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Abstract:  This paper first presents a brief review on visual perception in the built environment and the Standard 
Feature Model of visual cortex (SFM); following experiments are presented for architectural cue recognition 
(door, wall and doorway) using SFM feature-based model. Based on the findings of these experiments, we 
conclude that the visual differences between architectural cues are too subtle to realistically simulate human 
vision for the SFM.  

1 INTRODUCTION  

In our daily life, we evaluate the building and the 
built environment from two different aspects, 
namely the structure of the building and the human 
behavior in the building. In the past research was 
focused on the structure of the building. However, as 
the development of the new technologies, nowadays 
the buildings can be designed as to meet different 
people’s requirements. Therefore we should turn to 
the other evaluator, the behavior of human beings in 
the building or built environment. It is important to 
develop a dynamic model in which we can simulate 
human behavior with the help of agent-based 
systems in a virtual built environment. Unlike most 
of the previous vision and visual interpretation 
researches, the vision and actions of the agent in our 
project will be determined by applying human visual 
perception simulation based on real physical 
perception occurring in human brains. 

As the first step we propose to link the 
architectural cues and human vision simulation for 
the development of an architectural cue recognition 
system. After a careful research and consideration, 
we select the Standard Feature Model of visual 
cortex (SFM) for architectural cure recognition. 

2 VISUAL PERCEPTION IN 
BUILT ENVIRONMENT  

Visual perception is always regarded as the most 
important type of human perceptions in the built 
environment by architects (Crosby, 1997) and 
environmental psychologist (Arthur & Passini, 
1992). In this article, we discuss the visual 
perception as the background of human perception 
simulation in the built environment.  

The research of human beings’ visual perception 
in the built environment starts from Gibson’s 
Affordance theory (Gibson, 1966), which explains 
how an object in the built environment is 
(re)cognized as an object notion and its potential 
usage in the brain. He interprets the built 
environment as a set of various affordances, which 
are the units of a human being’s (re)cognition. With 
a motivation, the visual stimuli, the light pattern of 
an object, is (re)cognized as a visual affordance 
according to the “schemata” of this object notion in 
the brain.  

Based on Gibson’s theory, Hershberger 
(Hershberger, 1974) develops the mediational theory 
of environmental meaning. He splits the notion of 
schemata into two kinds of knowledge explicitly. 
One is the linkage from the light pattern of the 
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object to the object notion in the brain. The other is 
the linkage from the object notion to its potential 
usage.  

With more biological support, Lam (Lam, 1992) 
explains the visual perception as an active 
information-seeking process directed and interpreted 
by the brain, which can be explained in four 
transitions: T1, T2, T3, and T4 between five 
concepts: Object, Light Pattern, Electric Signals, 
Object Notion, and Cue (Figure.1).  

 

 
Figure 1: Visual perception process. 

Through the above process, some objects in built 
environment are selectively perceived by human 
beings as cues for the specific motivation. In the 
following introduction on the human visual 
perception simulation, the object, the transition T1, 
the light pattern, the transition T2, and the electric 
signals are compacted as an image input in pixel grid. 
The simulation focuses on the transition T3, namely 
from the pixel grid images to object notions.   

 3 STANDARD FEATURE MODEL 

In recent years, some researchers turned back to look 
at the object recognition problem from the biology 
science side, and obtained very good results. Among 
them, Serre developed a hierarchical system which 
can be used for the recognition of complex visual 
scenes, called SFM (Standard Feature Model of 
visual cortex) (Serre et al., 2004, 2007). The system 
is motivated by a number of models of the visual 
cortex. Earlier, object recognition models aimed at 
improving the efficiency of the algorithms, optimize 
the representation of the object or the object 
category. Not much attention was focused on the 
biological features for higher complexity, not to 

mention applying the neurobiological models of 
object recognition to deal with real-world images.  

The SFM model follows a theory of the feed 
forward path of object recognition in the cortex, 
which accounts for the first 100-200 milliseconds of 
processing in the ventral stream of the primate visual 
cortex (Riesenhuber et al., 1999); (Serre et al., 2005). 
The SFM model tries to summarize what most of the 
visual neuroscientists agree on: firstly, the first part 
of visual processing of information in the primate 
cortex follows a feed-forward way. Secondly, the 
whole visual processing is hierarchical. Thirdly, 
along this hierarchy the receptive fields of the 
neurons will increase while the complexity of their 
optimal stimuli will increase as well. Last but not 
least, the modification and the learning of the object 
categories can happen at all stages.     

 In the SFM model there are four layers, each 
containing one kind of computational units. There 
are two kinds of computational units, namely S 
(simple) units and C (complex) units.  The function 
of the S unit is to combine the input stimuli with 
Gaussian-like tuning as to increase object selectivity 
and variance while the C unit aims to introduce 
invariance to scale and translation. We simply call 
the four layers as S1, C1, S2, and C2. A brief 
description of the functions, input and output to the 
four layers are listed in Table 1.  

