DATAZAPPER: GENERATING INCOMPLETE DATASETS

Yingying Wen, Kevin B. Korb
Clayton School of Information Technology, Monash University, 3800, VIC, Australia

Ann E. Nicholson
Clayton School of Information Technology, Monash University, 3800, VIC, Australia

Keywords: Machine learning, Incomplete data, Data generation, Data analysis, Missing data, Data mining, Machine learning evaluation.

Abstract: Evaluating the relative performance of machine learners on incomplete data is important because one common problem with real data is that the data is often incomplete, which means that some values in the data are not present. DataZapper is a tool for uncreating data: given a dataset containing joint samples over variables, DataZapper will make a specified percentage of observed values disappear, replaced by an indication that the measurement failed. Since the causal mechanisms of measurement that result in failed measurements may depend in arbitrary ways upon the system under study, it is important to be able to produce incomplete data sets which allow for such arbitrary dependencies. DataZapper is the only tool that allows any kind of dependence, and any degree of dependence, in its generation of missing data. We illustrate its use in a machine learning experiment and offer it to the data mining and machine learning communities.

1 INTRODUCTION

Machine learning (ML) research aims at finding the most effective algorithms for constructing models from data. Therefore, machine learning researchers need to find the means for assessing the performance of different ML algorithms applied to common datasets representing varying domains and degrees of difficulty. Although much work in machine learning has concentrated upon data without noise, real-world data always have noise, with the most extreme form being simply the absence of a measured value. In consequence, interest has grown in finding new methods to cope with incomplete datasets and in assessing those methods (e.g., (Onisko et al., 2002; Twala et al., 2005; Twala et al., 2008)).

Absence of data values is ubiquitous in part because there are many ways in which measurements can fail. We illustrate with the simple causal Bayesian network of Figure 1. We shall assume that joint observations of these variables come from sample surveys, but similar failures to measure can arise from any measurement technique. First, some missing values may arise simply from survey takers entirely overlooking a question, independently of what the question is about or the values of any variables. Second, the failure to measure particular variables may depend upon the values of other variables; for example, it may turn out that lawyers as a class are less inclined to reveal their incomes than people of other occupations. Third, the failure to measure may be sensitive additionally to the unmeasured value of the variable at issue; for example, it may be that it is primarily the wealthy lawyers who are reluctant to reveal their incomes. Following Rubin (Rubin, 1976), it has become common to refer to these three mechanisms for values to be missed as, respectively, missing completely at random (MCAR), missing at random (MAR) and not missing at random (NMAR). These names are somewhat misleading, and we shall below present reasons for adopting a more descriptive nomenclature.

Given the prevalence of incompleteness in real data, and its variety, it is important for ML researchers to investigate how their various algorithms perform given these different types of incomplete data. However, the missing mechanism for real data is most likely unknown.
Of course, ML researchers do undertake these types of experiments with different missing data. For example, Ghahramani and Jordan (Ghahramani and Jordan, 1994) evaluated the performance of classification with missing data dealt by Expectation-Maximization (EM) and mean imputation (IM) (see Figure 2). Gill et al. (Gill et al., 2007) examined the performance of learning algorithms between artificial neural networks (ANNs) and support vector machines (SVMs) on data MAR. Another example is Richman et al. (Richman et al., 2007), who compared different methods of handling missing value and presented in terms of mean absolute error (MAE) in Figure 3. They used real data with some values removed randomly, that is, MCAR.

However, it is difficult using only real data to compare the performance of algorithms for machine learning and methods for dealing with missing values, since the nature of the real system, including the mechanisms whereby data go missing, is at issue; it is difficult or impossible to determine which algorithm has produced a model closer to reality. For machine learning research, we want to test against artificial data generated from a known system with a known mechanism causing values to go missing. This provides more flexibility with the type of missing mechanisms, the type of datasets and the degree of dependence. Moreover, performances can then be evaluated against the true model.

