TIERED LOGIC FOR AGENTS

Rosalito Perez Cruz and John Newsome Crossley*

Faculty of Information Technology, Monash University, Australia

Keywords: Agents, Logics for agent systems, Ontologies and agent systems.

Abstract: We introduce a new kind of logic for agents in different localities, which works in tiers or layers. At the base are local worlds with their own logic. Above them is a global logic that takes statements from the local worlds and combines them. This allows communications between the different localities. We give a basic example using first order logic as the local logic and propositional calculus at the global level. As a more sophisticated example we use the algebraic specification language CASL and take the locations as specifications. Moreover we then permit the combination of such specifications according to the architectural specifications of CASL. Although we only consider two layers in the present paper, we see no reason why the approach should not be extended to any finite number of tiers. We prove soundness and completeness proofs for our logics.

1 INTRODUCTION

It is well established that the work of agents in a multi-agent system is enhanced by the presence of ontologies. For an ontology to be useful, people will have to agree to its terms and usage in the spirit of sharing. However, human nature ensures that people will not agree nor use something like an ontology consistently. Thus the idea of arriving at a global ontology for a domain of application appears to be wishful thinking. So it seems more appropriate to conceive of pockets of communities sharing their ontologies and coping with any differences. It is more realistic to think of communities adopting a number of ontologies, each created within their local community.

We shall adopt an approach which contextualizes the logics that support these ontologies, and thereby point a way for agent systems to deal with heterogeneous ontologies. We shall describe two logics, a first order logic of localities, Tiered FOL, which we use as a basis, then we extend this technique to a language Tiered CASL, where the localities are architectural specifications in the Common Algebraic Specification Language, CASL, see (CASL, 2001; Bidoit and Mosses, 2004). We prove completeness results for both these logics.

*The authors would like to thank four referees for their (solely) constructive comments and suggestions for reducing the length of this paper. A full account of technicalities may be found in (Cruz and Crossley, 2008).

2 We use natural deduction systems throughout.

In the field of AI and, by association, Logic, there are two major styles of embedding localities in a logical system. The first is in the Propositional Logic of Context (PLC) of Buvac-Mason (Buvac et al., 1995) and their extension of this to FOL. The second is the Local Models Semantics/MultiContext Systems (LMS/MCS) of (Giunchiglia and Ghidini, 2000; Ghidini and Serafini, 1998). By no means do we imply that these are the only two possible styles: there are others such as in (Akman and Surav, 1996).

One example of an LMS approach in the field of Description Logic (DL) is that taken by Borgida and Serafini, who describe a Distributed DL in (Borgida and Serafini, 2003). A major problem has been the transfer of knowledge between localities. Bridge rules (see Section 2) were introduced in (Ghidini and Serafini, 1998), but the form of the rules was very limited and only allowed the (partial) identification of one concept as a subset of another in a different locality. The idea is to align ontologies (or knowledge bases) by expressing the connections between them. The intent is that the logical system should allow the relationship of concepts to be stated in the said ontologies, for example subsumption of concepts between ontologies. To do this, Borgida and Serafini extend the usual DL formulation, taking their cue from the Distributed First Order Logic (DFOL) of (Ghidini and Serafini, 1998). In their formulation a DL statement is

3 We use "locality" rather than "context" because the latter is so ambiguous.
preceded by a label that stands for the ontology. Then they state bridge rules, which relate a concept in one ontology to another one in a different ontology (see (Borgida and Serafini, 2003)). Thus they have semantic mappings in the system.

Serafini/Borgida/Ghidini take their technique from Giunchiglia’s LMS which they call the compose-and-conquer way of dealing with differences of languages in contexts. PLC uses a divide-and-conquer technique and since we take our cue from PLC, Tiered Logic is a divide-and-conquer technique, though the terminology may not be entirely appropriate as there are similarities to both.

In relation to Gabbay’s Fibring of Logics, see e.g. (Gabbay and Nossum, 1997), we can easily see that the way we chose the global model has strong affinities in fibering. This can be seen in how we define what models X^k, and note that fib evaluates to m_k itself in our system(see Section 2).

In global (natural language) discourse one often sees or hears statements in a foreign language used in the middle of something in the local language, for example in a television broadcast where the spoken foreign language is accompanied by subtitles. References may then need to be changed or at least clarified. Consider the following two assertions:

- “Le président a dit qu’il n’y a aucune arme de destruction de masse en Irak.”
- “The President said that there are no weapons of mass destruction in Iraq.”

