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Abstract: With the advent of modern graphic processors, rendering a complex terrain in real time was suddenly 
possible. However the constant struggle between rendering quality and real time performance is still 
demanding more that we can actually get. Terrains are a prime example of that, the sheer amount of 
geometry and the constant need to achieve higher standards in image quality are always taking the graphical 
processors to their limits. Level of detail techniques, are therefore very important in this area and were used 
in multiple algorithms through the years. Tiled blocks are a category of terrain algorithms where the terrain 
is partitioned into square patches that are tessellated at different resolutions. This paper describes and 
compares two of the most common approaches used in the simplification process: block based 
simplification, where the simplification is local to the block, and quadtree based simplification, which uses 
the spatial partitioning principle of the quadtree to perform the simplification.  

1 INTRODUCTION 

Rendering terrain areas is an integral part of many 
applications, ranging from the entertainment 
industry to architectural visualizations, cartography 
applications and military simulations. Unfortunately 
it is still a difficult challenge, despite the ever 
growing power of the graphical processors available 
today. To cope with that, level of detail techniques 
appeared as an essential tool in this area especially 
for large terrains. Most of them were used in the 
course of years in a number of algorithms that were 
specially designed for the rendering of large terrains 
at interactive frame rates. Two of the most 
commonly used, especially by the game industry, are 
the Geomipmapping (Boer, 2000) and the Chunked 
LOD (Ulrich, 2002) algorithms. They belong to a 
class of terrain algorithms commonly described as 
Tiled Blocks, following the classification proposed 
in (Lossaso, 2004). In these algorithms, the terrain is 
partitioned into square patches that are tessellated at 
different resolutions. In the Geomipmapping 
algorithm the level of detail decreases by the 
individual simplification of each block. In the 
Chunked LOD algorithm the level of detail 
decreases by the substitution of four blocks by one 
that represents the same area. Our objective was to 
analyze these two approaches, not by the specific 

features of each individual algorithm but in more 
general terms as two different simplification 
techniques shared by other algorithms in the same 
category. We called this two approaches block based 
and quadtree based simplification and they will be 
the focus of this paper.  

This paper is organized as follows. In Section 2 
we talk briefly about the evolution of terrain 
rendering algorithms giving special emphasis to tiled 
block approaches. In Section 3 the main concepts 
beyond the two types of simplification are 
explained. In Section 4 the common points in the 
two simplification methods are highlighted and how 
we unified them under a unique framework. In 
Section 5 the role of the error metric in the 
simplification process is described. In Section 6 are 
discussed methods to correct cracks between 
adjacent blocks with different levels of detail. In 
Section 7 geomorphing is described as the method 
used to correct the “popping” effect resulting from a 
change of detail. In Section 8 the testing 
environment and the particular features implemented 
for each simplification algorithm are described. In 
Section 9 results of the performed tests are presented 
and in Section 10 we summarize the conclusions and 
point out future work. 
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2 RELATED WORK 

Terrain rendering algorithms have a long history, 
and a comprehensive overview of this subject is 
beyond the scope of this paper. For a more detailed 
presentation, we refer the reader to (Pajarola, 2007). 
In the following we will briefly trace a temporal line 
covering the most important algorithms and trends 
with special emphasis on the tiled block techniques. 