Here we present DataZapper, a versatile software tool for generating artificial datasets with missing values. DataZapper renders some values in a dataset absent according to specified conditions based upon any variable and any value within that dataset; these conditions can be tuned precisely for degrees of dependence, allowing for systematic experimentation. We shall make this tool available to machine learning community via the Weka\(^1\) machine learning platform. One of our motivations in producing this tool is to encourage the machine learning community to explore varieties of incompleteness beyond MCAR, which is the only kind assumed by many algorithms, such as the expectation maximization (EM) technique for replacing missing values in Weka. With a tool granting easy access to more realistic forms of incompleteness, we hope to foster further research in this area.

\(^1\)http://www.cs.waikato.ac.nz/ml/weka/
we expect more attention to them will be given.

The only previously reported tool we know of for generating incomplete data is that of Francois and Leray (Francois and Leray, 2007). They employ Bayesian networks (BNs) as a useful way to generate artificial data with missing values. Unfortunately, their tool is limited to MCAR and limited forms of MAR incompleteness, with no ability to produce NMAR data. As Francois and Leray point out, all of these forms of generating missing data can be useful for generic software testing, beyond machine learning research.

The structure of our paper is as follows. Section 2 describes the three absent data mechanisms and introduces our nomenclature for them. In Section 3 we present a BNF (Backus-Naur Form (Backus and Naur, 1960)) grammar for scripting DataZapper. In Section 4 we present the details of DataZapper, including data formats in Section 4.1 and an overview of how it works in Section 4.2. Section 5 illustrates DataZapper’s use in an experimental setting.

2 ABSENT DATA MECHANISMS

A dataset is a matrix in which rows represent the cases (joint samples) and columns represent variables measured for each case. Ideally, a dataset has all the cells filled—i.e., it is a complete data set. However, most real datasets have some values unobserved—i.e., they are incomplete.

As we mentioned, Rubin (Rubin, 1976) introduced and named three types of missing data mechanisms. We shall now motivate the adoption of new names for these. First, we prefer to talk of “absent data” rather than “missing data”, for the simple but sufficient reason that “absent” has a natural nominal form, “absence”, while “missing” leads to the awkward neologism “missingness”. More significantly, two of Rubin’s labels are clearly inadequately descriptive of the mechanisms involved:

Missing Completely at Random (MCAR): as the absence of values is independent of all variable values, including the value for this particular cell, this label is actually appropriate. Therefore, we propose calling these cases absent completely at random (ACAR).

Missing at Random (MAR): these missing cases have arbitrary dependencies upon the values of other variables. In consequence, they may not even be random at all, but functionally dependent upon the values of other variables in extreme cases. Hence, we prefer calling them absent under dependence (AUD).

Not Missing at Random (NMAR): The natural way of interpreting this phrase is by negating the second kind of “missingness”, which would be entirely wrong. This case is simply a generalization of AUD, allowing the absence of data to depend also upon the actual value which has failed to be measured. Hence, we have absent under self-dependence (AUSD).

We submit that the most common case in real data is the case most commonly ignored, AUD, where the values going unmeasured depend both on the values of some other variables and the absent values themselves, as in wealthy lawyers hiding their wealth.

3 SCRIPTING DATAZAPPER

The specifications for how the data should go missing are made in a simple scripting language, whose BNF grammar is shown in Figure 4. These rules are applied to a dataset file to generate a new dataset file with some observed values replaced by a token indicating absence. The basic form of a sentence is that of an “if... then...” production rule. The antecedent describes the dependencies that absence has on variables and values in the system, while the consequent lists the variables that take absent values on these conditions and with what probability. If the antecedent is empty, then the absent data generation is unconditional—i.e., the data are ACAR in so far as this production rule is concerned. If the consequent is empty, then the absence mechanism is applied to all variables in the dataset. When the data are AUD or AUSD, the antecedent grammar rule specifies which variable(s) the absence depends upon and for what strength of dependence upon any set of variables and values going unmeasured depend both on the values of some other variables and the absent values themselves.

```plaintext
<m-statement> ::= if <antecedent> then <consequent>
<antecedent> ::= <condition>*
.condition ::= <variable> in <range>
-variable ::= alpha alphanum*
-range ::= [ <value>, <value> ]
-value ::= alpha alphanum* | number | symbol
-consequent ::= ( <prob> ) <variable>*
-prob ::= number
```

Figure 4: BNF grammar for generating absent data.
Table 1: Examples of complete data and corrupted data in Datazapper’s default format.