Here the references are to the same country, however the reference to the president refers, in the first case, to the French one, and in the second, to the US President. There is no contradiction between the quotations, but there is between the two men.

In the media there would be an indication of the locality, i.e. country. Thus we might have found in the USA: “The President of France said that there are no weapons of mass destruction in Iraq,” and in France: “Aux États Unis, le Président a dit qu’il y a armes de destruction de masse en Irak”. Finally, in a third country: “In the USA, the President said there are weapons of mass destruction in Iraq, but in France, its President said there are no weapons of mass destruction.”

Semantically we understand these utterances because we tag each utterance with its context or, as we shall say, “locality”, in these cases, France and the USA, respectively. Then we interpret them in that locality.

4. “The President said that there are no weapons of mass destruction in Iraq.”
5. The reference to weapons of mass destruction was more problematic because we did not know whether there were any in Iraq!

For agents in localities we again have the problem of them communicating across different languages. This paper is an attempt to provide a basic method of formalizing such situations.

We give the first presentation of what we call “Tiered Logic”, which allows the inclusion of powerful bridge rules. In our logic, statements made in a local language are tagged with that local locality and then become “atomic” statements or basic propositions in a higher tier of what we call the global logic.

With bridge rules any statement in one locality can have consequences in another. So information can be conveyed, or even translated, from one locality to another.

We provide soundness and completeness proofs for two varieties of our underlying idea of tiered logic. For simplicity we assume that all our localities have the same underlying logic, but different languages. This restriction is not essential but a completely general approach would be notionally horrendous. The complications in our presentation come from the interactions between the tiers: when a sentence from one locality is used in a different locality, one has to refer back to the first locality in order to determine the semantics.

Additionally we use Saša Buvač’s, see e.g. (Buvač et al., 1995) notion of flatness (see Section 2). This entails that once a statement has been made (and its semantics determined for its own locality) then the truth or falsehood of the statement is unaffected by reporting it in another locality. Thus in the example above, a US newspaper reporting what had been said in the USA might include the statement that it had been reported in France that the (US) President had said there were weapons of mass destruction in Iraq. The semantics here would only depend on what was said in the US, not what was reported in France (assuming that the media tell the truth).

2 TIERED FOL

First we consider the informal semantics. We have a number of localities, think of France, the USA, etc., each with its own local theory. In our first example we simply use first order logic at each locality. These comprise Tier 0. At each locality we have a traditional model of the local theory, that is to say, a first order model. We collect these together to form a model for the global (tier 1) language. The underlying semantics at tier 1 is the standard semantics of propositional calculus except that traditional propositional letters are replaced by what we call “basic” global formulae.

However, we also have interaction between the
Figure 1: The transfer rules. Note that A must be interpreted in a traditional first order logic model (in tier l pre-locality). Intuitively: a formula is interpreted using the values from the tier 0 model (or models) according to the usual rules for propositional calculus. When we go back down from tier 1 to tier 0, the semantic value is unchanged. (This depends on the fact that our formulae at tier 1 have no free variables and are therefore true or false.) The formal definitions follow the usual pattern.

Syntax. Because of going up and down between tiers the syntax looks a little complicated, however the actual formulae should be easily readable. We let L be a set of localities. At each locality $l \in L$ we have a first order logic with a language L^l as usual. These generate the strictly local formulae, which we denote by φ, ψ, etc. Going up to the global level (tier 1) we define the basic global formulae as strictly local sentences tagged by their locality, e.g. φ^l. These are combined as in an ordinary propositional calculus and we denote global formulae by Φ, Ψ, etc. But now we can take these back down to the local level, where they interact with formulae already there (including strictly local formulae). We then take the inductive closure in the usual way, to get the set of local formulae at that locality.

Thus local formulae and global formulae are inductively defined using a pair of interacting inductive definitions. Notice that although global formulae are local formulae (for any locality) the reverse is definitely not the case. For example, a strictly local formula of locality l is not a global formula.

Examples. We assume that the language of locality l has only the predicate letter P, and that the locality k has only the predicate letters P_1 and P_2.