From a historical perspective the first algorithms 
specially designed for the rendering of terrains 
appeared in the late seventies, for example (Fowler, 
1979). However it was only in the middle nineties, 
when consumer hardware was already capable of 
representing terrains in real time, that some of the 
most important algorithms appeared. Approaches 
like (Lindstrom, 96), (Duchaineau, 97) and (Rottger, 
98) became very popular. For most of them the main 
objective was to reach the perfect triangulation 
reducing the number of triangles processed by the 
graphic card but increasing the work on the CPU 
side. However, with the appearance of powerful 
graphical processors, reaching the perfect 
triangulation stopped being the main objective. On 
the contrary, sending big blocks of geometric data to 
the GPU is now the dominating trend. This means 
that the focus switched from the triangle to blocks of 
geometry which became in this process the new 
target of level of detail techniques. To deal with this 
new reality new types of algorithms started to appear 
mainly tiled block approaches that applied level of 
detail techniques to blocks of geometry. Algorithms 
like (Boer, 2000), (Ulrich, 2002), (Laurisen, 2005) 
and (Vistnes, 2006) are only examples of approaches 
that followed this new trend. The most recent 
algorithms are taking this trend even further 
offloading most of the work to the graphical 
processor. They use concentric rings of detail that 
work on a focal area using a windowed view of the 
terrain. One of the main characteristics of this new 
approach is the usage of vertex textures, a new 
functionality of shader model 3.0. This functionality 
enables the sampling of a texture in the vertex 
shader. This is particularly useful for terrain 
rendering, since it enables the storage of the 
elevation values in a texture which can be used in 
the vertex shader to displace the vertices. 
Algorithms like (Asirvatham, 2005) (Clasen, 2006) 
and (Pangerl, 2008) are good examples of this. 

3 SIMPLIFICATION METHODS 

To comprehend the differences between block based  

simplification and quadtree based simplification we 
have to understand precisely what happens in each 
one of the methods. For that, we will use a top view 
representation of a recursive walk on a quadtree in a 
33x33 terrain with a 5x5 block, like the ones 
depicted in Figure 1. In this figure the triangle 
represents the frustum and the tessellated squares 
correspond to the blocks that are contained or 
intersected by the frustum. In Figure 1 a) all the 
blocks are at maximum resolution (5x5), so it 
represents the typical brute force approach to terrain 
rendering. Decreasing the resolution, i.e., level of 
detail of the blocks, is the purpose of block and 
quadtree based simplification. Block size is critical 
in these methods because the number of levels 
needed to represent the terrain in the quadtree is 
based on it. 

 

 
Figure 1: Simplification methods. 

Let us start with block based simplification. This 
kind of simplification is depicted in Figure 1 b). In 
this method an error metric is used to determine the 
most appropriate level of detail for each block, so 
the simplification is completely independent from 
the one applied to the other blocks. Therefore it is 
common to have neighbouring blocks with different 
levels of detail. Moreover, the number of vertices 
changes according to the detail level but the size of 
the block is constant, so the number of draw calls 
issued in this method only depends on the number of 
blocks that intersect or are contained in the frustum. 

With quadtree based simplification like the one 
depicted in Figure 1 c), the size of the block can 
change but the number of vertices in each block is 
constant. This kind of simplification uses the spatial 
partitioning principle of the quadtree to determine 
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the most appropriate block size. More precisely an 
error metric is used on the recursive walk made on 
the quadtree to decide the most appropriate block 
size for each region of the terrain. Higher levels of 
the quadtree represent larger areas of the terrain with 
lower detail. Lower levels of the quadtree represent 
smaller areas of the terrain with greater detail. This 
works recursively from the root node of the quadtree 
to the leaf nodes where the underlying resolution of 
the terrain is matched. In this method the number of 
draw calls depends not only on the point of view but 
also on the error metric. Also, a block can have 
neighbours with different sizes, making any possible 
correlation between blocks difficult to achieve. 

4 UNIFYING THE APPROACHES 

Making a comparison between these two approaches 
will be surely flawed if they are seen as completely 
different. The common point here is the underlying 
spatial partitioning structure, the quadtree. With that 
in mind we can differentiate the two methods by 
assuming that each one represents a different way of 
making the recursive walk on the quadtree. With a 
block based simplification scheme the quadtree is 
used only to identify the visible blocks, i.e. blocks 
that are intersected or are contained in the frustum. 
No level of detail is calculated at this stage and all 
these blocks are at the same level in the quadtree as 
they have the same block size. Therefore one 
possible optimization is to stop the recursion sooner, 
when we reach a node that is completely contained 
in the frustum even if the resolution of that node 
does not match the desired block size. For example, 
if the first quadrant of the first level of the quadtree 
is completely contained in the frustum, we can stop 
the recursion for that branch adding all the blocks of 
the desired block size that are contained in this 
larger block. Finally for each one of these blocks we 
have to choose the most appropriate level of detail 
basing our decision on the error metric. With 
quadtree based simplification the main difference 
lies on the recursion which can stop sooner because 
the level of detail evaluation is done for each node 
of the quadtree so it is possible to choose larger 
blocks and render them. These larger blocks have 
the same number of vertices but the space between 
those vertices is greater.  