<table>
<thead>
<tr>
<th>Complete data</th>
<th>Corrupted data</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>10000</td>
<td>10000</td>
</tr>
<tr>
<td>E A B C D</td>
<td>E A B C D</td>
</tr>
<tr>
<td>E0 A1 B1 C0 D1</td>
<td>E0 A1 B1 ? D1</td>
</tr>
<tr>
<td>E1 A0 B0 C1 D1</td>
<td>E1 A0 B0 C1 D1</td>
</tr>
<tr>
<td>E0 A1 B0 C1 D0</td>
<td>E0 A1 B0 C1 D0</td>
</tr>
<tr>
<td>E1 A1 B1 C0 D0</td>
<td>E1 ? B1 ? D0</td>
</tr>
<tr>
<td>E1 A0 B1 C1 D1</td>
<td>E1 A0 B1 C1 D1</td>
</tr>
</tbody>
</table>

Figure 5: Examples of absent data specification in the DataZapper script language (above) with the corresponding English descriptions (below).

Explanation:
1. ACAR: every variable will have 20% of its values absent
2. ACAR: each of the variables “A” and “C” will have 30% of its values absent
3. AUD: variable “E” will have 40% of its values absent when variable “C” takes the value “?”, namely variable “C” is already absent
4. AUD: variable “Income” will have 40% of its values absent when “Age” is between 10 and 20 (inclusive) and “Gender” is “F”.
5. AUSD: variable “Income” will have 40% of its values absent when variable “Gender” has value “F” and “Income” is between “70000” and “90000”.
6. AUSD: variable “A” and “D” will both have 60% of their values absent when variable “A” has value “A1” and “B” has value “B1”.

Figure 5 shows some examples of the absent data specifications, across the range of types, together with a corresponding English description. Note that example 6 is of a mixed type, producing AUD for variable D and AUSD for variable A.

4 TECHNICAL DETAILS

4.1 Data Format

DataZapper accepts two data formats: a default format and Weka’s (Witten and Frank, 2005) data format—Attribute-Relation File Format (ARFF). The default format is the data format used by the BN learning software CaMML (Wallace et al., 1996), Tetrad (Spirtes et al., 2000) and BNT (Leray and Francois, 2004). (We describe how we used DataZapper for the empirical comparison of some of these methods in Section 5.) An example of complete data in the default format is shown on the left side in Table 1. The first two lines are the number of variables and the number of observations, respectively. The next line lists the names of the variables in the dataset. Columns are separated by tab. Consider again Example 2 in Figure 5 above: “if then (30) A C”, the corresponding corrupted data after applying dataZapper is given on the right side in Table 1, with the absent values represented by “?” in the default data format. (The token used to represent absence can be changed from this default using a runtime parameter.)

DataZapper supports the ARFF format in order to be compatible with the Weka machine learning platform, which has become a standard toolkit for ML studies (e.g. (Witten and Frank, 2005)). In Table 2 we reproduce the above example in an ARFF file. Note that an additional attribute for absent values must be indicated for those variables which are consequents of a DataZapper rule.

4.2 DataZapper Operation

DataZapper processes the absent data specifications one line at a time. In processing each script command, DataZapper first parses it, validating its syntax.

http://www.cs.waikato.ac.nz/ml/weka/arff.html
against the BNF grammar. It then makes some values in the complete data absent, using a uniform random variate in comparison with the specified probability. DataZapper then writes the resultant incomplete dataset to an intermediate file. DataZapper emulates parallelism by generating intermediate output files for each such line and, in the end, merging the intermediate files into a final output file. In the merging process absent values dominate; that is, a value ends up missing if it is missing in any intermediate file. DataZapper finishes by generating a data report on the final dataset, comparing the proportions of absent values with the original dataset.