Strictly local formulae: $\forall x P(x)$ in the locality l; $(P_l(x) \rightarrow P_2(x))$ in the locality k, and $\exists y P_2(y)$ in the locality k.

Global formulae: $\forall x P(x)^l$, $(\forall x P(x)^l \rightarrow (\exists x P_1(x))^k)$, $(\exists y P_2(y))^k$. Notice that the localities are superscripts in the global formulae; Each global example is either a superscripted local sentence or a propositional combination of such sentences.

Local formulae for the locality k: $(\forall x P(x))^l$, $(P_l(x) \rightarrow P_2(x))$, and $\exists y ((\forall x P(x))^l \rightarrow P_2(y))$. The first formula, $(\forall x P(x))^l$, is local (even in the locality k) because it is a global formula; the second is local in k because it is a strictly local formula of k; and the third is local in k, because it is a first order logic combination of a strictly local (and therefore also local) formula, $P_2(y)$, of k and a global (therefore also local) formula, $(\forall x P(x))^l$.

Our axiom system is designed from reflecting on the semantics. The (strictly) local syntax is simply first order logic in the language L^l for tier 0 and propositional calculus for tier 1. In addition to these we have the rules in Figure 1 which are essentially due to (Buvač et al., 1995). We read $\Gamma \vdash \neg A$ as “Γ proves A” and $\Gamma \vdash A, A \rightarrow A$ as “Γ proves A in the locality l”.

The (Exit) and (Enter) rules allow us to move up and down between the tiers, provided we appropriately tag or untag the formula. The rules (K), (D) and (T), when used together with the (Exit) and (Enter) rules, ensure that the propositional connectives commute with moving between the tiers.

The rule (Flat), see (Buvač et al., 1995), ensures that once a statement has been made in one locality its truth-value is unchanged when it is taken into another locality. (Flat-0), which is our addition to the ideas of Buvac et al., 1995, ensures that our axiom system is consistent between local and global versions of a statement. cf. footnote 7 above.

Remark 1. If Ξ is the strictly local theory in the locality l, then we define the lifting of Ξ to the global tier to be $\Xi^l = \{ \varphi^l : \forall \varphi \in \Xi \}$.

Lemma 1. If Φ is a global formula, then $\Gamma \vdash l \Phi$ ($\Phi \equiv \Phi^l$) for any locality l.
2. $\Xi \vdash l \varphi$ is equivalent to $\Xi^l \vdash l \varphi^l$.

Lemma 2. If Φ and all formulas in Γ are global formulae, and $\Gamma \vdash l \Phi$, then $\Gamma \vdash \varphi l \Phi$.

The proofs of these and all other results may be found in (Cruz and Crossley, 2008).
Theorem 1 (CNF for Global Formulae). Every global formula is provably equivalent to a conjunction of disjunctions of basic global formulae.

Proof. First show that every global formula is globally provably equivalent to a propositional combination of basic global formulae, and then, as usual, put this into conjunctive normal form.

Formal Semantics. We first define a strictly local model for a locality l as being a model in the usual first order logic sense, and we denote such models as m_l. These are the tier 0 models. Then a model for the global system, or tier 1, model is a set of such models: $\mathcal{M} = \{m_l : l \in \mathcal{L}\}$.

In order to define global satisfaction we need simultaneously to define local satisfaction, so we have a double inductive definition. The reader should be warned that the formal definitions, which may be found in (Cruz and Crossley, 2008) look much more forbidding than they are in practice. He or she should refer back to our motivating section 2, and here we shall only give an intuitive picture.

Given a basic global sentence φ (which means φ is a strictly local sentence of locality l), then φ^l is (globally) true in \mathcal{M} if, and only if, $m_l \models \varphi$. If, and only if, $m_l \models \varphi$. In this case we also say φ^l is locally satisfied at l, and we write this as $\mathcal{M} \models_l \varphi$.

If Φ is a global sentence, then we use the usual rules of propositional calculus to compute its truth value. This also covers local satisfaction.

This only partly defines global satisfaction, for it only defines it for propositional combinations of basic global sentences.

Remark 2 (Overlap Requirements). It is possible to have overlaps in the languages at the different localities. Then we impose the requirement that if two atomic sentences from different localities, are syntactically identical, then they are semantically identical also. This will then carry over to more complicated formulae in the usual way.