To unify this approaches even further we take 
advantage of a very useful property in a regular grid 
triangulation: every block can be described by a 
scale and a translation factor. To make this property 
useful we have to separate the elevation values from 

the geometric description of the block. This is 
achieved with two vertex streams. A vertex stream is 
essentially an array of vertex component data. For 
instance it is possible to assemble vertices from 
several vertex streams, where each stream consists 
of a component of the vertex (e.g., one stream 
contains position info, another contains colour info, 
another texture coordinate info, etc.). In our 
approach the first stream contains the position of the 
vertices and the second stream contains the elevation 
values. Since we use canonical values for the 
position of the vertices this vertex data is valid for 
all the blocks of the terrain. Later when rendering, 
we transform the canonical values in the vertex 
shader to obtain the correct position of the block. 
For that we only need a couple of uniform shader 
parameters, in this case, the scale and the translation 
associated with each block.  

The main advantage of a multi-stream approach 
is that it enables us to use vertex textures in 
machines that support shader model 3.0. In this case, 
the memory requirements are reduced since we only 
need one stream with the geometric description of 
the block because the elevation data is stored on a 
texture. Without vertex textures we need to send the 
elevation values in a second stream.  

To connect the vertices in a block we need a list 
of indices, however this list is different in each 
method. With quadtree based simplification we only 
need to describe a block since in this method the 
geometrical structure of the block does not change, 
only the area that it occupies. With block based 
simplification we need to represent all the possible 
levels of detail of a block. For example if we have a 
5x5 block, like the one used in the previous figures, 
we need to represent a 5x5, a 3x3 and 2x2 block. 
This is done with different sequences of indices each 
one representing one of the aforementioned levels of 
detail.  

5 ERROR METRIC 

The error metric has a very important role to fulfil in 
tiled block algorithms as it is used to decide when 
the transition to lower/higher detail levels happens. 
With block based simplification it is used to control 
the level of detail of the block, i.e., when a 
higher/lower detailed version of the block should be 
used to represent the associated region on the terrain. 
With quadtree based simplification it is used to 
decide the number of blocks that should represent a 
region of the terrain, more precisely when a block 
can be substituted by its four more detailed children 
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or the other way around, to decide when four blocks 
can be substituted by its less detailed parent. 

The error metric used in the two algorithms is the 
one presented in the Geomipmapping algorithm 
(Boer, 2000), which uses block based simplification. 
This error metric can be easily adapted, as described 
in (Laurisen, 2005), to a quadtree based 
simplification. It involves the calculation of a 
constant C in a pre-processing stage and of a 
minimum distance D, for each level of detail n.  

The constant C is calculated with Equation 1, 
where n is the near clipping plane, t the top 
coordinate of the near clipping plane, τ the error 
threshold in pixels and Vres the vertical resolution in 
pixels  

The D for each level of detail n is calculated 
with Equation 2, where δ is the geometric error and 
C the constant calculated with Equation 1. 

 
 (1) 

 

  (2) 

6 SPATIAL COHERENCE 

The appearance of cracks between neighbouring 
blocks with different levels of detail is a common 
problem in tiled block approaches like the ones 
described in this paper. There are several ways to 
correct this problem but most of them are far from 
ideal as they have a very noticeable impact in 
performance. The fastest methods are the ones that 
do not imply changes to the list of vertices or to the 
list of indices committed to the graphical processor. 
Adding vertical skirts around each block is a 
solution that meets this objective. This method was 
first introduced in (Ulrich, 2002) and is represented 
in Figure 2 a). However, we should select carefully 
the skirt size since it can have big impact in the fill 
rate. It should be big enough to cover any possible 
cracks that can appear between the tile and the 
neighbouring tiles but not greater than that. 

