two relations with its neighborhood variable nodes \(X^t_{i,j} \) where, \(p \in \{ t-1, t+1 \} \). This structure can be seen in figure 1. In order to simplify

Figure 1: On the left we have a representation of our model
where spheres represents variable nodes from X, cylinders
represents variable nodes from D, cubes represents factors
from F and pyramids represents factors from H. On the right
we can see the connections of one node.

the notation let \(N \) be the total number of local evidence
functions and let \(h(x_n, d_n) \) be one of such functions,
where \(x_n \) represents the possible realizations of
the corresponding variable node \(X^n \equiv X^n_{(i,j)} \in X \)
and \(d_n \) the possible realizations of the corresponding
variable node \(D^n \equiv D^n_{(i,j)} \in D \). Let be \(f(x_n, x_u) \)
one compatibility functions, where \(x_0 \) and \(x_u \), repre-
sent the possible realizations of the variable nodes \(\{X_0, X_u\} \equiv \{X^T_{(i,j)}, X^T_{(i,k)}\} \) in \(X \) that are neighbors.
And let be \(M \) the total number of compatibility
functions and \(f_m(x_m) \) one of this functions where, \(x_m \) rep-
resent the possible realizations of two variable nodes
\(\{X^T_{(i,j)}, X^T_{(i,k)}\} \) in \(X \) and is equivalent to \(f(x_n, x_u) \). For
this model the joint probability distribution is defined as,

\[
P(X_1 = x_1, ..., X_N = x_N, D_1 = d_1, ..., D_N = d_N) \equiv P(x, d)
\]

(10)

\[
P(x, d) = \frac{1}{Z} \prod_{n=1}^{N} h(x_n, d_n) \prod_{m=1}^{M} f_m(x_m)
\]

(11)

Note that this joint probability mass function is like the
MRF joint probability mass function but, adapted to
add the observation data of our weak motion detectors
and simplified using binary compatibility functions.

Because the state for each variable node \(D^n \) is
fixed by the observation data, we only want to infer
the optimal state for each variable node \(X^n \). The sum-
product adapted message equation for our model from
variable nodes \(X^n \) to factor nodes \(f_m \) is defined as,

\[
q_{m \rightarrow n}(x_n) = h(x_n, d_n) \prod_{m' \in M(n) \setminus m} r_{m' \rightarrow n}(x_n)
\]

(12)

and messages \(r_{m \rightarrow n} \) from factor nodes \(f_m \) to variable
nodes \(X^n \) is defined as

\[
r_{m \rightarrow n}(x_n) = \sum_{x_m} \left(f_m(x_m) \prod_{n' \in N(m) \setminus n} q_{d' \rightarrow m}(x_{n'}) \right)
\]

(13)

Finally the belief \(b_n(x_n) \) equation is defined as,

\[
b_n(x_n) = \frac{1}{Z} h(x_n, d_n) \prod_{m \in M(n)} r_{m \rightarrow n}(x_n)
\]

(14)

or,

\[
b_n(x_n) \propto h(x_n, d_n) \prod_{m \in M(n)} r_{m \rightarrow n}(x_n)
\]

(15)

if we want to avoid the computation of the normalization
constant \(Z \).

We define the local evidence \(h(x_n, d_n) \) as shown in
16 and the compatibility matrix \(f(x_n, x_u) \) as in 17.

\[
\begin{align*}
h(x_n, d_n) & = \begin{cases}
[\theta_0, 1 - \theta_0]^T & \text{if } D_n = 0 \\
[\theta_1, 1 - \theta_1]^T & \text{if } D_n = 1 \\
[\theta_2, 1 - \theta_2]^T & \text{if } D_n = 2 \\
[\theta_3, 1 - \theta_3]^T & \text{if } D_n = 3 \\
[\theta_4, 1 - \theta_4]^T & \text{if } D_n = 4 \\
[\theta_5, 1 - \theta_5]^T & \text{if } D_n = 5 \\
[\theta_6, 1 - \theta_6]^T & \text{if } D_n = 6 \\
[\theta_7, 1 - \theta_7]^T & \text{if } D_n = 7
\end{cases} \\
\end{align*}
\]

(16)

\[
f(x_n, x_u) = \begin{cases}
\theta & \text{if } X_n = X_u \\
1 - \theta & \text{otherwise}
\end{cases}
\]

(17)