We will now look at these steps in more detail with examples. (Details of the parser and the algorithms can be found in (Wen et al., 2008)).

4.2.1 The Corrupted Data Generator

This is the key processing step that renders some values in the input data absent. The proportion of the absence is applied to each selected target variable, evenly distributed over all the relevant observations for that variable — that is, those observations which satisfy the dependency condition.

4.2.2 Merging Data Files

In this processing step, DataZapper merges multiple corrupted datasets with the same variables and the same number of observations. The datasets having a common source, the only differences between them are those required by processing distinct script file commands. The merged data is a kind of union of the corrupted datasets, with the absence of a value in any cell forcing its absence in the final output. If there are many script commands being executed, or if the initial input file itself contained incomplete data, then the final dataset may contain less information (more absent values) than anticipated.

For example, consider again Examples 2 and 6 from Figure 5 for specifying absent data. Table 3 displays some examples from the two corrupted datasets respectively, while Table 4 shows the same examples in the final merged corrupted dataset.
4.2.3 Data Report

DataZapper presents a statistical summary of the incompleteness of the final dataset. Figure 6 gives an example data report. This report can be used to fine tune the scripting rules in the event that the overall sparseness of the data is unexpectedly high, possibly due to the cumulative effect of multiple rules on some variables.

5 APPLICATION

We now describe an application of DataZapper in generating incomplete data for use in some of our machine learning research. The specific application is an empirical comparison of the performance of causal discovery algorithms in finding the causal Bayesian network (a kind of directed acyclic graph, or DAG) which has generated some observational data. The algorithms under test were K2 (Cooper and Herskovits, 1991), GES (Greedy Equivalence Search) (Meek, 1997), and the PC algorithm from Tetrad (Spirtes et al., 2000). The first algorithm, K2, returns a single DAG which fits the data best. The other two algorithms return an equivalence class of DAGs (a pattern); that is, a set of DAGs which all have equal maximum-likelihood scores based upon any given set of observational data (Chickering, 1995). In effect, these algorithms are asserting that all the DAGs within the pattern are equally likely to be the source of the observed data. In assessing such results, therefore, we use a pattern-to-DAG conversion algorithm (Wen and Korb, 2007) algorithm which returns two DAGs: that nearest to the original causal Bayesian network in structure (as measured in edit distance) and that farthest from the original network. This provides a range of performance for assessing such algorithms (assuming that the data are artificial, of course, since otherwise the original network is unknown).

The experiment we ran was a three dimensional evaluation: we varied the algorithm, the proportion of absence and the absent data mechanism as shown in Figure 7.

We used 50 sets of complete data generated from a known Bayesian network. We then applied DataZapper to produce 3×9 incomplete datasets for each complete dataset, given the three absence mechanisms and 9 steps of proportion of absence, as shown to produce the total ordering of variables that K2 demands.
Figure 8: Example experimental results using DataZapper: comparison of 3 causal discovery algorithms, on data generated with AUD absence mechanism, varying the degree of data completeness.

6 CONCLUSIONS

DataZapper is a powerful and flexible tool for incomplete data generation, developed specifically for use in research comparing machine learning algorithms. DataZapper allows researchers to specify both the amount of absent data and the nature of the dependencies in generating the absent data, using simple conditional rules. Multiple conditions of absence can be described for each variable and for multiple variables, which will be applied cumulatively by DataZapper to the input dataset, which itself may be either complete or already corrupt. DataZapper is the only tool which can generate incomplete data for all types of absent data mechanisms (ACAR, AUD or AUSD) and with any degree of dependence. We offer it through Weka in the hopes that methods of coping with more interesting and difficult varieties of incomplete data may be investigated by the machine learning community.

REFERENCES