Note that, for optimal performance the skirts 
have to be drawn in the same call as the block so the 
vertices and the indices should be arranged to make 
that possible. This technique can be used with block 
or quadtree based simplification. However this 
method does not correct the geometry, in fact the 
difference of height between adjacent tiles is only 
hidden by the skirts. Another technique that can be 
used to correct the cracks is to change the 
connectivity (or indexing) of the vertices at the edge 
of the block. This was originally suggested in (Boer, 

2000) and is exemplified in Figure 2 b) for block 
based simplification where the tile with the higher 
level of detail adapts its borders to the level of detail 
of its neighbour(s). This technique implies changes 
to the list of indices at runtime and therefore it is not 
completely static, quite the contrary of skirts. 

 

 
Figure 2: Crack correction methods. 

Unfortunately it cannot be used with quadtree 
based simplification, since adjacent blocks can 
change in size. This means that a block can have 
triangles bigger than its neighbours. For example, it 
can happen that a triangle spans two or more 
neighbouring blocks. In these cases any change in 
the index connectivity of the neighbours will not 
correct the problem. 

7 TEMPORAL COHERENCE 

Another important problem with tiled blocks and 
with level of detail algorithms in general is the so 
called “popping” effect. This is the result of a 
sudden change of detail (to more or less detail) 
which can originate a very noticeable effect. This is 
caused by the appearing or disappearing of vertices 
which cause a sudden “pop” in the geometry that is 
very unnatural and contributes negatively to the 
level of realism that we are trying to achieve. The 
most common way of handling this problem is with 
geomorphing (Luebke, 2003). The objective is to 
slowly morph the vertices from one level of detail to 
another. This can either be done over time or based 
on the error. The latter is the best approach since in 
this way the morphing only occurs when the 
viewpoint is moving which helps hide the swirling 
artefacts that it can cause. Concerning the 
simplification methods discussed in this paper there 
is no noticeable differences between the two 
approaches since what we really need to know when 
moving between levels of detail is which vertices 
disappear and the error that results from that. This is 
what is normally needed to perform the 
geomorphing. Therefore all we need to do is to store 
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that information in the list of elevation values since 
it changes with each elevation value. This raises a 
problem when we use vertex textures to displace the 
vertices in the vertex shader since in that situation 
we do not have a list elevation values, but only one 
texture. The solution is to use another texture to 
store for each vertex the level where it disappears 
and the resulting error.  

The morphing itself is executed on the vertex 
shader. Since we receive all the necessary data this 
is normally very fast and therefore it should be used 
whenever possible as it can help increase the realism 
significantly. 

8 TESTING FRAMEWORK 

We have developed a framework in XNA which 
unifies under the same architecture the most relevant 
characteristics of tiled blocks algorithms. With this 
framework we have implemented the two 
simplification methods and a brute force approach 
where we did not make any simplification. The 
results of brute force algorithm are used as baseline 
performance values. We have also implemented 
frustum culling which uses the quadtree to test each 
block against the frustum as was already mentioned 
in Section 4. To reach meaningful results it was 
equally important to use the same error metric in the 
simplification methods. Geomipmapping (Boer, 
2000) error metric was adopted as explained in 
section 5. To correct the cracks we have used the 
skirt and the index update methods described in 
Section 6 and to correct the “popping” effect we 
have implemented geomorphing using the 
approaches described in (Boer, 2000) and (Laurisen, 
2005) for each one of the simplification methods. 

Concerning the lightning we used per-pixel 
lightning also known as normal mapping (Kilgard, 
2000). Finally for the texturing of the terrain we 
have used one colour texture. 