To obtain all the parameters in our algorithm \(\theta_{0...7} \)
and \(\theta \) we made a probabilistic study on our data using
\(n \) representative frames \((P^{n-1}) \). We manually
annotated all the images of this set to obtain a set \(L^2 \)
of matrices. Each \(L^2 \) is a binary matrix where not null
values represents foreground.

\[
\begin{align*}
\theta_a & = P(X_j = 1|D_j = a) \\
1 - \theta_a & = P(X_j = 0|D_j = a)
\end{align*}
\]

(18)

We can say that \(\theta_a \) is the prior probability of a
pixel annotated as \(a \) to belong to a dynamic pixel
(foreground). With this definition, we can use Bayes
Theorem to compute this probability.

\[
P(X_j = 1|D_j = a) = \frac{P(D_j = a|X_j = 1)P(X_j = 1)}{P(D_j = a)}
\]

(19)

\[
P(X_j = 0|D_j = a) = \frac{P(D_j = a|X_j = 0)P(X_j = 0)}{P(D_j = a)}
\]

(20)

Let \(m \) be the number of pixels in an image and \(D^t \)
the value of the observation data in the pixel \(t \) on the
frame \(k \). We compute the marginals and the likelihood using the annotated frames \(L_k \).

\[
P(X_j = 1) = \frac{1}{n \cdot m} \sum_{k=0}^{n-1} \sum_{i=0}^{m-1} L_k^i
\]

(21)

\[
P(X_j = 0) = 1 - P(X_j = 1)
\]

(22)

\[
P(D_j = a) = \frac{1}{n \cdot m} \sum_{k=0}^{n-1} \sum_{i=0}^{m-1} \int_{-\infty}^{\infty} \delta(a - D_j^k) d\delta
\]

(23)

\[
P(D_j = a|X_j = 1) = \frac{\sum_{k=0}^{n-1} \sum_{i=0}^{m-1} L_k^i \int_{-\infty}^{\infty} \delta(a - D_j^k) d\delta}{\sum_{k=0}^{n-1} \sum_{i=0}^{m-1} L_k^i}
\]

(24)

\[
P(D_j = a|X_j = 0) = 1 - P(D_j = a|X_j = 1)
\]

(25)

where \(\delta \) is the delta function. Finally we can compute \(\theta \) as shown in (26).

\[
\theta = \frac{1}{n \cdot m} \sum_{k=0}^{n-1} \sum_{i=0}^{m-1} \int_{-\infty}^{\infty} \delta(l - L_k^i) d\delta
\]

(26)

Where \(N_k^l \) and \(N(L_k^l) \) is the number of neighbors and the neighbors of \(L_k^l \).

5 EXPERIMENTAL RESULTS

In order to validate our approach we have compared our method using a different number of iterations to solve our MRF, different amount of temporal information and different combinations of our weak motion detectors.

For the purpose of having a better comparative we have applied these algorithms in different scenarios. The videos were captured using the photo camera Cannon Ixus 700 and recorded with QVGA and VGA resolution at 30 fps. These videos have a lot of noise due to the poor MPEG compression, that makes it difficult to obtain correct segmentation. The videos are recorded on a bridge over a highway using two different angles.

We also tested this algorithm, without the shadow weak motion detector (our shadow detector needs a RGB image) and with a version of our color weak motion detector that works on gray scale images, on a VGA IR video. These results are shown in figure 2. Our algorithm has been implemented using Matlab R2008a and some parts using C++, like the maximization of the joint probability function of our MRF using BP. This method doesn’t works in real time. Needs 0.5 seconds to obtain all the data from the weak classifiers and another 0.3 seconds to solve the MRF. However we have not used threads (BP is highly parallelizable), the major part of the algorithm is wrote in matlab and we do not used CUDA\(^1\). We estimate that our computation time can be reduced by a factor of ten.

In figure 3 we show the difference between using different number of frames in our MRF (more temporal information). As shown, after ten frames, adding more frames does not affect the results.

Figure 4 shows how the results vary depending on the number of BP iterations. As shown, after 5 iterations BP typically converges to a solution.

Figure 5 shows how the result of our method is improved as the number of weak classifiers increases. As expected, the addition of more information provides better results.

\(^{1}\)CUDA - Compute Unified Device Architecture.
ACKNOWLEDGEMENTS

This work was produced thanks to the support of the Universitat Autònoma de Barcelona. Thanks are also due to Tecnobit S.L. for providing the infrared.

REFERENCES