It remains to define local satisfaction for local formulae that are not global formulae. Such formulae may contain free variables from a particular locality. We simply do this in the obvious way, except that, because global formulae are sentences and have no free variables, we can simply use the truth values of any global sentences contained in such a formula.

Thus a local sentence A is locally satisfied in l if, and only if, $m_l \models_l A$. We also use the locutions “A is (strictly locally) true in m_l (at l)”, and “m_l is a model of (the sentence) A”.

To determine global satisfaction of a global formula put the formula into conjunctive normal form by Theorem 1, then determine the truth value of each basic global sub-formula φ^l by determining the local truth value of φ in l. Finally compute the global truth value from these truth values.

Consistency and Soundness. There are many varieties of consistency: strictly local, global and local. Happily, because of our rule system they are all essentially equivalent. For example, we say that a set of global formulae Γ is globally consistent if $\Gamma \not\vdash \bot$ and that a set, Γ_l, of formulae local in l is locally consistent in l if $\Gamma_l \not\vdash \bot$. It then follows that if Σ is a set of strictly local formulae then Σ is strictly locally consistent if, and only if, it is locally consistent; if Σ is a locally consistent set of local formulae in a locality l, then $\Sigma^l = \{A^l : A \in \Sigma\}$ is globally consistent; and that if Σ is a set of global formulae, then Σ is globally consistent if, and only if it is locally consistent at some locality l if, and only if, it is locally consistent for every locality.

We define soundness in the obvious way: A rule $\Gamma, A, B \vdash C$ is sound if whenever Γ, A and B are satisfied (globally, or locally at l) then so is C, respectively.

Theorem 2. 1. The axioms and rules for Tiered FOL are both globally sound, and locally sound for any locality l.

2. The rules and axioms for Tiered FOL are consistent.

Bridge Rules. Bridge rules are global formulae involving local formulae from different localities. The original rules are given by (Ghidini and Serafini, 1998) and also used in description logics (Borgida and Serafini, 2003).

In description logic, suppose we have concepts, C and D, in localities k and l, respectively, then, our version of the rules in (Borgida and Serafini, 2003) would mean we would write $C^k \sqsubseteq D^l$ which corresponds to the informal sentence $\forall x (C^k(x) \rightarrow D^l(x))$. However, we cannot model this directly in our system.\footnote{For an implementation of our scheme using description logic see the first author’s forthcoming thesis (Cruz, 2008).} Nevertheless we can certainly imitate the intent of Borgida and Serafini by adding rules of the form: For all constants c common to localities k and l

\[
\Gamma \vdash C^k(c) \\
\Gamma \vdash D^l(c)
\]

However, our system admits very powerful rules. For example, we can have rules that depend on not just one locality influencing another, but more than
one. We can have bridge axioms of the form \(\varphi^k \land \psi^l \rightarrow \chi^m \) or bridge rules of the form

\[
\Gamma \vdash \gamma \varphi^l \quad \Gamma \vdash \gamma \psi^k
\]

\[
\Gamma \vdash \gamma \chi^m
\]

or with even more premises. Further examples of bridge rules involving quantification are: \(\forall xP(x)^k \rightarrow \exists xQ(x)^l \), and \(\forall xP_1(x) \rightarrow \forall yP_2(y)^k \rightarrow (\exists zQ_1(z) \rightarrow \forall wQ_2(w) \land \exists vQ_3(v))^l \).

Completeness and Decidability. In order to prove the completeness of our system under the tier scheme, we follow the technique of Leon Henkin (Henkin, 1949). Given a set, \(\Gamma \), of consistent global formulae, we extend this to a maximal consistent set, \(\Gamma^\infty \), and show this has a model.\(^{10}\) The main difference from the classical scheme is that we make maximal consistent sets of sentences both at the global level, \(\Gamma^\infty \), and at each locality.\(^{11}\)

Now consider the strictly local sentences in \((\Gamma^\infty)_l \). These include the atomic (strictly) local sentences and it is just these that are used, in the standard Henkin way, to build a local model, \(m_l \). Then we collect these into \(M = \{ m_l : l \in L \} \) as a global model for \(\Gamma^\infty \).