9 RESULTS 

The tests were performed on three computers: a 
laptop with a Mobile Intel 945 GM graphical card, 
which we called N1, a laptop with a ATI Mobility 
Radeon 9700, which we called N2, and a desktop 
with a NVIDIA GeForce 7950 GX2 graphical card, 
which we called D1. These setups represent two low 
end systems with a graphical card that support 
shader model 2.0 and a high-end system with a 
graphical card that supports shader model 3.0. Two 
procedurally generated terrains were used in the 

tests: a 1025x1025 terrain, called Terrace, and a 
2049x2049 terrain, called Highland. 

To gather the performance results we have pre-
recorded a 60 seconds walk on each terrain at 
relatively low altitude.  

The results obtained using two streams, vertices 
and elevation values, are summarized in Table 1 
where it is possible to compare the average frames 
per second obtained in each terrain. For each 
machine we have measured the performance of the 
brute force approach and of the two simplification 
methods discussed in this paper. We have 
considered three different block sizes, 17x17, 33x33 
and 65x65 and two types of crack correction 
methods: index update and skirts. We have used a 
maximum error of 8 pixels.  

The quadtree simplification method in 
conjunction with skirts was the fastest approach in 
two of the three machines considered. This was 
expected as the number of draw calls is much lower 
in this method. The only exception was the N2 
machine where block based simplification was 
faster. On the N1 machine, the slowest, it makes in 
fact the difference between a working real time 
representation of the terrain with a frame rate above 
the 60 frames per second and a slow representation 
almost unusable and is therefore an obvious choice. 
The fastest block size was 17x17 with the exception 
of machine N2 where the fastest block size was 
33x33. However, on that machine the fastest 
simplification method was also different and the two 
simplification methods analyzed use different ways 
of reducing the detail.  

Concerning the crack correction methods used in 
block based simplification, in almost every situation 
the index update method was slower. In fact it had a 
tremendous impact in the performance mainly in 
machines N2 e D1. As we have already mentioned 
in Section 7, index update implies changes in the list 
of indices at runtime and this results confirm that it 
can cause a significant frame rate drop. 

We have also tested the performance with vertex 
textures this time only on the D1 machine since it is 
the only that supports shader model 3.0. The results 
are summarized in Table 2. 

If we compare the results in Table 2 with the 
results obtained for the same machine in Table 1 we 
can see that using vertex textures is slower. This was 
expected since this behaviour was already observed 
by other authors, for example it is mentioned in 
(Asirvatham, 2005), (Clasen, 2006) and on (Pangerl, 
2008). However with vertex textures the fastest 
method was block based simplification which shows 
that sampling a vertex texture with quadtree based 
simplification is somewhat slower than with block 
based simplification. 
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Table 1: Average frames per second. 
  Brute 

Force 
Block 

(Index Update) 
Block 

(Skirts) 
Quadtree 
(Skirts) 

Terrace 
 17x17 52 52 49 126 

N1 33x33 43 55 55 99 
 65x65 26 59 65 45 
 17x17 107 86 223 211 

N2 33x33 102 146 229 180 
 65x65 92 143 176 139 
 17x17 606 190 532 1336 

D1 33x33 567 328 1302 1051 
 65x65 514 357 1070 791 

Highland 
 17x17 14 14 13 75 

N1 33x33 13 17 17 51 
 65x65 7 22 25 24 
 17x17 38 23 74 159 

N2 33x33 37 51 174 129 
 65x65 33 72 131 95 
 17x17 149 44 121 919 

D1 33x33 188 101 498 690 
 65x65 177 127 785 511 

Table 2: Average frames per second with vertex textures. 
  Brute 

Force 
Block 

(Index Update) 
Block 

(Skirts) 
Quadtree 
(Skirts) 

Terrace 
 17x17 384 217 602 742 

D1 33x33 256 347 834 329 
 65x65 216 348 436 252 

Highland 
 17x17 105 52 131 464 

D1 33x33 75 112 480 217 
 65x65 66 125 356 136 

10 CONCLUSIONS 

We analyzed two of the most common simplification 
methods used in tiled block approaches to terrain 
rendering. We have discussed algorithms and 
techniques to keep temporal and spatial coherence, 
respectively, geomorphing and skirts or index 
update. We have come to the conclusion that 
quadtree based approaches are the best option in 
most of the situations, mainly when the terrain is 
very large and/or the machine is slow. In these cases 
the reduction of the draw calls has a very noticeable 
impact in terms of performance.  