This biological motivated object recognition 
system has been proven to be able to learn from few 
examples and give a good performance. Moreover, 
this generic approach can be used for scene 
understanding. Last but not least, the features 
generated by the model can work with standard 
computer vision techniques; furthermore it can be 
used as a supporting tool to improve the 
performance of those computer vision techniques. 

4 EXPERIMENT AND FINDING 

There are different cues in the built environment, 
which can be divided into three groups, namely non-
fixed cues, semi-fixed cues and fixed cues. Non-
fixed cues are defined as a type of information 
perceived from the dynamic objects. Objects like 
maps, signage, and different decorations are semi-
fixed cues, and the architectural cues are fixed cues.  

We conducted two experiments applying the 
SFM model to training sets for architectural cues 
recognition. Sets of images of scenes containing 
architectural cues are used as the training  examples. 
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Table 1: Brief description of the four layers of the SFM model. 

 Layer 
number Brief actions Input Output 

S1 1 Apply Gabor filters to the input, obtain 
maps of orientations and scales Gray-scale images maps of different positions, 

scales, and orientations 

C1 2 Use a max operation, obtain the position 
invariant features  for each band Bands of maps from S1 

Position invariant features for 
each band            (C1  features) 

S2 3 Pool C1  features in patches (different 
scales in the same orientation ) 

Image patches at all 
positions from C1 

S2 patches 

C2 4 Combine a max operation and the S2 
patches, find the scale invariant features S2 patches 

Position & scales invariant 
features 

(C2 features) 
 

In the first experiments, flat-shaded images of 
simple scenes consisting of a room and a doorway 
were used as training images. We aimed to test 
whether the SFM features are sufficient to distinct 
the difference between the walls and the doorways. 
Images containing a doorway are used as positive 
examples while images containing walls as negative 
examples. A good result was achieved using this set 
of images (higher than 90%).   

In the second set of training images, the test 
scenes where rendered using different materials and 
shadows, to add an additional level of realism. A 
light source is fixed in the middle of the ceiling for 
each of the room. To standardize the examples, all 
the doorways have similar width and height. Some 
samples for the second set of the training images are 
shown in Figure 2. The first two rows show the 
examples of the doorway (the doorway can be 
designed to the left of the wall, or to the right of the 
wall), with the last row showing examples of the 
wall. Table 2 presents the results of the first 
experiment with two sets of training examples of 
standardized input. 

Furthermore, we explored the effect of other 
parameters: we find that the width of the doorway, 
the shape of the room and the proportion of the 
width of the doorway and the room can affect the 
distinction. 

Table 2: Results of the first experiment. 

 Input samples Classification 

1 Single room with doorway >90% 

2 Assigned with materials 
and light source >80% 

 
Figure 2: Samples for the first experiment. 

In the second experiment, an additional simple 
building element was added to the scenes: next to 
the doorways from the first experiment, the test 
scenes now also contained doors. We aim to test the 
distinction between the door and the wall, the 
doorway and the wall, the door or doorway and the 
wall, finally the door and the doorway. Samples for 
this experiment of the training images are shown in 
Figure 3. In Figure 3, three types of architectural 
cues are shown in rows sequentially, namely door, 
doorway and wall. We chose images of door as 
positive example and images of wall as negative 
examples when we aim to use SFM to test the 
distinction between door and wall.  

The results of this second experiment were a 
lower percentage of successful recognitions. Table 3 
shows the samples and the results. It is quite clear 
from this table that the SFM gives good distinction 
between door and wall, door or doorway and wall, 
and doorway and wall. However it cannot find 
efficient distinction for the recognition between door 
and doorway; in other word the distinctions between 
the features extracted for door and doorway are too 
subtle for efficient recognition.   
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Table 3: Results of the second experiment. 

 Distinction  Classification 

1 Door & Wall 91.66% 

2 Doorway & Wall 83.33% 

3 Door or Doorway & Wall 95.75% 

4 Door & Doorway 66.67% 

 
Figure 3: Samples for the second experiment. 

5 DISCUSSION AND 
FURTHER WORK  

Based on the findings, we conclude that a limited 
recognition can be achieved using SFM-based 
features for architectural cue recognition. Our 
interpretation of these results is that the visual 
difference between doors and doorways are too 
subtle to serve as a significant discrimination factor 
for the SFM. 

Our aim is to simulate real human vision 
including its limitations. The SFM model deviates 
considerably from real human performance. 
Therefore we will research a probabilistic approach 
that allows us to estimate vision variables for object 
recognition from experiments with real humans. We 
hope to report this in the near further. 
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