The only unusual part is to show that \(\Gamma^\infty \) is closed under the (Enter) and (Exit) rules. Suppose \(A \) is a local sentence of \(l \) not in \((\Gamma^\infty)_l \). Then we cannot have \(A^l \) in \(\Gamma^\infty \). Hence \(\neg (A^l) \) is in \(\Gamma^\infty \), and by rule (D), \(\neg A^l \) is in \(\Gamma^\infty \) and finally by (Enter), \(A \) is in \((\Gamma^\infty)_l \), which is a contradiction.

Theorem 3 (Completeness). The system of rules and axioms for Tiered FOL is complete (both locally and globally).

For decidability we restrict ourselves to systems in which the first order logics in every locality are decidable and there is only a finite number of localities in our system.

Theorem 4. If 1. the global system has only a finite number of localities and the strictly local theories at each locality are decidable, and 2. there is a finite number of bridge rules, then the global system is decidable.

Proof. To decide whether

\[
\Gamma \vdash \gamma \bigwedge \{ \exists^l : l \text{ is a locality} \} \rightarrow \Phi
\]

\(^{10}\) The restriction to global formulae is merely for convenience. (Replace local formulae \(A \) in a locality \(l \) by the set of global formulae \(\{ \varphi_l : \varphi \in A \} \) and use the rules (Enter) and (Exit).

\(^{11}\) The proof is as usual except that we have to ensure consistency across localities. This is ensured by the model commonality requirement, see Remark 2 above.

express the sentence as a propositional combination of basic global sentences.\(^{12}\) Now use the truth values of these basic global sentences to compute the value of the sentence.

3 CASL

In the previous part of the paper there was no direct interaction between localities except in the presence of bridge rules, or overlapping languages (cf. Remark 2). There are other possibilities dealing with structured localities (Gabbay and Nossman, 1997). Here we consider algebraic specifications, where new specifications are built from old ones, as the localities. From an ontology point of view, there is a strong reason to use CASL typed languages as ontology languages, primarily because the operations provided by CASL flow over to the operations one might want to do to ontologies, e.g. translate one to another (with operation), combine them (and operation), hide some parts (hide operation), extend them (then operation).

Each locality \(l \) will now be a specification described in a language such as CASL (CASL, 2001; Bidoit and Mosses, 2004). There is no necessity for these specifications to be finite but in practice we would expect them to be so.

CASL stands for “Common Algebraic Specification Language”, see (CASL, 2001; Bidoit and Mosses, 2004). It was designed by the Common Framework Initiative (CoFI) for algebraic specification and development. It is a tool for specifying the modular and functional requirements of software, and has first order logic as its base language and as such it may be used for for tier 0. A good overview of CASL from an applied logic standpoint may be found in (Pernomo et al., 2005) but we give a very brief review of CASL here. We note that the constructions we use are architectural specifications, this is to ensure the uniformity of constructions and to avoid clashes of notations.\(^{13}\)

CASL builds other specifications from basic specifications. A basic specification is an ordinary first order many-sorted logic of the form \(S_p = < \Sigma, Ax > \), where \(\Sigma = < S, TF, P > \) is the signature which comprises sorts, functions and predicates, \(Ax \) is a set of axiom formulae whose members come from the set of well formed formulae of \(S_p \) (WFF(\(S_p \))). Models for CASL specifications are ordinary many-sorted models for first order logic. Such a model \(M \), is a \(\Sigma \)-structure comprising non-empty carrier sets \(S^n \) for all

\(^{12}\) See Remark 1 and Corollary 1 re the definition of \(\exists^l \).

\(^{13}\) Thanks to Peter Mosses for clarification on this point.
$s \in S$, a function f^M from $w^M \rightarrow s^M$ for each $f \in TF_{\Sigma}$, a relation $P^M \subseteq s_1^M \times \ldots \times s_n^M$ for each $P \in P_n$ with $w = s_1 \ldots s_n$ as the set of all Σ-models. We also denote the set of models S^P by $\mathrm{Mod}(S^P)$.

CASL Algebraic Operations. CASL provides algebraic operations for building specifications. One starts with basic specifications and then uses the operations of translation, union, extension and hiding, which we briefly describe below. We use the architectural specifications of CASL so that we preserve the categorical structuring of the set of specifications. In practice this means that we have no problems of clashes of names.

When one views a CASL specification as a description of a theory i.e. a locality or ontology (Lüttich and Mossakowski, 2004), then we readily have ontology operations at our finger tips. The operations that may be performed on CASL specifications are defined by specification expressions in CASL literature.