We have also concluded that skirts are the best 
approach to handle the cracks. The other method 
implies changes to the list of indices at runtime and 
affected performance significantly.  

In the future we plan to analyze the impact of 
occlusion culling techniques on the performance of 
each simplification method and also to pursue new 
approaches to the correction of cracks mainly the 
generation of all the possible combinations between 

a level of detail of a tile and its neighbour’s level of 
detail in block based simplification. We are also 
planning support out-of-core data to cope with 
terrains with sizes beyond the available memory. 

ACKNOWLEDGEMENTS 

This work was partially supported by LabMAg 
through FCT Multiannual Funding Programme. 

REFERENCES 

Asirvatham A., Hoppe H., 2005. GPU Gems 2. Terrain 
Rendering using GPU-Based Geometry Clipmaps. 
Addison-Wesley pp 27-45. 

Boer, W., 2000. Fast Terrain Rendering Using 
Geometrical MipMapping. Available online at 
www.flipcode.com/archives/article_geomipmaps.pdf. 

Clasen, M., Hege, H.C., 2006. Terrain Rendering using 
Spherical Clipmaps. In EuroVis 2006, pp. 91-98. 

Duchaineau, M., Wolinsky, M., Sigeti, D. E., Miller, M. 
C., Aldrich, C., Mineev-Weinstein, M. B., 1997. 
ROAMing terrain: Real-time optimally adapting 
meshes. In IEEE Visualization ’97, pp 81-88.  

Fowler, Robert J., Little, James J., 1979. Automatic 
Extraction of Irregular Network Digital Terrain 
Models. In Proceedings SIGGRAPH’79, pp 199-207. 

Lossaso, F., Hoppe H., 2004. Geometry clipmaps: Terrain 
Rendering Using Nested Regular Grids. In ACM 
Transactions on Graphics (TOG), v.23, n.3. 

Lindstrom, P., Koller, D., Ribarsky, W., Hodges, L. F., 
Faust, N., Turner, A., 1996. Real-Time, Continuous 
Level of Detail Rendering of Height Fields. In 
SIGGRAPH ’96, pp 109-118. ACM, New York, NY. 

Laurisen, T., Nielsen, S. L., 2005. Rendering Very Large, 
Very Detailed Terrains. Available online at http:// 
www.terrain.dk/terrain.pdf. 

Luebke, D., Reddy M., Cohen D., Varshney, A., 
Watson,B., Huebner R., 2003. Level of Detail for 3D 
Graphics. Morgan Kaufmann Publishers. 

Kilgard, M., 2000. A Practical and Robust Bump-mapping 
Technique for Today’s GPUs. NVIDIA Corporation. 

Pangerl D., 2008. ShaderX6 - Advanced Rendering 
Techniques. Quantized Ring Clipping, pp 133-140. 
Charles River Media. 

Pajarola, R., Gobbetti, E., 2007. Survey on Semi-Regular 
Multiresolution Models for Interactive Terrain 
Rendering. In Vis. Comput. 23, 8, pp 583-605. 

Rottger, S, Heidrich, W., Slussalek, P., Siedel, H., 1998. 
Real-Time Generation of Continuous Levels of Detail 
for Height Fields. Proc. WSCG’98, pp 315-322. 

Ulrich, T., 2002. Rendering Massive Terrains Using 
Chunked Level of Detail Control. In SIGGRAPH ’02 
Course Notes. 

Vistnes, H., 2006. Game Programming Gems 6. GPU Ter-
rain Rendering, pp. 461–471.Charles River Media Inc. 

 

GRAPP 2009 - International Conference on Computer Graphics Theory and Applications

210