Structured specifications are ways of combining basic specifications. Fuller details of all our constructions may be found in the CASL Manual (CASL, 2001) or (Poernomo et al., 2005).

Translation is simply the renaming of constants, predicates and functions in a specification. Formally, a translation is the inductive closure of a symbol mapping ρ, which maps the symbols of S^P to another specification, preserving sorts, etc.. \[14\] This is written in CASL as $S^P \xrightarrow{\rho} S^P$.

In CASL the union of two specifications (possibly with some amalgamation) is achieved in such a way that the union specification is a conservative extension of the two given specifications and, moreover, the models of the union are always such that they have reducts that are models of the originally given specifications, see e.g. (Poernomo et al., 2005) or (Cengarle, 1994). Formally we proceed as follows.

Formally, the amalgamated union of two specifications, written $S^P_1 \sqcup S^P_2$ is defined as the pushout in the following diagram.

$$
\begin{array}{ccc}
S^P & \xrightarrow{i_1} & S^P_1 \\
\downarrow{j_2} & \mathrm{inr} & \downarrow{\mathrm{intr}} \\
S^P_2 & \rightarrow & S^P_1 \mathrm{ and } S^P_2
\end{array}
$$

Extensions are defined in a very similar way to unions except that we can extend by a partial specification. The extension of S^P by S^P_{EXT} is denoted as $S^P \xrightarrow{\text{EXT}} S^P_{\text{EXT}}$ For examples, see (Poernomo et al., 2005).

Hiding may perhaps be regarded as an opposite of taking extensions. Given a S^P and a symbol list L the operation $S^P \xrightarrow{\text{hide } L}$ cuts down the signature $S^P \xrightarrow{\text{hide } L}$ to S^P/L. The models of $S^P \xrightarrow{\text{hide } L}$ are $\{m | \sigma : m \in \mathrm{Mod}(S^P)\}$ where σ is the injection from S to $\mathrm{sig}(S^P)$, see (Poernomo et al., 2005).

4 THE TIERED CASL SYSTEM

Syntax. We use architectural specifications as localities and we recall that a specification has a language inside it and this we designate as the “local language”. We then follow the same model as before (see Section 2). In Tiered CASL, the strictly local formulae are simply first order formulae in the syntax of the locality S^P. Basic global formulae are strictly local sentences annotated by superscripts that are specification [names]. Thus a strictly local sentence, φ, is lifted to the global level as a basic global sentence φ^g.

Local formulae in a specification (locality) S^P are the inductive closure of the strictly local formulae and the global formulae.

Examples: We assume that the language of locality S^P_1 has only the predicate letter P, that the locality S^P_2 has only the predicate letters P_1 and P_2, and that locality S^P_3 has only the predicate letter Q.

Strictly local formulae: $\forall x : s \bullet P(x)$ in the locality S^P_1 and $\forall x : s \bullet P(x)$ in the locality S^P_1 and S^P_2; $\forall x : s \bullet (P_1(x) \rightarrow P_2(x))$ in the locality S^P_2; and $\exists y : s \bullet P_2(y)$ in the locality S^P_1.

Global formulae: $\forall x : s \bullet P(x)^{S^P_1}$, $\forall x : s \bullet P(x)^{S^P_1}$ and $S^P_2 \rightarrow (\forall x : s \bullet P_1(x))^{S^P_2}$, $\exists y : s \bullet P_2(y)$.

Local formulae for the locality S^P_2: $\forall x : s \bullet P(x)^{S^P_2}$, $\forall x : s \bullet (P_1(x) \rightarrow P_2(x))$, $\exists y : s \bullet (\forall x : s \bullet P(x)^{S^P_2}) \rightarrow (\forall x : s \bullet P_1(x))^{S^P_2}$, $\exists y : s \bullet P_2(y)$.

The first formula, $\forall x : s \bullet P(x)^{S^P_1}$ is local (even in the locality S^P_2) because it is a global formula; the second is local in S^P_2 because it is a strictly local formula of S^P_2; and the third is local in S^P_2, because it is a first order logic combination of a strictly local (and therefore also local) formula, $P_2(y)$, of S^P_2, and a global (therefore also local) formula, $\forall x : s \bullet P(x)^{S^P_2}$. The fourth is a mixture of global
The last one is a local specification. However, because of the structural rules of Figure 2, such a global model \(\mathfrak{M} \) must also include models for all the specifications constructed from the basic specifications using translation, union, extensions and hiding.

The soundness of Tiered CASL is proved as before except that we now have also to consider the structural rules. Since the other rules are treated in the usual way, we only need consider the structural rules and we take (union) as an example.

Assume \(\mathfrak{M} \models A^{SP_1} \), then the local model \(m_{SP_1} \) in \(\mathfrak{M} \) is such that \(m_{SP_1} \models A \). Let \(m_{SP_2} \) be any model of \(SP_2 \). Then the amalgamated union of \(m_{SP_1} \) and \(m_{SP_2} \) is a model of \(inl(A) \). Since this is true for all such pairs of models we have \(\Gamma \models A^{SP_1} \cup SP_2 \).

The other cases are similar.

The initial idea of the completeness proof was inspired by that in Section 2. However, because changes in basic specifications cause changes in any structural specification constructed from them, we have to modify our strategy.

First recall that localities (i.e. specifications) may be built from other localities, so when we add witnesses to each basic specification, \(SP \) to get a new basic specification \(SP^+ \), this expands the specification at that locality in a trivial way, but it carries over to constructed specifications, so that for \(SP_1 \) and \(SP_2 \) we now have \(SP_1^+ \) and \(SP_2^+ \), to which we add new constants to obtain \((SP_1^+ \cup SP_2^+) \). Similarly for specifications using the other operations of Section 3: extension, hiding and translation.

When we construct the model the cases for the basic sets of rules proceed as before. We give just one example for the structural rules, (union) Assume that \(A^{SP_1} \in \Gamma^m \). We now test if \(inl(A)^{SP_1^+ \cup SP_2^+} \in \Gamma^m \). Suppose not, then we have \(\neg(inl(A)^{SP_1^+ \cup SP_2^+}) \in \Gamma^m \) by maximality. Therefore \(inl(\neg A)^{SP_1^+ \cup SP_2^+} \in \Gamma^m \) since negation commutes with the locality (by rules (D), (T) and (K)) and with \(inl \) by the definition of \(inl \). But then by (hide) \(inl(\neg A)^{SP_1^+ \cup SP_2^+} \in \Gamma^m \) by (trans) using the map \((inl)^{-1} \). Finally using (D) and (T) one more \(\neg(A^{SP_1^+ \cup SP_2^+}) \in \Gamma^m \) which is a contradiction. □

Now, for each specification \(SP \) we construct a local model \(m_{SP} \), as in Section 2, and the global model \(\mathfrak{M} = \{ m_{SP} : SP \) is a specification \}.

Theorem 5 (Completeness of Tiered CASL). The system of rules and axioms for Tiered CASL is complete (both locally and globally), i.e. if for
every global model M and every global sentence Φ we have $M \models \Phi \iff \models \Phi$, and similarly for local sentences for each specification.

5 FUTURE WORK

We have described a scheme that provides for global communication between agents in different localities, possibly with different logics, but certainly with different languages. In doing so we have allowed one locality to influence another by bridge rules. The new range of rules is much more complex than those in e.g. (Ghidini and Serafini, 1998) and (Borgida and Serafini, 2003), since two (or more) localities may affect what happens in another locality.\footnote{In the thesis of the first author (Cruz, 2008) the bridge rules based on (Ghidini and Serafini, 1998) and (Borgida and Serafini, 2003) have been directly simulated, but also strengthened in a description logic context.}

We have proved completeness and consistency results for a basic system and also for a system, Tiered CASL, which allows the localities to be structured specifications in CASL.

For a practical implementation of our scheme we have built software where the local logic is PROLOG and the global logic is propositional calculus.

There remains one general area that particularly requires further investigation. How do we do quantification at the global level? (Buvač et al., 1995) developed quantification over localities and we see no difficulty in extending our work in that direction. However we would like to imitate Borgida’s $C^k \subseteq D^l$ directly, but it does not seem to make sense to write $\forall x (C(x)^k \rightarrow D(x)^l)$ since some elements in locality k may not be in locality l. So we remain like the ancient Chinese mathematician, Liu Hui, see p. 74 of (Li Yan and Du Shiran, 1987), “...not daring to guess, [we] wait for a capable person to solve it.”

REFERENCES

